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ABSTRACT: In this study, we present some matrix inequalities for unitarily invariant norms. Firstly, we present an
inequality for unitarily invariant norms. As a consequence of this result, Huang-Peng-Zou’s result follows immediately.
Furthermore, we also establish inequalities for weak log-majorizations and unitarily invariant norms related to question

of Bourin’s.
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INTRODUCTION

Let .#, be the space of n x n complex matri-
ces. Let A;(A), j =1,2,...,n, be the eigenval-
ues of A € #, repeated according to multiplic-
ity, and [A(A)| := (|1A,(A)], [A2(A)]; - .., [2,(A)]) with
12:(A)] = [2,(A)] = --- = [A,(A)]. For A € A,
the singular values of A is denoted by o;(A),
j=1,2,...,n, i.e., the eigenvalues of the positive
semidefinite matrix |A| = (A*A)"/?, arranged in de-
creasing order and repeated according to multiplic-
ity, where A* is the conjugate transpose of A. Let
o(A) := (01(A),0,(A),...,0,(A)) be the vector of
the singular values of A. For two Hermitian matrices
AB e M, A< (<)B means B—A is a positive
semidefinite (definite) matrix. A norm ||-|| on .4,
is called a unitarily invariant norm if ||[UAV|| = ||A]|
forA, U,V € #, with U, V are unitary matrices.
Let ®(-) be the corresponding symmetric gauge
function of the unitarily invariant norms ||-||. Then
lAll = ®({o;(A)}.,) forall A€ .#,. Examples in this
class are the Schatten p-norms and Ky Fan k-norms.
I, is the identity matrix of .#,,. The usual operator
norm denoted by ||-|| o, 1S ||A]| 0o = 01 (A) forA € A,,.
Let us recall some definitions of majorization.
Given a real vector x = (xq,Xg,...,X,) € R", we
rearrange its COMpONENts as X[1] = Xg] 2 *** = X[p]-
For x = (x1,X9,.. ., %), ¥ = (¥V1, Y25 --->¥n) € R, if

k k

Zx[i] <ZJ’[i], k=1,2,...,n,

i=1 i=1

then we say that x is weakly majorized by y and
denotes by x <, y. If x <, y and > x; =
>, ¥i, then we say that x is majorized by y and
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denotes by x < y. Further, if x = (x1,x,..
y =(y1,y2,...,yn)€]R1 and

. :xn))

k

k
l_[x[i] < l_[}’[i], k=1,2,...,n,
i=1

i=1

then we say that x is weakly log-majorized by y and
denotes by x <10 ¥. If X <10 ¥ and [T}, x; =
l_[:‘l=1 Y;, then we say that x is log-majorized by y
and denotes by x <o, ¥. It is well-known that if
X <wlog ¥, then x <, y.

Let A € #, be a Hermitian matrix with eigen-
values A;(A) (j = 1,2,...,n). Then the spectral
theorem states: there is a diagonal matrix A =
diag(21,(A), A5(A),..., A,(A)) such that

A=UAU*,

where U is a unitary matrix.

Let f be a real continuous function on an in-
terval [a, b], if A € #, is a Hermitian matrix with
eigenvalues A;(A) € [a,b], j =1,2,...,n. Then by
the spectral theorem of A, f (A) is defined by

where U is a wunitary matrix and Ay =

diag(f (1,(A)), f (A2(A)), ..., f (A,(A))).
Bhatia et al! proved that; if A,B € .4, be two
positive semidefinite matrices, then

4™ +B™|| < [|(A+B)"|| €8]

holds for any positive integer m and any unitarily in-
variant norm ||-]|. Ando et al? generalized inequality
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(1) that; if A,B € ., be two positive semidefinite
matrices, then

147 + BP|| < |I(A+ B)|| 2)

holds for any positive real number p with 1 < p <
oo and any unitarily invariant norm ||-||. Bourin
et al® obtained a more generalization of inequality
(2). They presented; if A,B € #, be two positive
semidefinite matrices and f : [0, 00) — [0, 00) be a
convex function with f(0) = 0, then

I1f () + B < IIf (A+B)ll 3

holds for any unitarily invariant norm ||-||. Recently,
Huang et al* obtained; if A,B € .#, and suppose
that p, q be real numbers with p > 1and 1/p+1/q =
1, then

HA|A|’“_1 +B|B|™! ||

1/p 1/q

< H(|A|m+ B

.H(|A*|’“+|B*|’”)‘1/2

4)

holds for any positive integer m and for any unitarily
invariant norm |[|-||. If A= U|A| and B = V|B| be the
polar decompositions of A and B, respectively. Then
inequality (4) can be rewritten as

IUIAI™ +VIB[™l
p/2 1/q

1/
<”(|A|m+|3|m) p'H(|A*|m+|B*Im)q/2

()

On the other hand, Hayajneh et al®> and Liu et al®
were independently obtained: If A;,B; € .4, be
positive semidefinite matrices with A;B; = B;A;, i =
1,2,...,m, then for all unitarily invariant norms ||-||,

' @“3“33/2)2“

Inequality (6) is a refinement of the following in-
equality obtained by Audenaert’: If A;,B; € 4,
be positive semidefinite matrices with A;B; = B;A;,
i=1,2,...,m, then for all unitarily invariant norms

11,

<

(6)
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Hoa® and Lin® presented different proofs for in-
equality (7), respectively. Inequality (7) gave an
affirmative answer to Bourin’s question. Given two
positive semidefinite matrices A,B € .#,, and two
positive real numbers p, g, is it true that

||aP*e + BPHa|| < [I(4P +BPY(AT+ B2 (8)

Refinements and improvements for unitarily in-
variant norms have been extensively studied. Many
researchers, e.g., Bhatia !°, Fujii ', Hu'> 13, Kapil *4,
Kittaneh >, Kuzma ', Matharu!’, paid attention to
the improvement and generalization of inequalities
for unitarily invariant norms.

In this study, we present some matrix inequal-
ities for unitarily invariant norms. We present a
generalization of inequality (5) and establish in-
equalities for weak log-majorizations and unitarily
invariant norms related to Bourin’s question.

MATRIX INEQUALITIES FOR UNITARILY
INVARIANT NORMS

This section mainly presents a generalization of
inequality (5) for unitarily invariant norms and
inequalities for weak log-majorizations and unitarily
invariant norms related to Bourin’s question. To
achieve the goal, we require lemmas presented in
Ref. 18.

Lemma 1 IfA,B € #, with A,B = 0, then the matrix
[X* B] is positive semidefinite if and only if X =

AY2KBY/2 for some contraction K, i.e., KK < I,,.

A A
Lemma 2 A>0ifandonlyif[A A]>O.

The next lemma was obtained by Horn*°.

Lemma 3 IfA,B € .#,, then
0 (AB) <105 {0:(A)0:(BY}_,-
The Lemma 4 was obtained by Matharu et al'’.

Lemma 4 IfA,B € #, withA, B> 0and t €[0,1],
then
A(AntB) <wlog k(AlitBt)’

where Af,B = AY2(ATV2BATV2)AV? s the t-
geometric mean of Aand B %°.

The next lemma was given by Hiai?!.

Lemma 5 IfA,B € #, withA, B> 0and t €[0,1],
then

QL((Al/ZBAl/Z)r) '<Wlog)t Ar/ZBrAr/Z),

forr=1.
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The next Lemma 6 is the famous Weyl’s theorem **

on the singular values and the eigenvalues of a
matrix.

Lemma 6 IfA€ .#,, then
|)L(A)| <log U(A)-

In the following, we present the famous Fan domi-
nance theorem *°.

Lemma 7 IfA,B € #,, then
o(A) <, o(B) = |All<|Bl
for any unitarily invariant norm ||-|.
It is now time to present the following theorem.
Theorem 1 IfA,B € #, and f : [0,00) — [0, 00)

is a continuous function with f(0) = 0, then

/
NUFAD+ V(BN < H(f(lAD-’_f(lBl))p/zHl P

/
Jeaan+sasn™ " o

holds for positive real numbers p, q with 1/p+1/q =1
and any unitarily invariant norm ||-||, where U and
V are unitary matrices with A= U|A| and B = V|B|,
respectively.

Proof: Let A= UJA| and B = V|B| be the polar de-
compositions of A and B, respectively. By Lemma 2,
we have

Al A I, o[A AL, O
- >0.
A |AY o ullla Alllo U*

(10)
Putting
1[1, —I
W:_ n n:|’
Al
then W is a unitary matrix and
Al O] . _1[lAl Al
wi'e olw=il m) v

Combining equalities (10) with (11), we obtain

[l AT _[I, © Al 0]. .[I, ©

2[,4 w1 ]=lo ul¥lo o/"|o v
(12)

Since f is a nonnegative function on [0, o) with
f(0) =0, by equality (12) we obtain

G 5D TS o
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Similarly, we also have
faBhv*

f(%[g' |gi|D=5[vff(l(lfB|?) f(IB*I)]'(M)

It follows from equalities (13) and (14) that

[ s s v
UFUAD+VFQBD  FOAD+F(B)
_zf( [lﬁx\' |21|D+2f( [lgl @D”‘

(15)

By inequality (15) and Lemma 1, there is a contrac-
tion K such that

fUADU* + £ (IBDV* =
(Faan+r(BD)

or equivalently,

1/2

K(Fqa D+ f£(B*N)"?,

Uf (Al +VF(Bl) =
(Faa D+ £ B D) 2K*(F(AD + £ (IBD)

According to (16), we have

2 (16)

k
[ [o;(uraan+vraan)

j=1

k 1
l_[crj( faaD+ (B I)) Jo i (K*(fAD+ £ (IBD)?)

J
<[ o (Faan+£aBD) o, (£ 0aD+£UBD)),

j=1

a7

for k = 1,2,...,n, the first inequality is due to
Lemma 3, and the second by the contractive of K*.
Since weak log-majorization implies weak ma-
jorization, we obtain the following weak majoriza-
tion from (17).

o(Uf(AN+V£(IBD) <
{Uj((f(lA*l)+f(|B*I))%)U,-((f(IA|)+f(|B|))%)}_ 1
(18)

Let ®(-) be the corresponding symmetric gauge
function for the unitarily invariant norm ||:||. By the
Cauchy-Schwarz inequality for ®(-) we have?2?

@({aj((fﬂA*D+f(|B*|))%) ((f(|A|)+f(|B|))%)}j:1)

<a(o(Uannssramn))) e (o(areramn)) )

19)
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for positive real numbers p, ¢ with 1/p+1/q = 1.
On the other hand, by inequality (18), we obtain

e(c(Uf(IAD+VF(BD)) <

q>({aj((f(|A*|)+f(|B*|))%)oj((fﬂAl)+f(|B|))%)}J:1)'
(20)

Noting that (o (A)) = ||Al| for A€ 4, and (19) and
(20) imply the desired result (9).

IUf AN+ Vv FUBDI <

|craan+rasme|” |craan+ras |

a

Remark 1 Putting f(x) = x™ for some positive in-
teger number m, (5) follows immediately from (10).

Remark 2 Let f be a nonnegative convex function
on [0, 00) with f(0) =0 and p =g = 2. Then by
inequality (10) we have
Nufdan+vfUBDI
1 . w1
<I£04AD+ FUBDIZ IIF A D+ £UB*DIZ,  (21)
and by inequalities (3) and (21), the following
inequality holds
NufdAD+vfUBDI
< IFAAl+IBDIZ I1f (AT + B*DIIZ . (22)
IfA,B >0, then U =V = I,,. Hence, inequality (3)
follows immediately from (22).
Next, we give weak log-majorization inequali-
ties for positive semidefinite matrices.
Theorem 2 IfA,B € #,withA,B>0andt€[0,1],
then
A(A8B) ) iy (82002 )
<wlog A( |A(17t)rsBrts|1/S )’ (23)
holds for positive r, s with rs = 1.
Proof: By Lemma 4 we have, for k =1,2,...,n,

k

[ T2 @B) < ﬂaj(Al—fo)

j=1 j=1

k

— l_[Aj(BtAl—t)

Jj=1
k

= Aj(Bf/zAl—fo/Z). 24)

j=1

441
By Lemma 5 we obtain, for rs > 1,
k k
2 41—t pt/2 | _ 2 41—t pt/2)7
]_[A;S(Bf/ ARt )_]_[Aj((Bf/A Bt/2)")
j=1 j=1

j=1

< l_[Aj(BrSK/ZA(l_t)rSBrSt/Z). (25)

Combining inequalities (24) and (25), we obtain for
k=1,2,...,nandrs =1,

k

[ 1.5 < o, ((remat-orpn))

k
j=1 j=1

(26)
On the other hand, by Lemma 6, we have
k k
l_[Aj(Brst/ZA(l—t)rsBrst/Z) — l_[ Aj(A(l—t)rsBrts)
j=1 j=1
< l_[ O-j(A(l—t)rsBrst),
j=1

or equivalently,

—

k
)Lj((B%rA(l—t)rsB%‘)%) _ 1_17‘11 (au-0rsprst)
1 j=1

J

< O.f (A(l—t)rsBrst)

-

1

— ﬁ A’]( |A(1—t)rsBrst
j=1

-
Il

D@

Thus the desired inequality (23) follows from (26)
and (27). m|

Since weak log-majorization implies weak ma-
jorization, Theorem 2 and Lemma 7 imply the fol-
lowing theorem:

Theorem 3 IfA,B € #,withA, B>0andt €[0,1],
then for all unitarily invariant norms ||-|| on 4,

1/s
”(AHIB)r” < (BTSK/ZA(l—t)rsBrst)

<

|A(1—t)rsBrst

1/s
E

holds for positive r, s with rs = 1.

Remark 3 Hoa obtained the following result®; if
A,B € 4, with A, B> 0 and t € [0, 1], then for all
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unitarily invariant norms ||-|| on .#,,,

1/s
< H(Brst/zA(l—t)rsBrst) ||

1/s
< H|A(1—t)rsBrst H (29)

|casBy

holds for r = 1, s > 0. Since {(s,r) |0<r<1<
rs}n{(s,r) | r=1,s >0} =, (28) is a complement
of (29).

Theorem 4 Let A;, B; € #, be positive definite ma-
trices, i =1,2,...,m. Then

A((iAiﬁtBi)r) 1
((@ ) () (2m) )
wed(|(30) 7 (3m)

where for positive r, s with rs = 1 and t € [0,1].

Proof: By the monotonicity of the operator mean f,
for t €[0,1], we have

m m
ZAilirBi <(
i=1 =

which implies

Aj(iAiﬁtBi) <
i=1

for j =1,2,...,n.
obtain

(Gncg)

rst

so{((E0) () (E)))
. ( ) (32)

(1-t)rs , M rst
(24) " (2m)
i=1
Combining inequalities (31) and (32), we obtain the
desired inequality (30). O

Since weak log-majorization implies weak ma-

jorization, by Theorem 4 and Lemma 7, we obtain
the following theorem.

((Zan(Em) oo

i=1 i=1

According to Theorem 2, we

1
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Theorem 5 If A;,B; € #, with A, B; >0, i =
1,2,...,m, then

(GpV ) )

i=

Jg ey

i=1

ol

holds for any unitarily invariant norm ||-||, positive r,
swithrs=1,and t €[0,1].

1
s

Taking r = 2 and s = 1 in Theorem 5, we have the
following corollary.

Corollary 1 If A;,B; € M, with A;, B; > 0, i =
1,2,...,m, then

(g:AiﬂtBi)z
(Sa) (S ()]
) S

i=1

(33)

holds for any unitarily invariant norm and t € [0,1].

Since Aff,B = A'"'Bt when AB = BAfor A, B > 0,
the following remark holds.

Remark 4 Let A;,B; € ./, be positive definite ma-
trices with A;B; = B;A;, i =1,2,...,m. From (3), by
taking f(x) = x2, we have

(ZAl fB

i=1

m
1-tpty2
A;'B;)

H @9

Combining inequalities (33) and (34), we obtain
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Inequality (35) is a generalization of inequalities (6)
and (7). On the other hand, let A and B be two
positive definite matrices and p, g be two positive
real numbers. Takingm =2, t = %,Al =AP B, =A1,
A, = BP, B, = BY in inequality (35), we have

e <

1 1
(AP + BP)2 (A1 + BY)(AP + BP)2

< [I(4? +BP)(AT + B,

which is (8). This gives an affirmative answer to
Bourin’s question.
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