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ABSTRACT: In this paper, we consider the method for solving a kind of general stochastic linear complementarity
problems. Based on Fischer-Burmeister function, we transform this kind of general stochastic linear complementarity
problems into nonsmooth equations and present a projected trust region method to solve the nonsmooth equations.
The global convergence of this method is also given. Finally, the numerical results are reported.
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INTRODUCTION

With the continuous maturity and development of
financial markets in various countries, the trading
system and tools in the financial field are becoming
more and more perfect. The types and forms of
representative options in financial derivatives are
constantly and increasingly developed. An option
in a derivative is the right to buy and sell assets at a
certain price. In the field of finance and mathemat-
ics, the pricing of derivative securities, represented
by option pricing, has been studied a long time1, 2.
Because American option is more complex than Eu-
ropean option, the current American option pricing
problem is still one of the most important problems
in the derivative securities pricing problem. In
the case of no arbitrage, the equation was con-
verted to a stochastic complementarity problem3,
which is based on the definition of the portfolio.
The portfolio is constructed when the Black-Scholes
equation is derived. Besides, the prices of American
options are depended on the asset price, the strike
price, the expiration date, the risk-free rate and
the volatility of the asset price, which is usually
assumed as constant. However, since each expert
has its own views on volatility, it is unsuitable to
set up the volatility as a constant4. Ref. 5 pro-
vided the relationship of option pricing and linear
complementarity problems and Ref. 4 proposed a
kind of stochastic linear complementarity problems
to solve the problem. They also gave the existence
conditions of the solution. On the other hand,
the stochastic linear complementarity problems has

an important application in engineering6, trans-
portation7 and others8. For example, the refinery
production and the demand depend on the output
of oil and the weather8, respectively, which change
every day with uncertainty. The refinery production
problem can be transformed into a stochastic linear
complementarity problem with four random varia-
tions. This shows that the stochastic linear comple-
mentarity problems is one of the important math-
ematical models in the financial problems. Hence
in this study, we present a more general stochastic
linear complementarity problem, which contains the
models of the above problems.

Assume that (Ω, F, P) is a probability space with
Ω ⊆ Rn, where the probability distribution P is
known. A general stochastic linear complementarity
problem is to find a vector x ∈ Rn such that

F(x ,ω) = (A1(ω)+λI)x − b1(ω)¾ 0,

G(x ,ω) = (A2(ω)−λI)x − b2(ω)¾ 0,

F(x ,ω)TG(x ,ω) = 0,

(1)

where Ω ⊆ Rn is the underlying sample space and
ω ∈ Ω = {ω1,ω2, . . . ,ωn} is a random vector with
given probability distribution P, λ ∈R and I is n×n
identity matrix. For each ω, A1(ω), A2(ω), b1(ω),
and b2(ω) are n × n matrices and n-dimensional
vectors, respectively. When λ = 0, the above prob-
lem is transformed into the general stochastic linear
complementarity problems9, i.e., to find a vector
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x ∈ Rn such that

F(x ,ω) = M1(ω)x + q1(ω)¾ 0,

G(x ,ω) = M2(ω)x + q2(ω)¾ 0,

F(x ,ω)TG(x ,ω) = 0.

(2)

When F(x ,ω) = x , the above problem is trans-
formed into the stochastic linear complementarity
problems8, 10. This kind of problems is usually
solved by expectancy value (EV) method and ex-
pected residue minimization method, which are
widely studied in many articles11, 12. When Ω
includes only one element, problem (1) is trans-
formed into the general linear complementarity
problems13, i.e., to find a vector x ∈ Rn such that

F(x) = M1(x)+ q1 ¾ 0,

G(x) = M2(x)+ q2 ¾ 0,

F(x)TG(x) = 0,

(3)

where M1 and M2 are n× n matrices, q1 and q2 are
n-dimensional vectors.

When G(x ,ω) = x , the general linear comple-
mentarity problems are transformed into the linear
complementarity problems (LCP), which are widely
used in solving absolute value equations, equilib-
rium problems and the related problems. For more
details of the applications of LCP see Refs. 14, 15.
The interested readers can also refer to two mono-
graphs (Refs. 16, 17) by Cottle et al.

There are many well-known methods for solving
LCP and we consider some methods to solve prob-
lem (1). To transform the problem (1) to LCP, we use
the EV method to obtain the following equations.
Denote

A1+λI =
m
∑

i=1

pi(A1(ωi)+λI),

b1 =
m
∑

i=1

pi b1(ωi),

where pi = P(ωi ∈ Ω) ¾ 0, i = 1, . . . , m. The
problem (1) is equivalent to the problem defined as

(A1+λI)x − b1 ¾ 0, (A2−λI)x − b2 ¾ 0,

((A1+λI)x − b1)
T((A2−λI)x − b2) = 0,

(4)

and

(A1(ωi)+λI)x − b1(ωi)¾ 0,

(A2(ωi)−λI)x − b2(ωi)¾ 0,
(5)

for i = 1, . . . , m. The problem (4) is a general
linear complementarity problem, so we can use

the complementarity functions to solve this prob-
lem. The complementarity functions have many
different forms, such as the functions proposed in
Refs. 18, 19. Among them, Fischer-Burmeister func-
tion20 φ(a, b) =

p
a2+ b2− (a+ b) is convex13 and

differentiable at any point (a, b) 6= (0,0). Further-
more, the square of the Fischer-Burmeister function
is continuously differentiable at any point in the
plane. Hence we use the Fischer-Burmeister func-
tion to transform problem (4) and solving problem
(4) is equivalent to solve Φ(x) = 0, where

Φ(x) =







φ(((A1+λI)x − b1)1, ((A2−λI)x − b2)1)
...

φ(((A1+λI)x − b1)n, ((A2−λI)x − b2)n)






.

To solve problem (4) and problem (5), it is equiva-
lent to solve the following problem,

H(x , y) = 0, y ¾ 0, (6)

where

H(x , y) =























Φ(x)
(A1(ω1)+λI)x − b1(ω1)− y1

...
(A1(ωm)+λI)x − b1(ωm)− ym

(A2(ω1)−λI)x − b2(ω1)− ym+1
...

(A2(ωm)+λI)x − b2(ωm)− y2m























, (7)

y = (yT
1 , yT

2 , · · · , yT
2m)

T ∈ R2m×n.
For x = x ′ − x ′′, where x ′, x ′′ ∈ Rn, and

x ′, x ′′ ¾ 0, let z = (x ′, x ′′, y)∈R(2m+2)n and define a
merit function of (6) as f (z) = 1

2‖H(z)‖
2. If problem

(1) has a solution, then solving (6) is equivalent to
find a global solution of the optimization problem,

min
z∈Ω1

f (z), (8)

where Ω1 = {z | z ¾ 0}.
To make the transformation of problem (1)

more distinct, we give a concrete example to explain
the transformation process. Consider problem (1),
where

A1(ω) =
�

1+ω 1
1 2

�

, b1(ω) =
�

1+ω
1

�

,

A2(ω) =
�

1+ω 1
1 1+ω

�

, b2(ω) =
�

ω
1+ω

�

,

Ω= {0,1}, pi = P(ωi ∈Ω) = 0.5, i = 1,2, and λ= 1.
Let

F(x ,ω) = (A1(ω)+ I)x − b1(ω)¾ 0,

G(x ,ω) = (A2(ω)− I)x − b2(ω)¾ 0,

F(x ,ω)TG(x ,ω) = 0.

(9)
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Then

A1+ I =
2
∑

i=1

pi(A1(ωi)+ I) =
� 5

2 1
1 3

�

,

b1 =
2
∑

i=1

pi b1(ωi) =

�

3
2
1

�

,

A2− I =
2
∑

i=1

pi(A2(ωi)− I) =

�

1
2 1
1 1

2

�

,

b2 =
2
∑

i=1

pi b2(ωi) =

�

1
2
3
2

�

.

We obtain

Φ(x) =

�

φ([(A1+λI)x − b1]1, [(A2−λI)x − b2]1)
φ([(A1+λI)x − b1]2, [(A2−λI)x − b2]2)

�

and

H(z) = H(x , y) =



























Φ(x)
2x1+ x2−1− y11
x1+3x2−1− y12
3x1+ x2−2− y21
x1+3x2−1− y22

x2− y31
x1−1− y32

x1+ x2−1− y41
x1+ x2−2− y42



























= 0,

with y = (y11, y12, y21, y22, y31, y32, y41, y42) ¾ 0.
The problem (9) is transformed into a nonnegative
constrained optimization problem.

There are many methods to solve problem (8)
and the related optimization problems, such as
Refs. 21, 22. The Levenberg-Marquardt method is
an important method that has been widely used in
recent years23, 24. It overcomes the fact that the
Gauss-Newton method requires full rank of the Jaco-
bian matrix’s column of H in the iteration process.
And the convergence rate of Levenberg-Marquardt
method is quadratic. However, the descent direction
of the Levenberg-Marquardt method is

dk = −[V T
k Vk +µk I]−1V T

k H(zk),

where Vk ∈ ∂ H(zk) and µk is Lagrange multiplier. dk
is related to the value ofµk and it is difficult to define
a suitable value of µk. Fortunately, trust region
method is a method which is related closely to the
Levenberg-Marquardt method. Furthermore, trust
region method could adjust the radius by quadratic
model to obtain a more sufficient descent of the
objective function. The positivity of the Hessian

matrix is not necessary in the projected trust region
method. Hence the projected trust region method
is also widely used25, 26. In this work the projected
trust region method is used to solve for the special
structure of problem (1).

PROJECTED TRUST REGION METHOD

This section provides some preliminaries17, 27 and
proposes the projected trust region method for solv-
ing the given general stochastic linear complemen-
tarity problems.

Definition 1 For a local Lipschitzian function F :
Rm→ Rn, the B-subdifferential of F at z is

∂B F(z) = {V ∈ Rm×n | ∃{zk} ⊆ DF : {zk} → z, F ′(zk)→ V}

where DF is the set of differentiable points and
F ′(zk) is the Jacobian of F at zk ∈ Rn.

Clarke’s generalized Jacobian of F at z ∈ Rn is

∂CF(z) = conv{∂B F(z)},

where conv denotes the convex hull of a set. Note
that

∂CF(z)T = ∂ F1(z)× · · · × ∂ Fn(z).

For any z = (x ′, x ′′, y) ∈ R(2m+2)n, we have

∂CH(x ′, x ′′, y)

=























Vφ −Vφ 0 · · · 0
A(ω1)+λI −(A(ω1)+λI) −I · · · 0

...
...

...
...

...
A(ωm)+λI −(A(ωm)+λI) 0 · · · 0
A(ω1)−λI −(A(ω1)−λI) 0 · · · 0

...
...

...
...

...
A(ω1)−λI −(A(ω1)−λI) 0 · · · −I























where Vφ ∈ ∂Cφ(x), I is the n× n identity matrix,
and λ ∈ R.

Definition 2 F is said to be semi-smooth at z if

lim
V∈∂C F(z+th′)

h′→h, t↓0

Vh′

exists for any h ∈ Rn.

Definition 3 F is said to be strongly semi-smooth at
z if F is semi-smooth at z and

lim
V∈∂C F(z+h)

h→0

‖F(z+h)− F(z)− Vh‖
‖h‖2

<∞.
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The projected trust region method contains ele-
ments from affine-scaling methods. By the methods
proposed28, 29, the first-order optimization condi-
tion of problem (8) is equivalent to the nonlinear
system

ψ(z) = D(z)∇ f (z) = 0,

where
D(z) = diag (d1(z), . . . , dn(z))

is a suitable scaling matrix for z ∈ Ω1 that satisfies
conditions

di(z)















= 0, zi = 0, [∇ f (z)]i > 0,

= 0, zi =∞, [∇ f (z)]i < 0,

¾ 0, zi ¾ 0, [∇ f (z)]i = 0,

> 0, otherwise,

for i = 1, . . . , n. Some examples of D(z) are given
in Refs. 29, 30. In this study, the form of D(z) is
defined based on Ref. 29, namely,

di(z) =

¨

min{1, zi}, [∇ f (z)]i ¾ 0,

1, [∇ f (z)]i < 0,

for i = 1, . . . , n and z ∈ Ω1.
To solve problem (8), let zk be the kth iteration

point, denote fk = f (zk), gk = ∇ f (zk) = H(zk)TVk,
and Vk ∈ ∂CH(zk), and define Bk = V T

k Vk + µk I ,
where µk = µ‖ f (zk)‖2, µ ∈ (0,1). The trust region
subproblem of kth iteration has the form

min
‖p‖∞¶∆k

p+zk¾0

qk(p) = gT
k p+ 1

2 pTBk p, (10)

where ∆k is the radius of projected trust region and
zk is the mean of kth iteration. Suppose that the
optimum solution of problem (10) is dk, the actual
decrease of f in the kth step is

∆ fk = f (zk)− f (zk + dk)

and the predicted decrease is

∆qk = qk(0)− qk(dk)

with the ratio rk = ∆ fk/∆qk. The solution pk of
problem (10) satisfies the Cauchy decrease condi-
tion

qk(pk)¶ αqk(p
c
k) (11)

where α ∈ (0,1) and pc
k = p(tk) is the scaled Cauchy

step, when tk is a solution of

min
p(t)=−tD2

k gk , t¾0
‖p(t)‖¶∆k , zk+p(t)¾0

qk(p(t)).

Proposition 1 (Ref. 30) The function f (z) =
1
2‖H(z)‖

2 defined in (7) is continuously differentiable
with its gradient V T

k H(z), where Vk ∈ ∂ H(z).

From Refs. 29, 31, the projected trust region
method for solving problem (1) is described as
follows.

Method 1. The projected trust region method

Choose 0<η1 <η2 < 1, 0< γ1 < 1< γ2,∆max > 0,
initial radius of trust region∆0 <∆max, initial point
z0, parameters µ,ρ,ε ∈ (0,1), and set k = 0.
Step 1: Compute gk =∇ f (zk). If ‖Dk gk‖< ε, stop.
Step 2: Choose Vk ∈ ∂ H(zk), compute dLM

k by

(V T
k Vk +µk I)dLM

k = −V T
k H(zk).

Step 3: If ‖ f (PΩ1
(zk))‖¶ ρ‖ f (zk)‖ holds, set

zk+1 = PΩ1
(zk), ∆k+1 =min(γ2∆k,∆max),

and go to Step 7. Otherwise, go to Step 4.
Step 4: Solve subproblem (10) to obtain the

solution pk and compute Pred(pk) = ∆qk,
Ared(pk) =∆ fk, and rk.

Step 5: Correct trust region radius

∆k+1 =







γ1∆k, rk ¶ η1,

∆k, η1 < rk < η2,

min{γ2∆k,∆max}, otherwise.

Step 6: If rk >η1, set zk+1 = zk+pk. Otherwise, set
zk+1 = zk.

Step 7: Set k = k+1 and go to Step 1.

CONVERGENCE ANALYSIS

This section provides the global and local con-
vergence properties of the projected trust region
method based on the following lemmas proposed in
Ref. 29.

Lemma 1 (Ref. 29) Let pk be a solution of the sub-
problem (10) satisfying (11). Then

qk(0)− qk(p
c
k)¾

1
2α‖Dk gk‖min

§

∆k, 1,
‖gk‖
‖Bk‖

ª

.

Proof : From the definition of Vk, V T
k Vk is positive

semidefinite. Thus V T
k Vk + µk I is positive definite.

Then the result is similar to the proof of Lemma 1 in
Ref. 25. 2

Lemma 2 (Ref. 29) If {dPLM
k | dPLM

k = PΩ1
(zk +

dLM
k )− zk} is infinite, then limk→∞‖H(zk)‖= 0.
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Assumption 1 For the initial point z0, f (z) has a
lower bound and is continuously differentiable on the
level set L(z0) = {z | f (z)¶ f (z0)}.

Theorem 1 Suppose Assumption 1 holds. Let {zk}
be a sequence generated by Method 1, and z∗ is an
accumulation point of {zk}. If Method 1 does not
terminate in a finite number of steps, then

lim inf
k→∞

‖∇ f (zk)‖= 0.

Proof : Without loss of generality, we assume that
{zk} is an infinite sequence. By Lemma 2, the global
convergence properties is not destroyed by dPLM

k , the
projected Levenberg-Marquardt method. Suppose
that the descent direction is obtained by Step 4 and
obtain ∇ f (zk) 6= 0. To prove by contradiction, we
assume that lim infk→∞∇ f (zk) 6= 0. This gives

|rk −1|=
�

�

�

�

f (zk)− f (zk + dk)− qk(0)+ qk(dk)
qk(0)− qk(dk)

�

�

�

�

=

�

�

�

�

f (zk)− f (zk + dk)+ qk(dk)
qk(0)− qk(dk)

�

�

�

�

. (12)

From Taylor expansion,

f (zk + dk) = f (zk)+ g(zk)
Tdk + o(dk). (13)

Since Vk is upper semicontinuous32, ∂BH(zk) is
nonempty compact set at any point and bounded in
bounded set of points. Thus ∂CH(zk) is bounded.
Since Vk is bounded for any Vk ∈ ∂CH(zk), Bk =
V T

k Vk + µk I is bounded and there exists a positive
constant c such that

‖Bk‖= ‖V T
k Vk +µk I‖¶ c. (14)

This gives

| f (zk)− f (zk + dk)+ qk(dk))|= |
1
2 dT

k Bkdk − o(dk)|

¶ 1
2 c‖dk‖2+ o(‖dk‖). (15)

From Ref. 29, there exists a positive constant ε0
such that ‖Dk∇ f (zk)‖¾ ε0. By Lemma 1, we have

|rk −1|¶
1
2 c‖dk‖2− o(‖dk‖)
|qk(0)− qk(dk)|

¶
1
2 c‖dk‖2− o(‖dk‖)

1
2αε0 min{∆k, 1, ε0

c }

¶
1
2 c(∆k)2− o((∆k))

1
2αε0 min{∆k, 1, ε0

c }
(16)

and |rk−1|→ 0 as∆k→ 0. By the monotone descent
property, continuity, and the boundedness of f (zk)
on L(z0), we obtain

lim
k→∞

Ared(dk) = 0, lim
k→∞

Pred(dk) = 0. (17)

However, by (16) and Method 1, we know that
rk ¾ η2 holds for k sufficiently large and∆k+1 ¾∆k.
Thus there exists∆> 0 and γ > 0 that∆k ¾ γ∆̃> 0
hold for any k satisfying ∆k ¶ ∆̃, and obtain

Pred(dk)¾
1
2αε0 min

§

∆k, 1,
ε0

c

ª

> 0. (18)

Clearly, (17) and (18) are contradictory, therefore,

lim inf
k→∞

‖∇ f (zk)‖= 0.

2

Theorem 2 Let {zk} be a sequence generated by
Method 1. If z∗, an accumulation point of {zk}, is
a solution of problem (8) and any Vk ∈ ∂CH(z∗) has
full rank. Then we know that {zk} is Q-quadratic
convergent.

Proof : By Definition 3, H is strongly semi-smooth,
then it is locally Lipschitzian. Since µk = µ‖ f (zk)‖2,
µ ∈ (0,1), then lim supk→∞µk/O(‖H(zk)‖) <∞
and µk = O(‖H(zk)‖). The proof is then complete
by following the similar proof of Theorem 5.3 in
Ref. 29. 2

NUMERICAL RESULTS

In this section, Method 1 is applied to two general
stochastic linear complementarity problems (Exam-
ples 1 and 2) and a refinery production problem8, 33

(Example 3). The codes are written using MATLAB

7.0 and the parameters are taken as η1 = 10−5, η2 =
0.75, γ1 = 0.5, γ2 = 2.0, ∆max = 1010, ρ = 0.99,
and µ = 0.5 with stopping rule ‖Dk gk‖ ¶ 10−6 or
kmax = 50000.

In the numerical experiments, the initial points
are given randomly. We use n to denote the dimen-
sion of the problem, and x∗ the minimum point of
f (z).

Example 1 Consider problem (1) with

A1(ω) =

�

− 3
2 +ω 2
0 − 3

2 +ω

�

, b1(ω) =

�

− 3
2 +ω
− 3

2 +ω

�

,

A2(ω) =

�

5
2 +ω 2

0 5
2 +ω

�

, b2(ω) =

�

− 3
2 +ω
− 3

2 +ω

�

,

Ω= {0,1}, pi = P(ωi ∈Ω) = 0.5, i = 1,2, and λ= 1.
The results are shown in Table 1.
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Table 1 Numerical results of Example 1.

x∗ f (z∗)

(0.3517,−0.5) 4.4691×10−16

(0.3681,−0.5) 2.0791×10−19

(0.4063,−0.5) 7.1033×10−18

(0.4752,−0.5) 1.3102×10−12

(0.3744,−0.5) 3.9822×10−13

(0.4023,−0.5) 9.3473×10−19

(0.4422,−0.5) 3.7104×10−14

(0.4814,−0.5) 7.2941×10−19

(0.3685,−0.5) 1.1621×10−12

(0.2154,−0.5) 2.8290×10−19

Example 2 Consider problem (1) with

A(ω) =









1
2 +ω 2 · · · 2

0 1
2 +ω · · · 2

...
...

. . .
...

0 0 · · · 1
2 +ω









n×n

,

b(ω) =





− 3
2 +ω

...
− 3

2 +ω





n×1

,

Ω= {0, 1}, pi = P(ωi ∈Ω) = 0.5, i = 1,2, and λ= 1.

In this example, we select different dimensions n.
The problems numerical results corresponding to
different n are given in Table 2, where the numerical
experiments were carried out 10 times for each n.

The values of f are degressive rapidly showing
that the Method 1 is effective for solving Examples
1 and 2, see Fig. 1. The problem is complex when
n = 800 in Example 2, which has x ′, x ′′ ∈ R800,
yi ∈ R800, i = 1, . . . , 1600, and z ∈ R1281600. The
numerical results of Example 2 show that Method 1
is effective in solving this kind of general stochastic
linear complementarity problems.

Example 3 Consider the refinery production prob-
lem8, 33, where A1(ω) is an identity matrix, b1(ω) =
0,

A2(ω) =







0 0 1 −2−ω1 −3
0 0 1 −6 ω2 −3.4
−1 −1 0 0 0

2+ω1 6 0 −ω3 −ω3
3 3.4−ω2 0 −ω4 ω4






,

b2(ω) =







−2
−3
−100

180+ω3
162+ω4






,

λ = 0, k = 10i , i = 2,3, 4, 2x1 + 3x2 is the initial

production cost, and ω j satisfy the distribution

ω1 ≈ u[−0.8, 0.8],
ω2 ≈ e (λ= 2.5),
ω3 ≈ N(0, 12),
ω4 ≈ N(0, 9).

Generated samples ωk
j , j = 1, . . . , 4, k = 1, 2, . . . , K ,

from their respective 99% confidence intervals are,
except for uniform distributions,

ωk
1 ∈ I1 = [−0.8, 0.8],

ωk
2 ∈ I2 = [0.0,1.84],

ωk
3 ∈ I3 = [−30.91, 30.91],

ωk
4 ∈ I4 = [−23.18, 23.18].

For each ( j, i), the mean of the samples ωk
j that

belong to the subinterval I j,i is v j,i and the estimate
probability of v j,i is p j,i = k j,i/K , where k j,i is the
number of samples ωk

j ∈ I j,i . Denote N = m1 ×
m2 ×m3 ×m4 and the joint distribution {(ωl , pl) |
l = 1,2, . . . , N} as

ωl =







v1,i1
v2,i2
v3,i3
v4,i4






, pl = p1,i1 p2,i2 p3,i3 p4,i4 ,

for i1 = 1, . . . , m1, i2 = 1, . . . , m2, i3 = 1, . . . , m3,
i4 = 1, . . . , m4. The conditions are assumed for two
cases; case 1: m1 = 0, m2 = 0, m3 = 15, m4 = 15,
case 2: m1 = 5, m2 = 9, m3 = 7, m4 = 11.

Tables 3 and 4 show that the minimization of
f and the minimum product cost 2x k

1 + 3x k
2 are all

computed effectively by Method 1. The numerical
results sufficiently show that the projected trust
region method is a reliable solver for the proposed
general stochastic complementarity problems.

CONCLUSIONS

In this study, a kind of general stochastic comple-
mentarity problem is considered and solved by a
projected trust region method. This kind of general
stochastic complementarity problem is more general
and contains many models of practical problems,
such as the refinery production problem. The global
convergence of the projected trust region method
is proved under general conditions, which is also
verified by some numerical results.
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Table 2 Numerical results of Example 2.

f (z∗)

n= 10 n= 100 n= 200 n= 300 n= 800

5.32×10−13 2.22×10−12 5.69×10−11 1.77×10−7 3.43×10−5

3.49×10−19 2.32×10−11 7.53×10−12 8.52×10−8 2.40×10−6

2.75×10−15 5.84×10−12 9.22×10−12 2.35×10−7 2.38×10−5

2.25×10−19 2.00×10−15 8.76×10−12 1.77×10−7 7.20×10−5

5.43×10−19 7.19×10−12 4.02×10−11 5.32×10−7 5.39×10−6

1.72×10−13 6.88×10−11 7.54×10−12 4.02×10−7 4.80×10−7

1.17×10−18 9.13×10−12 3.22×10−11 4.02×10−7 3.91×10−5

2.17×10−16 2.66×10−12 4.01×10−13 3.23×10−9 1.03×10−5

3.18×10−13 2.37×10−12 2.06×10−11 4.03×10−7 2.07×10−6

2.50×10−13 4.02×10−13 5.07×10−11 4.01×10−7 3.76×10−5

Fig. 1 The values of f (z).

Table 3 Numerical results of Example 3, case 1.

k x∗ f (z∗) 2x k
1 +3x k

2

102 (34.97, 19.03,0, 0.24,0.51) 1.10 127.03
102 (34.96, 19.04,0, 0.24,0.51) 1.10 127.03
103 (34.97, 19.03, 0, 0.24, 0.51) 1.10 127.03
103 (34.96, 19.04, 0, 0.24, 0.51) 1.10 127.04
104 (35.32, 19.09, 0, 0.26, 0.46) 1.48 127.90
104 (35.32, 19.09, 0, 0.26, 0.46) 1.48 127.91

Table 4 Numerical results of Example 3, case 2.

k x∗ f (z∗) 2x k
1 +3x k

2

102 (35.11, 19.99,0, 0.34,0.51) 1.36 130.19
102 (35.12, 18.88,0, 0.25,0.50) 1.36 126.88
103 (35.12, 18.88, 0, 0.25, 0.50) 1.36 126.88
103 (35.12, 18.88, 0, 0.25, 0.50) 1.36 126.88
104 (34.91, 19.09, 0, 0.25, 0.50) 1.36 127.09
104 (34.91, 19.09, 0, 0.25, 0.50) 1.36 127.09
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