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An iterative method for impulse noise removal
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ABSTRACT: Based on the conjugate gradient method, we propose a modified iterative method (MCG) for impulse noise
removal based on the famous two-phase scheme. The noise candidates are firstly identified by the adaptive median
filter, and then the MCG method recovers these noise candidates by minimizing an edge-preserving regularization
function. A nice property of the MCG method is that the global convergence can be established without assuming that
the objective function satisfies strong convexity under the Armijo-type line search. Numerical experiments show that
the MCG method is effective to remove the impulse noise.
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INTRODUCTION

In practice, images are often corrupted by impulse
noise during image acquisition and transmission.
Thus some algorithms for removing impulse noise
have been intensively investigated. For example,
the median filter and some of its variants1, 2 have
been constructed based on the nonlinear digital
filters3. These methods firstly locate possible noisy
candidates, and then replace them with medians
or their variants. Furthermore, these methods can
detect the noisy pixels even at a high noise level.
It is a pity that they cannot restore such pixels
satisfactorily because they do not take into account
local image features such as the possible presence
of the edges. Subsequently, Nikolova4 proposed
a variational method for impulse noise removal,
which can preserve details and the edges well, but
the grey level of every pixel is changed including
uncorrupted ones. Other types of methods have also
been extensively studied5–11.

In this paper we focus on the famous two-
phase method for impulse noise removal proposed
by Chan et al11. The noisy candidates are firstly
detected by the adaptive median filter1 or the adap-
tive centre-weighted median filter12 for different
types of noise, and then the detected noisy pixels
are recovered by minimizing an objective function
by some optimization methods. Chan et al gave

some numerical results to show that the two-phase
method is powerful even for a salt-and-pepper noise
ratio as high as 90%. However, the given objec-
tive function is not smooth because it includes an
`1 data-fitting term. This implies that it is costly
to obtain the minimizer in the second phase. To
reduce the cost of computing, Chan et al13 showed
that the non-smooth `1 data-fitting term can be
deleted from the objective function, because only
detected noisy pixels are restored in the minimizing
process. Furthermore, some experiments show that
the quality of the recovered images is not affected.
Thus the objective function proposed in Ref. 11
can be reduced to the following function. Let X
be the true image with M -by-N pixels, and A =
{1,2, 3, . . . , M} × {1,2, 3, . . . , N} be the index set
of X . N ⊂ A denotes the set of indices of the
detected noisy pixels in the first phase. In the second
phase, the detected noisy pixels can be restored by
minimizing the following function.

Fα(u) =
∑

(i, j)∈N

�

∑

(m,n)∈Vi, j\N

ϕα(ui, j − ym,n)

+
1
2

∑

(m,n)∈Vi, j∩N

ϕα(ui, j −um,n)

�

, (1)

where Vi, j is the set of the four closest neighbours
of the pixels at the position (i, j) ∈ A , ym,n is the
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observed pixel value of the image at the position
(m, n), u = [ui, j](i, j)∈N is a column vector of the
length c ordered lexicographically in which c is the
number of elements of N , and ϕα(t) is an edge-
preserving function which has a great influence on
the features of Fα(u).

The objective function Fα is smooth if the se-
lected edge-preserving function ϕα is smooth. This
means that some first-order optimization algorithms
can be used to recover the corrupted images by
minimizing (1). Cai et al14 used the conjugate
gradient methods to recover the corrupted images
without any line search. Yu et al15 proposed a
descent spectral conjugate gradient method for im-
pulse noise removal. A favourite property of the
proposed method is that the search direction gener-
ated is a descent direction at each iteration. Under
the strong Wolfe line search, its global convergence
could be established if Fα is strongly convex. Liu
et al16 constructed a spectral gradient (SP) method
to remove the impulse noise. The search direction
generated by the SP method satisfies the sufficient
descent property at each iteration, which is indepen-
dent of any line search. Under the Armijo-type line
search, the global convergence of the SP method is
established for general smooth functions.

Hager et al17 proposed a nonlinear conjugate
gradient method where the directions are generated
by the rule

d0 = −g0, dk = −gk +β
HZ
k dk−1, k ¾ 1,

with

βHZ
k =

1
dT

k−1 yk−1

�

yk−1−2dk−1
‖yk−1‖

2

dT
k−1 yk−1

�T

gk.

Under the standard Wolfe line search, the global
convergence of this method is established for
strongly convex smooth functions. To prove the
global convergence for general smooth functions,
they set βCG

k =max{βHZ
k ,ηk}, where

ηk =
−1

‖dk−1‖min{η,‖gk−1‖}
, η > 0.

This is the famous CG_DESCENT method, which is
one of the most efficient conjugate gradient methods
for solving unconstrained optimization problems. In
this study, we are interested in the parameter βHZ

k .
Based on the parameter βHZ

k , we propose a modi-
fied conjugate gradient (MCG) method for impulse
noise removal. The MCG method inherits the nice
property of the HZ method, i.e., the search direction

generated by the MCG method always satisfies the
sufficient descent property independent of any line
search. In particular, its global convergence can
be established for general smooth functions under
the Armijo-type line search. Numerical experiments
show that the proposed MCG method performs well
for impulse noise removal.

ALGORITHM AND ITS GLOBAL CONVERGENCE

We start with the convergence theorem for general
smooth function f (x). Firstly, we give the modified
conjugate gradient method.

Algorithm 1
Step 1: Give x0 ∈ Rn, ρ ∈ (0,1), τ > 0, δ ∈ (0, 1),

t > 1/4, ε > 0. Set k = 0.
Step 2: If ‖gk‖¶ ε, stop.
Step 3: Define dk by

dk =

¨

−gk, k = 0,

−gk +βkdk−1, k ¾ 1,
(2)

where gk denotes the gradient of the objective
function at the kth iterate and

βk =
gT

k yk−1

dT
k−1γk−1

−
t‖yk−1‖2

(dT
k−1γk−1)2

gT
k dk−1, (3)

γk−1 = yk−1+ rk−1dk−1, yk−1 = gk− gk−1, rk−1 =
1+max{0,−dT

k−1 yk−1/d
T
k−1dk−1}.

Step 4: Compute the step-size αk.
Step 5: Let xk+1 = xk +αkdk, set k := k+ 1, go to

Step 2.

The following result indicates that the MCG method
must satisfy the sufficient descent condition without
any line search.

Lemma 1 Let the sequences {dk} and {gk} be gener-
ated by the MCG method. Then

gT
k dk ¶ −

�

1− 1
4t

�

‖gk‖2, k ¾ 0. (4)

Proof : (4) holds for k = 0. For k ¾ 1, from (2) we
have

gT
k dk = −‖gk‖+

(gT
k yk−1)(gT

k dk−1)

dT
k−1γk−1

−
t‖yk−1‖2(gT

k dk−1)2

(dT
k−1γk−1)2
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=
�

−‖gk‖(dT
k−1γk−1)

2

+
dT

k−1γk−1p
2t

gT
k (
p

2t gT
k dk−1)yk−1

− t‖yk−1‖2(gT
k dk−1)

2
�

/(dT
k−1γk−1)

2

¶
�

−‖gk‖(dT
k−1γk−1)

2+
(dT

k−1γk−1)2

4t ‖gk‖2

+ t(gT
k dk−1)

2‖yk−1‖2

− t‖yk−1‖2(gT
k dk−1)

2
�

/(dT
k−1γk−1)

2

= −
�

1− 1
4t

�

‖gk‖2.

2
To prove the global convergence of the MCG
method, the following Armijo line search is needed,
i.e., the step-size αk = max{ρiτ|gT

k dk|/‖dk‖2, i =
0,1, 2,3, . . .} satisfies

f (xk +αkdk)¶ f (xk)−δα2
k‖dk‖2, k ¾ 0. (5)

The following result is easily obtained under the
given line search.

Lemma 2 Assume that the level set Γ = {x ∈ Rn |
f (x) ¶ f (x0)} is bounded. Let the sequence {dk},
k¾ 0, be generated by the MCG method, and the step-
size αk satisfies (5). Then

lim
i→∞

αi‖di‖= 0. (6)

Proof : By (5), we have

k
∑

i=0

δα2
i ‖di‖2 ¶ f (x0)− f (xk+1).

Since the level set Γ is bounded, then

∞
∑

i=0

δα2
i ‖di‖2 <∞.

This indicates that the conclusion (6) holds. 2

Theorem 1 Assume that the level set Γ = {x ∈ Rn |
f (x)¶ f (x0)} is bounded. Let the sequence {gk}, k¾
0, be generated by the MCG method, and the step-size
αk satisfies (5). If g satisfies the Lipschitz condition,
i.e., there exists a constant L > 0 such that

‖g(x)− g(y)‖¶ L‖x − y‖, ∀x , y ∈ Γ , (7)

then we have

lim inf
k→∞

‖gk‖= 0.

Proof : From the definition γk−1 in the MCG algo-
rithm, we have

dT
k−1γk−1 = dT

k−1 yk−1+ rk−1dT
k−1dk−1

¾ dT
k−1 yk−1+ dT

k−1dk−1− dT
k−1 yk−1

¾ dT
k−1dk−1. (8)

It follows from (4) that

‖dk‖¾
�

1− 1
4t

�

‖gk‖,

then

αk ¶
τ‖gk‖
‖dk‖

¶
τ

1− 1
4t

¬ q.

By (2), (7), and (8), it holds that

‖dk‖¶ ‖gk‖+
�

|gT
k yk−1|

dT
k−1γk−1

+
t‖yk−1‖2|gT

k dk−1|
(dT

k−1γk−1)2

�

‖dk−1‖

¶ ‖gk‖+
�αk−1 L‖gk‖‖dk−1‖

‖dk−1‖2 +
tα2

k−1 L2‖dk−1‖2‖gk‖‖dk−1‖
‖dk−1‖4

�

‖dk−1‖

¶ (1+αk−1 L+ tα2
k−1 L2)‖gk‖

¶ (1+ qL+ tq2 L2)‖gk‖.

Since the level set Γ is bounded and g satisfies
the Lipschitz condition, then the sequence {gk} is
bounded. Hence the sequence {dk} is bounded. The
remaining proof is referred to the second part of
Theorem 3.1 in Ref. 16. 2

As pointed out by Cai et al14, if ϕα is convex,
continuously differentiable, and first-order Lipschitz
continuous, then Fα is continuously differentiable
and first-order Lipschitz continuous, i.e., ∇Fα is
Lipschitz continuous. Thus if we select the appro-
priate ϕα(t), the problem (1) is solved by the MCG
method. Applying the theorem to the function Fα,
from the result in Ref. 14 we have the following
global convergence results.

Theorem 2 Assume that ϕα(t) is even, convex, con-
tinuously differentiable, and strictly increasing in |t|.
Let the sequence {uk}, k¾ 0, be generated by the MCG
method applied toFα. If ϕα(t) is first-order Lipschitz
continuous, then there exists a subsequence of {uk}
converging to a global minimizer u∗ of Fα.

NUMERICAL EXPERIMENTS

In this section, some experimental results are given
to show the performance of the MCG method in
the context of impulse noise removal impulse noise.
We select the salt-and-pepper impulse noise. The
test images are 256×256 and 512×512 grey level
images. We select the parameters in the MCG
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Table 1 Performance of the MCG and SP methods for
restoring the images with noise level 50%.

Image Method PSNR Time (s) Iter.†

Lena MCG (t=1) 30.0952 2.7708 44.8
(256×256) MCG (t=2) 30.1138 2.6402 44.4

SP 29.9878 3.5500 44.6
Cameraman MCG (t=1) 27.5288 3.7082 60.2
(256×256) MCG (t=2) 27.5246 3.4110 59.4

SP 27.5182 4.8000 61.0
Barbara MCG (t=1) 26.4259 11.8686 41.4
(512×512) MCG (t=2) 26.4213 10.9560 40.8

SP 26.4032 16.4437 41.0
Banoon MCG (t=1) 24.6085 12.0921 44.6
(512×512) MCG (t=2) 24.5660 12.0572 44.6

SP 24.5659 17.7937 45.0

† Iter.,the total number of iterations for the whole im-
pulse noise removal process.

Table 2 Performance of the MCG and SP methods for
restoring the images with noise level 70%.

Image Method PSNR Time (s) Iter.

Lena MCG (t=1) 27.0811 4.0648 63.0
(256×256) MCG (t=2) 27.1862 4.0128 63.2

SP 27.1024 5.2313 64.8
Cameraman MCG (t=1) 24.6753 5.2796 81.4
(256×256) MCG (t=2) 24.7377 5.0870 83.2

SP 24.6262 6.7031 81.6
Barbara MCG (t=1) 24.5696 17.2668 54.6
(512×512) MCG (t=2) 24.5549 16.1910 53.6

SP 24.5489 26.9312 63.4
Banoon MCG (t=1) 22.3741 17.7564 59.4
(512×512) MCG (t=2) 22.3729 17.9706 60.4

SP 22.3724 25.9437 59.8

Table 3 Performance of the MCG and SP methods for
restoring the images with noise level 90%.

Image Method PSNR Time (s) Iter.

Lena MCG (t=1) 22.7776 10.8462 119.8
(256×256) MCG (t=2) 22.7800 11.3956 135.2

SP 22.7748 12.8906 123.0
Cameraman MCG (t=1) 21.2164 12.6844 152.2
(256×256) MCG (t=2) 21.2021 11.7630 150.0

SP 21.1851 16.7437 147.4
Barbara MCG (t=1) 22.5561 46.8472 105.8
(512×512) MCG (t=2) 22.5594 44.0846 107.6

SP 22.5512 62.1031 106.0
Banoon MCG (t=1) 20.3252 42.4632 104.6
(512×512) MCG (t=2) 20.3118 43.7204 106.0

SP 20.3075 59.9218 107.8

method as follows: δ = 0.5, τ =
p

99/8, ρ = 0.5,
t = 1, 2, ε = 10−4. In addition, we compare the
performance of the MCG method with that of the
SP method presented in Ref. 16. The SP method
performs better than the Polak-Ribière conjugate
gradient method which is the most effective among
the methods considered in the numerical compari-
son in Ref. 14.

To solve the problem (1) by the MCG method,
we select the Huber function18 as the edge-
preserving function, which is convex and first-order
Lipschitz continuous. Its definition is as follows

ϕα(t) =

¨

t2

2α , |t|¶ α,

|t| − α
2 , |t|> α,

with α= 10. The stopping criterion is

|b(uk)−b(uk−1)|
|b(uk)|

¶ 10−4.

To assess the restoration performance, we use the
peak signal-to-noise ratio PSNR19, i.e.,

PSNR= 10 log10
2552

1
MN

∑

i, j(u
∗
i, j − x i, j)2

,

where u∗i, j and x i, j denote the pixel values of the
restored image and the original image, respectively.
To test the performance of both methods more fairly,
the experiments are repeated for 5 different noise
samples of each image, and the average of the
5 results is listed in Tables 1–3.

To a certain extent, Tables 1–3 indicate that, for
the PSNR, the MCG method performs better than the
SP method for most of the test images with different
noise levels. Although the numbers of iterations of
both methods are very similar, the MCG method is
faster than the SP method, leading to about 25%
saving in time. Fig. 1 lists the results restored by
the methods from the corrupted images with noise
level 70%. In a word, these results show that the
MCG method can effectively restore the corrupted
images with different noise levels.

CONCLUSIONS

In this study, we propose a modified conjugate
gradient method based on the HZ method. Re-
markableness of the proposed method is that its
global convergence is established under the Armijo
line search without assuming that the objective is
strongly convex. We use the proposed method to
remove the impulse noise in the two-phase method,
and obtain efficient experiment results.
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Fig. 1 Restoration of the images Lena, Cameraman, Barbara, and Banoon via the MCG(t=1), MCG(t=2), and SP
methods. From left to right: the corrupted image, the restorations obtained by the MCG(t=1), MCG(t=2), and SP
methods, respectively.
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