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ABSTRACT: This paper is concerned with mixed lag synchronization between two complex networks, which means that
different state variables of the corresponding nodes can attain lag synchronization, antilag synchronization and even
amplitude death simultaneously for a given channel time-delay. By using the Lyapunov stability theory and the LaSalle’s
invariance principle, several sufficient conditions for realizing the mixed lag synchronization between two networks
are obtained with two kinds of schemes based on pinning feedback control. Finally, some numerical simulations are
provided to demonstrate the effectiveness and feasibility of the results.
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INTRODUCTION

As an important and typical dynamic behavior of
complex networks, synchronization has attracted
considerable attention of many researchers from
various fields. Meanwhile, many kinds of syn-
chronization have been proposed, such as com-
plete synchronization, lag synchronization, projec-
tive synchronization, phase synchronization, cluster
synchronization, and generalized synchronization.
In many real situations, complex networks can not
generally synchronize by their own coupling. As a
result, some control schemes are developed to de-
sign controllers, such as feedback control, adaptive
control, impulsive control, intermittent control, and
pinning control1. Pinning control is a very effective
control scheme whose goal is to control the whole
network by exerting controllers to a part of nodes.
For a large scale network, priority is always given
to pinning control due to its advantages, such as
simplifying the coupling topology configuration and
saving control cost2.

In the last decade, outer synchronization has
attracted much attention due to its extensive appli-
cations in ecology, sociology, and communication,
etc. Outer synchronization between two coupled
complex networks means that the corresponding
nodes of coupled networks will achieve synchro-
nization regardless of synchronization within each
network3. We refer the readers to Refs. 3–6 and

the references therein, where some outer synchro-
nization phenomena have been studied, such as
complete outer synchronization, inverse outer syn-
chronization, and other kinds of generalized outer
synchronization. Mixed outer synchronization7 is
a recently developed generalized synchronization
conception, which means that different state vari-
ables of the corresponding nodes can arrive at
complete synchronization, antisynchronization, and
even amplitude death simultaneously. This kind
of synchronization is called mixed synchronization
in Ref. 8, where mixed synchronization between
the drive and the response systems can be realized
by designing a matrix type unidirectional open-
plus-closed-loop coupling. It was pointed out in
Ref. 8 that mixed synchronization is very useful in
practical applications. For example, in processing
industry, it is necessary to control the concentration
of all reacting chemical constituents in different pro-
portions. Based on mixed synchronization, the con-
centration of any constituent in a reaction system
can either be reduced or enhanced, and it even can
be made to be zero. In neuron oscillators, in order to
obtain a desired neural dynamics, any state variable
can be switched off as membrane voltage while
other membrane current can be reduced by using
mixed synchronization. On the other hand, mixed
outer synchronization can be also regarded as a kind
of hybrid projective synchronization9, 10, in which
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antilag synchronization and even amplitude death
simultaneously for a given channel time-delay. In
other words, the drive system x(t) and the response
system y(t) achieve mixed outer synchronization at
a constant time lag, that is, y(t) = H x(t−τ), where
τ > 0 and H = diag(β1, . . . ,βn) (βi ∈ {−1, 0, 1}).
This paper is devoted to the MLS between two net-
works based on hybrid feedback control. The main
contribution of this paper includes the following
two aspects: (i) Under the controllers based on
pinning control with constant feedback gain, we
give a sufficient condition which is different from
that in the corresponding case18. This condition is
a simple inequality involving the number of pinned
nodes and the coupling strength, which is obtained
when the feedback gain is large enough. (ii) To
avoid excessive feedback gain, we derive two new
conditions for realizing the MLS. One condition is
an inequality involving the number of pinned nodes,
the coupling strength and the feedback gain, which
is obtained under the controllers based on pinning
control with constant feedback gain. The other
condition is obtained under the controllers based
on pinning control with adaptive feedback gain. It
is noteworthy that these inequalities can be easily
verified. Hence, these two conditions will be widely
applied in practice.

MODEL AND PRELIMINARIES

Some notations are firstly introduced. Let Rn and
Rn×n be the n-dimensional Euclidean space and the
set of all n×n real matrices, respectively. ‖·‖ stands
for the Euclidean norm in Rn. AT represents the
transpose of matrix A. The symbol diag (a1, . . . , an)
means a diagonal matrix with the diagonal ele-
ments a1, . . . , an. Im denotes the m×m identity
matrix. B > 0 (< 0) means that matrix B is positive
(negative) definite. λmax(P) stands for the largest
eigenvalue of matrix P.

We consider a complex dynamical network con-
sisting of N dynamical nodes, which is described by:

ẋ i(t) = Ad x i(t)+An x i(t)+ f (x i(t))

+ c
N
∑

j=1

ai jG(x j(t)), i = 1, . . . , N , (1)

where x i = (x i1, . . . , x in)T ∈ Rn is the state vector of
the i-th node, Ad and An represent the diagonal and
non-diagonal matrices, respectively. f : Rn→ Rn

is a smooth nonlinear vector function such that
H f (x) = f (H x), where H is a scaling matrix defined

the drive and response systems are synchronized up 
to a scaling matrix. As we know, hybrid projective 
synchronization is the development of projective 
synchronization, which was first studied in Mainieri 
and Rehacek11. Nowadays, hybrid projective syn-
chronization has been extensively studied12, 13 since 
it can be used to achieve faster communication14–16 

and enhance the security in secure communica-
tion10. Therefore, it is necessary to focus on the 
problem of mixed outer synchronization.

In recent years, mixed outer synchronization 
has captured considerable attention of many re-
searchers. Wang et al.7 studied the mixed outer syn-
chronization between two complex networks with 
the same topological structure and identical time-
varying coupling delay. Later, Zheng and Shao17 

analyzed the mixed outer synchronization between 
two complex networks with non-identical nodes and 
output couplings by using impulsive hybrid control. 
Sheng et al.18 investigated the mixed outer synchro-
nization between two complex networks with non-
time-delayed and time-delayed coupling via pinning 
control and impulsive control. For the study of 
finite-time mixed outer synchronization, we refer to 
Refs. 19–21. Recently, Khan22 proposed a scheme 
for achieving mixed synchronization between two 
coupled dynamical systems of different dimensions.

In some real complex networks such as tele-
phone communication, stock markets, and brain 
networks, signals usually travel from one node to 
another node with lag or delay. Time-delay exists 
not only in each node of the network, but also in 
the information transmission between two coupled 
systems23. Thus, it is reasonable to require the 
states of a response system to synchronize with 
the past states of the drive system. This kind of 
synchronization, regarded as lag synchronization, 
has received considerable attention23–26. Recently, 
Bera et al.27 investigated mixed lag synchroniza-
tion, in which one pair of state variables attains 
synchronization shifted in time while another pair 
of state variables is in antisynchronization, however, 
they are shifted by the same time. Moreover, they 
observed that when a parameter mismatch is in-
duced in two counter-rotating oscillators, mixed lag 
synchronization emerges under diffusive coupling 
via a scalar variable.

In this paper, the lag synchronization behavior 
between two complex networks will be further de-
veloped. More precisely, mixed lag synchronization 
(MLS), different from that in Ref. 27, is introduced. 
Here, it means that different state variables of the 
corresponding nodes can attain lag synchronization,
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as:

H = diag(β1, . . . ,βn) (βi ∈ {−1,0, 1}).

G(x i(t)) =
�

g(x i1(t), . . . , g(x in(t))
�T

is a nonlinear
vector-valued function, and c > 0 is the coupling
strength. A = (ai j)N×N denotes the coupling con-
figuration matrix representing the topological struc-
ture of the network, where ai j is defined as follows:
if there is a connection from node j to node i ( j 6= i),
then ai j > 0; otherwise, ai j = 0. The diagonal ele-

ments of matrix A are defined as aii =−
∑N

j=1, j 6=i ai j ,
i = 1, . . . , N .

Remark 1 For the isolated node i, the function
representing the dynamics is directly written into
Ad x i(t)+An x i(t)+ f (x i(t)). In fact, there are many
general chaotic systems, such as original Chua’s
circuit, modified Chua’s circuit and Chua’s circuit
family, that can be written into this form. This
will provide great convenience for the design of
controllers.

In order to realize MLS between two complex
networks, we refer to Network (1) as the drive
network, and the response network is given by the
following equations:

ẏi(t) = Ad yi(t)+An yi(t)+ f (yi(t))+ui(t)

+ c
N
∑

j=1

ai jG(y j(t)), i = 1, . . . , N , (2)

where yi = (yi1, . . . , yin)T ∈ Rn is the response state
vector of the i-th node, ui is a controller to be
designed for node i, and other notations have the
same meanings as those in (1).

Let τ be a positive time delay. We define the
MLS error signal as

ei(t) = yi(t)−H x i(t −τ), i = 1, . . . , N .

To prove our main results, we need the follow-
ing definitions, assumptions and lemmas.

Definition 1 The drive network (1) and the re-
sponse network (2) achieve MLS with time lag τ
with respect to the scaling matrix H if there exists
a controller ui(t) (i = 1, . . . , N) for node i such that
limt→∞ ‖ei(t)‖= 0.

Remark 2 Notice that LS and MOS are two special
cases of MLS. In fact, when H = IN , MLS reduces to
LS; when τ= 0, MLS reduces to MOS.

Definition 2 The drive network (1) and the re-
sponse network (2) achieve exponential mixed lag
synchronization (EMLS) with time lag τ with re-
spect to the scaling matrix H if there exists a con-
troller ui(t) (i = 1, . . . , N) for node i such that
‖ei(t)‖ ¶ Me−θ t , where M and θ are two positive
constants.

Assumption 1 The nonlinear function f (x) sat-
isfies the Lipschitz condition, i.e., there exists a
positive constant δ such that

‖ f (x)− f (y)‖¶ δ‖x − y‖, ∀x , y ∈ Rn.

Assumption 2 The nonlinear function G(x) satis-
fies HG(x) = G(H x) and the following inequality

α¶
G(x)−G(y)

x − y
¶ β , ∀x , y ∈ Rn and x 6= y,

where α and β are two positive constants.

Lemma 1 [Refs. 1, 28] Let B =
�

B1 B3
BT

3 B2

�

and D =
�

D1 0
0 0

�

be two matrices in RN×N , where B1, D1 ∈

Rr×r(1 ¶ r < N), BT
1 = B1, BT

2 = B2, and D1 =
diag(d1, . . . , dr) is a positive diagonal matrix. Let
d =min{d1, . . . , dr}. Assume that d is large enough.
If λmax(B − D) exists, then we have λmax(B − D) =
λmax(B2).

This result is derived under the condition that d
must be large enough. However, it is impractical
to assume that d is large enough. To solve this
problem, Zhao et al.28 further discussed the result
of Lemma 1 by introducing a relaxation factor ε0.

Lemma 2 [Ref. 28] If λmax(B2) < 0, then for any ε0
(0 < ε0 < |λmax(B2)|), there exists a d > 0 such that
λmax(B− D)¶ λmax(B2)+ ε0 < 0.

SYNCHRONIZATION ANALYSIS

In this section, some synchronization criteria for re-
alizing MLS between two networks will be presented
with two kinds of hybrid feedback schemes.

MLS based on pinning control with constant
feedback gain

In this subsection, the MLS between two networks
is considered under nonlinear and pinning control
with constant feedback gain. Without loss of gen-
erality, assume that the first l (1 ¶ l < N) nodes

www.scienceasia.org

ScienceAsia 44 (2018)

http://www.scienceasia.org/2018.html
www.scienceasia.org


447

in (2) are controlled. The hybrid feedback control
is described as follows:

ui(t) = u1i(t)+HAn x i(t−τ)−An yi(t), i = 1, . . . , N ,
(3)

where

u1i(t) =

¨

−cdei(t), i = 1, . . . , l,
0, i = l +1, . . . , N .

Here, d > 0 denotes the constant feedback control
gain.

The error system can be described as



































































ėi(t) = Ad ei(t)+ f (yi(t))−H f (x i(t −τ))

+ c
N
∑

j=1

ai j(G(y j(t))−HG(x j(t −τ)))

− cdei(t), i = 1, . . . , l,

ėi(t) = Ad ei(t)+ f (yi(t))−H f (x i(t −τ))

+ c
N
∑

j=1

ai j(G(y j(t))−HG(x j(t −τ))),

i = l +1, . . . , N .
(4)

Let A1 be a modified matrix of A by replacing
the diagonal element aii with α

β aii , and let Ã =
1
2

�

A1+AT
1

�

. λl+1 denotes the largest eigenvalue
of Ml+1, where Ml+1 is the minor matrix of Ã by
removing the first l rows and columns. Let γ =
λmax(Ad). We have the following synchronization
criterion.

Theorem 1 Suppose that Assumption 1 and Assump-
tion 2 hold. Let d be large enough. If the number of
pinned nodes l (1 ¶ l < N) satisfies λl+1 < −(δ +
γ)/(cβ), then the drive network (1) and the response
network (2) can achieve MLS with the feedback con-
trol (3).

Proof : We consider the following Lyapunov function

V (t) =
1
2

N
∑

i=1

eT
i (t)ei(t).

V̇ (t) =
N
∑

i=1

eT
i ei

=
N
∑

i=1

eT
i [Ad ei + f (yi(t))−H f (x i(t −τ))]

+ c
N
∑

i=1

N
∑

j=1

ai je
T
i [G(y j(t))−HG(x j(t −τ))]− c

l
∑

i=1

deT
i ei

=
N
∑

i=1

eT
i [Ad ei + f (yi(t))−H f (x i(t −τ))]

+ c
N
∑

i=1

N
∑

j=1, j 6=i

ai je
T
i [G(y j(t))−HG(x j(t −τ))]

+ c
N
∑

i=1

aiie
T
i [G(yi(t))−HG(x i(t −τ))]− c

l
∑

i=1

deT
i ei .

With the assumptions on f and G, we get

V̇ (t)¶
N
∑

i=1

eT
i Ad ei +δ

N
∑

i=1

eT
i ei

+ c
N
∑

i=1

N
∑

j=1, j 6=i

ai j‖eT
i ‖‖G(y j(t))−G(H x j(t −τ))‖

+ c
N
∑

i=1

aiie
T
i [G(yi(t))−G(H x i(t −τ))]− c

l
∑

i=1

deT
i ei

¶
N
∑

i=1

eT
i Ad ei +δ

N
∑

i=1

eT
i ei + cβ

N
∑

i=1

N
∑

j=1, j 6=i

ai j‖eT
i ‖‖e j‖

+ cα
N
∑

i=1

aiie
T
i ei − c

l
∑

i=1

deT
i ei

¶ eT
�

(δ+γ) IN + cβ
�

Ã−
D
β

��

e,

where e = (‖e1‖, . . . ,‖eN‖)
T and D =

diag{d, . . . , d
︸ ︷︷ ︸

l

, 0, . . . , 0
︸ ︷︷ ︸

N−l

}. According to Lemma 1, if d

is large enough, we have

δ+γ+ cβλmax

�

Ã−
D
β

�

= δ+γ+ cβλl+1.

Together with λl+1 < − (δ+γ)/ (cβ), we obtain
V̇ (t) < 0 which implies limt→∞ ‖ei(t)‖ = 0 (i =
1, . . . , N). The proof is completed. 2

Corollary 1 Suppose that Assumption 1 and Assump-
tion 2 hold. Let d be large enough. For some constant
ε > 0, if the number of pinned nodes l (1 ¶ l < N)
satisfies

λl+1 < −
δ+γ+ ε

cβ
,

then the drive network (1) and the response net-
work (2) can achieve EMLS with the feedback con-
trol (3).

The derivative of V (t) along the error dynamics (4) 
is
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In fact, from the proof of Theorem 1, we derive

V̇ ¶ (δ+γ+ cβλl+1)
N
∑

i=1

eT
i ei < −2εV.

According to Comparison lemma29, we get V (t) ¶
Me−2εt , where M = V (t0)e2εt0 . Furthermore, we get
‖ei‖ ¶

p
2Me−εt . Thus, two networks (1) and (2)

achieve EMLS.
By Theorem 1, we obtain a simple relationship

between the number of pinned nodes l and the
coupling strength c, which can guarantee the MLS
between the drive system (1) and the response
system (2). To decrease the number of pinned
nodes l, we can choose a larger coupling strength.
It is worth noticing that this result holds under the
condition that the feedback gain d must be large
enough. However, in engineering applications, a
large feedback gain usually causes the system to
destabilize and may generate turbulence26. To
solve this problem, we will use Lemma 2 to further
analyze the result of Theorem 1.

Corollary 2 Suppose that Assumption 1 and Assump-
tion 2 hold. For some constant ε0, if there exist l and
d such that

λmax

�

Ã−
D
β

�

¶ λl+1+ ε0 < −
δ+γ

cβ
, (5)

then the drive network (1) and the response network
(2) can achieve EMLS with the feedback control (3).

According to Lemma 2, there exist l and d such
that λmax

�

Ã− D
β

�

¶ λl+1+ ε0 < 0. Thus,

V̇ ¶
�

δ+γ+ cβλmax

�

Ã−
D
β

�� N
∑

i=1

eT
i ei

¶ 2 [δ+γ+ cβ (λl+1+ ε0)]V = −2qV,

where q = − [δ+γ+ cβ(λl+1+ ε0)] > 0. Following
the argument of Corollary 1, we obtain that two
networks (1) and (2) achieve EMLS.

Remark 3 To realize MLS between (1) and (2),
Corollary 2 gives a sufficient condition which is a
simple inequality involving the number of pinned
nodes l, the coupling strength c and the feedback
gain d. Hence, it can be easily verified in some
applications. Moreover, when c is fixed, we can
obtain the smallest value of l and the smallest value
of d. In fact, since λl+1 basically decreases with
increasing l (see Fig. 1), we get the smallest value of
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−3

−2.5

−2

−1.5

−1
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1

Fig. 1 λl+1 with respect to the number of pinned nodes l.
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i
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0
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t

e
i
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Fig. 2 Synchronization errors with the feedback con-
trol (3) when d = 800.

l (denoted by lmin) from the right-hand side of (5).
Notice thatλmax

�

Ã− D
β

�

decreases with increasing d
(see Fig. 2). When l = lmin, we derive the smallest
value of d from the left-hand side of (5).

MLS based on pinning control with adaptive
feedback gain

In order to avoid excessive feedback gains, the MLS
between two networks is investigated under non-
linear and pinning control with adaptive feedback
gain, which is described as follows:

ui(t) = u1i(t)+HAn x i(t−τ)−An yi(t), i = 1, . . . , N ,
(6)

where

u1i(t) =







−cdi(t)ei , i = 1, . . . , l,
ḋi(t) = kie

T
i ei , i = 1, . . . , l,

0, i = l +1, . . . , N .
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Here, ki is a positive constant.

Theorem 2 Suppose that Assumption 1 and Assump-
tion 2 hold. If there exist the number of pinned nodes
l (1¶ l < N) and a positive constant d∗ such that

(δ+γ) IN + cβ
�

Ã−
D∗

β

�

< 0,

where D∗ = diag{d∗, . . . , d∗
︸ ︷︷ ︸

l

, 0, . . . , 0
︸ ︷︷ ︸

N−l

}, then the drive

network (1) and the response network (2) can achieve
MLS with the adaptive feedback control (6).

Proof : Construct the following Lyapunov function

V (t) =
1
2

N
∑

i=1

eT
i (t)ei(t)+

1
2

l
∑

i=1

c
ki
(di − d∗)2,

where d∗ is a positive constant to be determined.
The derivative of V (t) along the error dynam-

ics (4) is

V̇ (t) =
N
∑

i=1

eT
i ėi + c

l
∑

i=1

(di − d∗)eT
i ei

=
N
∑

i=1

eT
i [Ad ei + f (yi(t))−H f (x i(t −τ))]

+ c
N
∑

i=1

N
∑

j=1

ai je
T
i [G(y j(t))−HG(x j(t −τ))]

− c
l
∑

i=1

die
T
i ei + c

l
∑

i=1

(di − d∗)eT
i ei

¶
N
∑

i=1

eT
i Ad ei +δ

N
∑

i=1

eT
i ei

+ c
N
∑

i=1

N
∑

j=1, j 6=i

ai je
T
i [G(y j(t))−HG(x j(t −τ))]

+ c
N
∑

i=1

aiie
T
i [G(yi(t))−HG(x i(t −τ))]− c

l
∑

i=1

d∗eT
i ei

¶
N
∑

i=1

eT
i Ad ei +δ

N
∑

i=1

eT
i ei

+ c
N
∑

i=1

N
∑

j=1, j 6=i

ai j‖eT
i ‖‖(G(y j(t))−HG(x j(t −τ)))‖

+ c
N
∑

i=1

aiie
T
i [G(yi(t))−HG(x i(t −τ))]− c

l
∑

i=1

d∗eT
i ei

¶
N
∑

i=1

eT
i Ad ei +δ

N
∑

i=1

eT
i ei + cβ

N
∑

i=1

N
∑

j=1, j 6=i

ai j‖eT
i ‖‖e j‖

+ cα
N
∑

i=1

aiie
T
i ei − c

l
∑

i=1

d∗eT
i ei

¶ eT
�

(δ+γ) IN + cβ
�

Ã−
D∗

β

��

e.

If there exists d∗ > 0 such that (δ+γ) IN +
cβ
�

Ã− D∗

β

�

< 0, then we get V̇ (t)¶ 0.

Let E =
�

e(t) | V̇ (t) = 0
	

and S be the largest
invariant set in E. According to the LaSalle’s invari-
ance principle, every solution starting from arbitrary
initial values tends to S, in which e(t) equals to 0.
This implies that limt→∞ ‖ei(t)‖ = 0 (i = 1, . . . , N).
This completes the proof of Theorem 2. 2

Remark 4 In the above four criteria, the outer cou-
pling configuration matrix A can be nonsymmetric
and the inner coupling function G(x) can be non-
linear. Compared to the classical assumptions (e.g.
A is symmetric and G(x) is linear), our assumptions
are more general. Hence, from a theoretical per-
spective, our results can be widely applied. In our
forthcoming works, we will investigate the specific
application of these theoretical results in practice.

NUMERICAL SIMULATIONS

In this section, some numerical examples are pre-
sented to illustrate the effectiveness of our results.
We choose a scale-free network as the network
topology. The dynamics of each node is taken as the
modified Chua’s circuit system, which is described
as















ẋ1 = p
�

x2−
1
7

�

2x3
1 − x1

�

�

,

ẋ2 = x1− x2+ x3,

ẋ3 = −qx2,

where p, q> 0. This system is rewritten into: ẋ(t) =
Ad x(t)+An x(t)+ f (x(t)), where

x =





x1
x2
x3



 , Ad =





p
7 0 0
0 −1 0
0 0 0



 ,

An =





0 p 0
1 0 1
0 −q 0



 , f (x) =





− 2px3
1

7
0
0



 .

Hence, γ = λmax(Ad) = p/7. Let p = 10 and q =
100/7. According to Fig. 1 in Ref. 7, we have
|x i(t)| < 1.5 (i = 1, 2,3) for t > 0. Furthermore, it
follows that ‖ f (x)− f (y)‖¶ 27p

14 ‖x−y‖. This means
that f satisfies Assumption 1 with δ = 27p/14. We
rearrange the nodes with decreasing degrees and
select the first l nodes as the pinned nodes.

For any x ∈ R, let g1(x) =
1
2 sin x + 21

2 x
and g2(x) =

16
81 sin3x cos x + 308

27 x . Obviously,
the nonlinear vector-valued function G1(x) =
(g1(x1), . . . , g1(xn)) satisfies Assumption 2 with α=
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Fig. 3 λmax(Ã−
D
β ) with respect to varying feedback gain.

10 and β = 11, and the nonlinear vector-valued
function G2(x) = (g2(x1), . . . , g2(xn)) satisfies As-
sumption 2 with α= 11 and β = 12.

In what follows, the time lag and the cou-
pling strength are taken as τ = 0.02 and c = 8,
respectively. The scaling matrix is given by H =
diag(1,−1, 0). Then the error variables are written
as:

ei1(t) = yi1(t)− x i1(t −τ),
ei2(t) = yi2(t)+ x i2(t −τ),
ei3(t) = yi3(t).

For the drive system (1) and the response system
(2), the components of initial values are arbitrarily
given in the interval [0,10].

MLS with the feedback control (3)

Example 1 Let N = 50 and G(x) = G1(x). Fig. 1
shows that λl+1 basically decreases with increasing
l.
(i) We take d = 800. By the inequality λl+1 <
− (δ+γ)/ (cβ) = −0.2354, we can obtain l =
4 which is the smallest number of the pinned
nodes. The MLS errors are shown in Fig. 2,
which implies the correctness of Theorem 1.

(ii) From Corollary 2, we can obtain many feasi-
ble combinations of (l, d). Moreover, an ap-
propriate combination can be selected in real
situations. For ε0 = 0.777, by λl+1 + ε0 <
− (δ+γ)/ (cβ), we obtain l = 8 which is the
smallest number of the pinned nodes. Notice
that λmax

�

Ã− D
β

�

decreases with increasing d
(see Fig. 3). When l = 8, we can get d = 124
which is the smallest feedback gain satisfying
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Fig. 4 Synchronization errors with (l, d) = (8, 124) for
N = 50 and G = G1.
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Fig. 5 Synchronization errors with (l, d) = (8, 110) for
N = 50 and G = G2.

λmax

�

Ã− D
β

�

¶ λl+1 + ε0. Fig. 4 shows that the
EMLS between two networks is realized with
(l, d) = (8, 124).

Example 2 Let N = 50 and G(x) = G2(x). Ac-
cording to Corollary 2, we can obtain many feasi-
ble combinations of (l, d) and select an appropri-
ate combination. For ε0 = 0.829, by λl+1 + ε0 <
− (δ+γ)/ (cβ) = −0.2158, we obtain l = 8 which
is the smallest number of the pinned nodes. When
l = 8, we can get the smallest feedback gain d = 110
satisfying λmax(Ã−

D
β )¶ λl+1+ε0. Fig. 5 shows that

the EMLS between two networks is realized with
(l, d) = (8,110).
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Fig. 6 Synchronization errors with (l, d) = (18,142) for
N = 100 and G = G1.
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Fig. 7 Synchronization errors with adaptive feedback
control (6) for N = 50 and G = G1.

Example 3 Let N = 100 and G(x) = G1(x). Ac-
cording to Corollary 2, we can obtain many feasible
combinations of (l, d). For ε0 = 3.07, by λl+1 +
ε0 < − (δ+γ)/ (cβ), we obtain l = 18 which is the
smallest number of the pinned nodes. When l =
18, we can get the smallest feedback gain d = 142
satisfying λmax

�

Ã− D
β

�

¶ λl+1 + ε0. Fig. 6 shows
that EMLS between two networks is realized with
(l, d) = (18, 142).

MLS with the adaptive feedback control (6)

Example 4 Let N = 50 and G(x) = G1(x). Some
parameters are given as ki = 0.0005 and d∗ = 124.
According to

�

(δ+γ) IN + cβ
�

Ã− D∗

β

��

< 0, the first
8 nodes can be taken as pinned nodes. The initial
value of di(t) (i = 1, . . . , 8) is arbitrarily given in
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Fig. 8 Evolution of feedback gains for N = 50 and G = G1.
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Fig. 9 Synchronization errors with adaptive feedback
control (6) for N = 50 and G = G2.

the interval [0,10]. Here, d1(0) = 8.5577, d2(0) =
6.7080, d3(0) = 5.2359, d4(0) = 2.9882, d5(0) =
7.0397, d6(0) = 3.8161, d7(0) = 5.6768, d8(0) =
8.8786. Fig. 7 shows the MLS errors and Fig. 8
presents the evolution of di(t) (i = 1, . . . , 8).

Example 5 Let N = 50 and G(x) = G2(x). Some
parameters are given as ki = 0.0005 and d∗ = 110.
According to

�

(δ+γ) IN + cβ
�

Ã− D∗

β

��

< 0, the first
8 nodes can be taken as the pinned nodes. The
initial value of di(t) (i = 1, . . . , 8) is arbitrarily
given in the interval [0,10]. Here, d1(0) = 4.5584,
d2(0) = 4.2604, d3(0) = 2.1321, d4(0) = 1.9325,
d5(0) = 8.3275, d6(0) = 7.2664, d7(0) = 5.2975,
d8(0) = 8.2908. Fig. 9 shows the MLS errors and
Fig. 10 presents the evolution of di(t) (i = 1, . . . , 8).
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Fig. 10 Evolution of feedback gains for N = 50 and G =
G2.
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Fig. 11 Synchronization errors with adaptive feedback
control (6) for N = 100 and G = G1.

Example 6 Let N = 100 and G(x) = G1(x). Some
parameters are given as ki = 0.0005 and d∗ = 142.
According to

�

(δ+γ) IN + cβ
�

Ã− D∗

β

��

< 0, the first
18 nodes can be taken as the pinned nodes. The
initial value of di(t) (i = 1, . . . , 18) is arbitrarily
given in the interval [0,10]. Fig. 11 shows the MLS
errors, and Fig. 12 presents the evolution of di(t)
(i = 1, . . . , 18).

For the above three examples, it is obvious
that the value of the adaptive feedback gain gets
stabilized at some constant. This constant is much
smaller than the constant feedback gain of the cor-
responding case in "MLS with the feedback con-
trol (3)". These figures of synchronization errors
demonstrate the effectiveness of Theorem 2.
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Fig. 12 Evolution of feedback gains for N = 100 and G =
G1.

CONCLUSIONS

In many real situations, time-delay is inevitable. In
this paper, we have introduced mixed lag synchro-
nization (MLS), where the response system achieves
MOS with the drive system at a constant time lag.
By using hybrid feedback control, the MLS between
two complex networks has been investigated. Based
on pinning control with constant feedback gain, two
sufficient conditions for realizing MLS between two
networks have been given when the feedback gain
is large enough. These conditions are different from
the previous one in the corresponding case. To
avoid excessive feedback gain, two new conditions
have been derived to realize the MLS. One condition
is an inequality involving the number of pinned
nodes, the coupling strength and the feedback gain,
which is obtained under the controllers based on
pinning control with constant feedback gain. The
other condition is obtained under the controllers
based on pinning control with adaptive feedback
gain. It is noteworthy that these inequalities can
be easily verified. Therefore, these conditions can
be easily carried out in some applications. Finally,
some numerical examples have been presented to
illustrate the effectiveness of the theoretical results.
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