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ABSTRACT: In this paper, the invariant subspace method is used to solve the time- and pricing-fractional Black-Scholes
equations, in which the fractional derivatives are described in the Caputo and Weyl sense, respectively. We introduce
invariant subspaces for time and pricing differential operators. Applying an appropriate invariant subspace will reduce
the fractional Black-Scholes equation to a system of ordinary fractional differential equations. Finally, using point
symmetries of the obtained system, we construct the explicit solutions of the fractional Black-Scholes equations.
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INTRODUCTION

The Black-Scholes model is one of the most well-
known option pricing model for determining the
value of European vanilla call and put options. Un-
der the assumption that the asset price satisfies the
log-normal diffusion process without transaction
costs, the classical Black-Scholes equation provides
the price V (x , t) of the put or call options at asset
price x ∈ R+ and at time t ∈ [0, T] of a stock or
derivative,

Vt +
σ2

2
x2Vx x + r xVx − rV = 0,

where r is the risk-free interest rate and σ is the
volatility of the underlying asset which are positive
constants over the life of the option.

The Black-Scholes equation is an evolution
equation; hence it can be solved analytically1–3 or
numerically4–6. However, it appears in the literature
that the Black-Scholes model fails to capture the
behaviour of option prices under some rare and
extreme circumstances. In the past few decades,
many authors require the construction of variants
of the Black-Scholes models in various financial
markets, in which the fractional derivatives are
defined. In particular, two types of fractional Black-
Scholes equations are mainly studied, i.e., time-
fractional Black-Scholes equation with the Caputo
derivatives7, 8 and pricing-fractional Black-Scholes
equation with the Weyl fractional derivative9, 10.

Furthermore, we will consider a nonlinear time-
fractional Black-Scholes equation with the noncon-
stant volatility.

In this paper, we employ the invariant subspace
method11 to obtain exact solutions of fractional
Black-Scholes equations. By assuming the solu-
tion to be in the appropriate invariant subspaces,
the fractional Black-Scholes equation can easily be
reduced to a system of single variable fractional
differential equations. After that the Laplace trans-
form method is applied to solve the reduced system
of fractional differential equations. The obtained
solutions are represented in terms of the Mittag-
Leffler functions, and they approach the solutions
of classical Black-Scholes equations with an integer
order.

PRELIMINARIES

We start with some definitions of fractional integrals
and derivatives, and then present auxiliary proper-
ties.

Definition 1 The left- and right-sided Riemann-
Liouville fractional integral of order α, where α ∈
(n−1, n) and n ∈ N, of a function f are given by

a Iαx f (x) =
1
Γ (α)

∫ x

a

(x − y)α−1 f (y)dy, x > a,

x Iαb f (x) =
1
Γ (α)

∫ b

x

(y − x)α−1 f (y)dy, x < b.
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In particular, the left- and right-sided Riemann-
Liouville fractional integrals with a = −∞ and
b =∞ are often called left- and right-sided Weyl
fractional integrals, denoted by −∞Wα

x and xWα
∞,

respectively. Analogously, the left- and right-sided
Weyl fractional derivatives are defined, respectively,

−∞Dαx f (x) = Dn[−∞W n−α
x f (x)],

x Dα∞ f (x) = (−1)nDn[xW n−α
∞ f (x)],

where Dn = dn/d xn. The left- and right-sided
Caputo fractional derivatives are given by,

C
aDαx f (x) = a In−α

x Dn f (x), x > a,
C
xDαb f (x) = x In−α

b Dn f (x), x < b,

respectively.

Lemma 1 The Weyl fractional derivative of exponen-
tial functions12 is given by

x Dα∞ e−λx = λα e−λx ,

−∞Dαx eλx = λα eλx ,

where Re(λ)> 0.

Lemma 2 Laplace transform of the left-sided Caputo
derivative of order α where n−1< α < n is

L{CaDαx f (x)}= sαL{ f }(s)−
n−1
∑

k=0

sα−k−1 f (k)(0),

where Re(s)> 0.

Definition 2 A two parameter function defined by
the series expansion

Eα,β (z) =
∞
∑

k=0

zk

Γ (αk+β)
, α,β , z ∈ C, Re(β)> 0

is called the Mittag-Leffler function.

Theorem 1 The solution of the linear initial value
problem13 for n−1< α < n

C
a Dαt y(t)−λy(t) = 0, t > 0,

y (k)(0) = bk, bk ∈ R, k = 0,1, . . . , n−1

is given by

y(t) =
n−1
∑

k=0

bk tk Eα,k+1(λtα).

Lemma 3 The Laplace transform of the Mittag-
Leffler functions is given by

L{zαk+β−1E(k)
α,β (±azα)}=

k!sα−β

(sα∓ a)k+1
,

where Re(s)> |a|1/α and E(k)
α,β (z) = Dk Eα,β (z).

INVARIANT SUBSPACE METHOD

The method of invariant subspace was initially in-
troduced by Galaktionov11 in order to construct
particular solutions of evolutionary partial differen-
tial equations, and has been extended to classes of
fractional partial differential equations14, 15.

Consider a time-fractional evolution equation,
C
aDαt u= F̂[u],

where C
a Dαt is the left-sided Caputo derivative of

order α where n − 1 < α < n, n ∈ N. Denote by
F̂[u] = F(u, ux , ux x , . . . , ukx) the differential opera-
tor of order k, where ukx = Dku. Given a linearly
independent functions { fi(x)}, i = 1, . . . , n, the n-
dimensional linear space

Wn = 〈 f1(x), . . . , fn(x)〉

is invariant under the operator F̂ if F̂[w] ∈ Wn for
all w ∈Wn.

The idea of the invariant subspace method11

searches for the solution in the invariant subspace
in the form

u(x , t) =
n
∑

i=1

ψi(t) fi(x),

where the coefficients ψ1(t), . . . ,ψn(t) satisfy the
following system of fractional ODEs:

C
aDαt ψ1(t) = F1(ψ1, . . . ,ψn),

...
C
aDαt ψn(t) = Fn(ψ1, . . . ,ψn).

THE TIME-FRACTIONAL BLACK-SCHOLES
EQUATIONS

In this section, we study the time-fractional Black-
Scholes equation of order α ∈ (0, 1) in the form

C
aDαt V +

σ2

2
x2Vx x +(r − d)xVx − rV = 0, (1)

where V (x , t) is the put or call option price at asset
price x ∈ R+ at time t ∈ [0, T], T > 0, r > 0 is the
risk-free interest rate, σ > 0 is the volatility of the
underlying asset, and d is the dividend yield. Taking
linearly independent functions 1, x s−1, x s with s ∈
R, to form a linear space

W1 = 〈1, x s−1, x s〉.

For linear independent functions 1 and ln x , we
define a linear space

W2 = 〈1, ln x〉.
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Lemma 4 The partial differential operator

F̂[V ] =
σ2

2
x2Vx x +(r − d)xVx − rV

admits the invariant subspaces W1 and W2.

Proof : For any c1, c2, c3 ∈ R,

F̂[c1+ c2 x s−1+ c3 x s] = −rc1+β c2 x s−1+γc3 x s,

where β = 1
2σ

2(s−1)(s−2)+(r− d)(s−1)− r and
γ = 1

2σ
2s(s − 1) + (r − d)s − r, is in W1. Thus W1

is invariant under the operator F̂ . Similarly, for any
c1, c2 ∈ R,

F̂[c1+ c2 ln x] = µ− rc2 ln x ,

where µ = (− 1
2σ

2 + (r − d))c2 − rc1, which implies
that W2 is invariant under this operator. 2

In the following example, by choosing an appro-
priate invariant subspace, we derive the exact so-
lution of the time-fractional Black-Scholes equation
(1) subject to certain terminal conditions, which
is the same as that for the classical Black-Scholes
equation with an integer derivative order1, 3.

Example 1 Consider the time-fractional Black-
Scholes equation (1) subject to the terminal
conditions V (x , T ) = g(x). We propose the solution
of (1) in the form

V (x , t) =ψ0(t)+ψ1(t)x
s−1+ψ2(t)x

s, (2)

where ψ0, ψ1, and ψ2 are undetermined coeffi-
cients. By substitution of (2) into (1), we obtain the
time-fractional differential system for the unknown
functions ψ0, ψ1, and ψ2.

C
aDαt ψ0(t) = rψ0(t),
C
aDαt ψ1(t) = −βψ1(t),
C
aDαt ψ2(t) = −γψ2(t).

The solutions of the above system can be obtained
by Theorem 1,

ψ0(t) =ψ0(0)Eα,1(r tα),
ψ1(t) =ψ1(0)Eα,1(−β tα),
ψ2(t) =ψ2(0)Eα,1(−γtα).

In particular, the terminal condition is given by
V (x , T ) = x s, which implies that ψ0(T ) = 0,
ψ1(T ) = 0, and ψ2(T ) = 1. Since for 0 < α < 1,
Eα,1(z) has no real zero, we obtain the exact solution

V (x , t) =
Eα,1(−γtα)

Eα,1(−γTα)
x s.

For α = 1, the exact solution of the classical Black-
Scholes equation is

V (x , t) = x s eρ(s)(T−t),

where ρ(s) = ( 1
2σ

2s+ r)(s−1)−ds, which coincides
with the solution in Ref. 3.

Example 2 Consider the nonhomogeneous time-
fractional Black-Scholes equation with 0< α < 1

Dαt V +
σ2 x2

2
Vx x +(r − d)xVx − rV = ln

p
x

subject to the terminal condition V (x , T ) = ln x−1.
In this case, we search for the exact solution of the
form

V (x , t) =ψ0(t)+ψ1(t) ln x ,

where the coefficient functions ψ0(t) and ψ1(t)
satisfy the system of fractional equations

Dαt ψ0(t) =

�

σ2

2
− (r − d)

�

ψ1(t)+ rψ0(t), (3)

Dαt ψ1(t) = rψ1(t)+
1
2 . (4)

By applying Theorem 1 to (4), we have the solution

ψ1(t) =ψ1(0)Eα,1(r tα)+ 1
2 Eα,α+1(r tα).

It follows from the terminal condition V (x , T ) =
ln x −1 that ψ0(T ) = −1 and ψ1(T ) = 1. Hence

ψ1(t) = ρ(α)Eα,1(r tα)+ 1
2 Eα,α+1(r tα),

where ρ(α) = (2−Eα,α+1(rTα))/2Eα,1(rTα). Apply-
ing the Laplace transformation to (3) and rearrang-
ing the result, we obtain

L{ψ0}=ψ0(0)
sα−1

sα− r
+

�

σ2

2
− (r − d)

�

×
�

ψ1(0)
sα−1

(sα− r)2
+

1
2s(sα−1)2

�

.

Taking the inverse Laplace transform yields

ψ0(t) =ψ0(0)Eα,1(r tα)+

�

σ2

2
− (r − d)

�

×
�

ψ1(0)t
αE′α,1(r tα)+

t2α

2
E′α,α+1(r tα)

�

.

Thus the exact solution of the nonhomogeneous
time-fractional Black-Scholes equation is given by

V (x , t) =ψ0(0)Eα,1(r tα)+

�

σ2

2
− (r − d)

�

×
�

ψ1(0)t
αE′α,1(r tα)+

t2α

2
E′α,α+1(r tα)

�

ln x .
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Example 3 The time-fractional Black-Scholes equa-
tion with variable coefficients

C
aDαt u+0.08(2+sin x)2 x2ux x+0.06xux−0.06u= 0,

subjected to the initial condition

u(x , 0) =max{x −25e−0.06, 0},

was studied by using the reconstruction of variation
iteration method7 and the modified fractional dif-
ferential transform method8. We apply the invariant
subspace method using the differential operator

F̂[u] = 0.08(2+ sin x)2 x2ux x +0.06xux −0.06u,

which admits the invariant subspace W = 〈1, x〉,
and search for the solution of the form

u(x , t) =ψ0(t)+ψ1(t)x ,

where ψ0(t) and ψ1(t) satisfy

C
aDαt ψ0(t) = −0.06ψ0(t),
C
aDαt ψ1(t) = 0.

It follows from the initial condition u(x , 0) =
max{x − 25 e−0.06, 0} that when u(x , 0) = 0 we
obtain the zero solution u(x , t) = 0, and when
u(x , 0) = x − 25 e−0.06, the solution is u(x , t) =
−25 e−0.06Eα,1(−0.06tα) + x . We thus obtain the
exact solution,

u(x , t) =max{x −25 e−0.06Eα,1(−0.06tα), 0},

which is the same as that in Refs. 7, 8, but our
method is simpler and easier to apply.

THE PRICING-FRACTIONAL BLACK-SCHOLES
EQUATION

Consider the pricing-fractional Black-Scholes equa-
tion derived from the finite moment log stable
model9 with the option price V (s, t) satisfying the
modified Black-Scholes equation with the left-sided
Weyl-fractional derivative in space,

Vt +
�

r +
σα

2
sec
απ

2

�

Vx

−
σα

2
sec
απ

2
(−∞Dαx V )− rV = 0, (5)

where x ∈ R+, t ∈ [0, T], 1 < α ¶ 2, and the
terminal condition V (x , T ) = Π(x) defined as

Π(x) =

¨

max{ex − K , 0}, (European call),

max{K − ex , 0}, (European put).
(6)

By changing the variable τ= − 1
2σ

α sec 1
2απ(T − t),

the backward problem is changed into

Vτ = −(η−1)Vx − (−∞Dαx V )+ηV (7)

with condition V (x , 0) = Π(x), where
η= −2r/σα sec 1

2απ.

Lemma 5 The fractional partial differential operator

F̂[V ] = (1−η)Vx − −∞Dαx V +ηV

admits the invariant subspace W = 〈eax , ebx〉

Proof : For any c1, c2 ∈ R, Lemma 1 gives

F̂[c1 eax + c2 ebx] = (1−η)(c1a eax + c2 b ebx)

− (c1aα eax + c2 bα ebx)

+η(c1 eax + c2 ebx)

= β̃ c1 eax + γ̃c2 ebx ,

where β̃ = (1−η)a−aα+η and γ̃= (1−η)b−bα+η,
which is in W . 2

We search for the solution of the pricing-
fractional Black-Scholes equation (7) of the form

V (x ,τ) =ψ1(τ)e
ax +ψ2(τ)e

bx ,

where ψ1 and ψ2 are described by the ODEs

dψ1

dτ
= β̃ψ1,

dψ2

dτ
= γ̃ψ2.

The above equations are solved forψ1(t) andψ2(t)
to obtain a particular exact solution of (7) as

V (x ,τ) =ψ1(0) eβ̃ τ+ax +ψ2(0)e
γ̃ τ+bx

=ψ1(0) e(a(1−η)−aα+η)τ+ax

+ψ2(0)e
(b(1−η)−bα+η)τ+bx .

Remark 1 Let Vp(x ,τ) and Vc(x ,τ) denote the
value of the European put and call options, respec-
tively. The initial condition for the put and call
options (6) gives a = 0, b = 1, ψ1(0) = K , and
ψ2(0) = −1 for the put option, and a = 0, b = 1,
ψ1(0) = −K , and ψ2(0) = −1 for the call option,
which produces the same result as in Ref. 10, and
the finite moment log stable model demonstrated in
(5) satisfies the put-call parity,

Vc(x ,τ)− Vp(x ,τ) = ex − K e−ητ.

www.scienceasia.org

ScienceAsia44 (2018)

http://www.scienceasia.org/2018.html
www.scienceasia.org


436

THE NONLINEAR FRACTIONAL
BLACK-SCHOLES EQUATION

In this section, the nonlinear fractional Black-
Scholes equation with a nonconstant volatility is 
considered. It was proposed in Ref. 4 for inte-
ger order α = 1 and was referred to as the risk 
adjusted pricing method model5. In this study
σ(x , t, V, Vx , Vx x ) is chosen in the form

σ2 = σ̃2

�

1−3

�

C2M
2π

xVx x

�1/3�

, (8)

where M and C are nonnegative constants repre-
senting cost measure and the risk premium measure,
respectively.

By replacing the constant volatilityσ in (1) with
the nonconstant volatility in (8), we obtain the non-
linear time-fractional Black-Scholes equation with
0< α < 1,

Dαt V +
σ̃2

2
x2Vx x − σ̃2µx(xVx x)

4/3+ r xVx − rV = 0,

(9)
where µ= 3

2 (C
2M/2π)1/3.

Lemma 6 The nonlinear partial differential operator

F̂[V ] =
σ̃2

2
x2Vx x − σ̃2µx(xVx x)

4/3+ r xVx − rV

admits the invariant subspace W = 〈1, x , x ln x〉.

Proof : For any c1, c2, c3 ∈ R, we have

F̂[c1+ c2 x + c3 x ln x] =
σ̃2

2
x2
� c3

x

�

− σ̃2µxc4/3
3

+ r x[(1+ ln x)c3+ c2]
− r[c1+ c2 x + c3 x ln x]

= −rc1+

��

σ̃2

2
+ r

�

c3− σ̃2µc4/3
3

�

x ,

which is in W to complete the proof. 2

Example 4 Consider the nonlinear time-fractional
Black-Scholes equation (9) with a solution in the
form

V (x , t) =ψ0(t)+ψ1(t)x +ψ2(t)x ln x ,

whereψ0(t),ψ1(t), andψ2(t) are described by the
system of fractional differential equations

Dαt ψ0(t) = rψ0(t), (10)

Dαt ψ1(t) = −
�

σ̃2

2
+ r

�

ψ2(t)− σ̃2µ(ψ2(t))
4/3,

(11)

Dαt ψ2(t) = 0. (12)

Solving equations (10) and (12) gives ψ0(t) =
ψ0(0)Eα(r tα) and ψ2(t) = c, c ∈ R. Substituting
ψ2(t) = c in (11) yields

Dαt ψ1(t) = −
�

σ̃2

2
+ r

�

c− σ̃2µc4/3,

which has the solution

ψ1(t) =ψ1(0)−
1

Γ (α+1)

��

σ̃2

2
+ r

�

c+ σ̃2µc4/3

�

tα.

Thus the solution of (9) is

u(x , t) =ψ0(0)Eα(r tα)+ cx ln x

+
�

ψ1(0)−
tα

Γ (α+1)

�

rc+
� c

2
+µc4/3

�

σ̃2
�

�

x .

CONCLUSIONS

In this study, exact solutions of linear and nonlinear
fractional Black-Scholes equations are in invariant
subspace as described in Ref. 11. We have shown
that fractional Black-Scholes equations admit cer-
tain invariant subspaces, which are used to derive
exact solutions to various terminal conditions for
fractional Black-Scholes equations. Several exam-
ples are demonstrated to illustrate the efficiency
of the invariant subspace method for constructing
solutions comparing to former studies in literature.
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