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ABSTRACT: This paper is concerned with the exponential stability of travelling waves for a general reaction-diffusion
equation with spatio-temporal delays. Here the travelling waves may be monotone or non-monotone. More precisely,
by means of the weighted-energy method and the nonlinear Halanay inequality, we can prove that the travelling waves
of this equation are exponentially stable, when the initial perturbation around the wave is small in a weighted norm.

In the end, we apply our results to some models.
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INTRODUCTION

In this paper, we will study a general reaction-
diffusion equation with spatio-temporal delays

u (t,x) = du,, (t, x)

+ F(u(t, X),f J(x=y)f (u(t—=r,y)) dy), (D

t 2 0, x € R, combined with the initial datum

u(s, x) = ugy(s, x), s€[-r0], x €R, @)

where f may not be monotone or quasi-monotone,

d > 0 and r = 0. Firstly, we give following assump-

tions for (1).

A) J() =0, J() =J(=x), [T Idy = 1,
and ff:o J(y)eM dy < oo for A > 0.

(A;) For K >0, f € C*([0,K],[0, f(K)]), f(0) =0,
f(0)>0,0< f(x) < f(K) for x € (0,K], and
If )= fF I < f(0)lx —y| for x,y € [0,K].

(A43) F € C*([0,K] x [0,f(K)],R), F(0,0) = 0,
F(K:f(K)) = O’ F(x,f(x)) > 07 alF(X;J’) < O;
& F(x,y) > 0, F(x,y) < 9,F(0,0)x +
2,F(0,0)y, and J;F(x,y) < 0;F(0,0) for
(x,y) € [0,K] x[0,f(K)] when i = 1,2, and
B F(x,y) = $£(x,y), BF(x,¥) = $5(x, y).

(A;) Thereexist0 < 6 <K and 0 < 1 <K such that
f is increasing on [0,0] and F(x,y) =0 has a
solution x € (0, 0) for each y € (0,7).
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(As) GF(K, f(K))f'(K)+0,F(K, f(K)) <0 for any
r>0,or L,F(K,f(K))f'(K)+,F(K,f(K))>0
for 0 < r < r, when

n—arctan[—(3,F (K, f (K))) ' M]
M B

M = +/(&F (K, f (K))f(K))>— (8, F(K, f (K)))2.

It is well known that reaction-diffusion equa-
tions with delays are often used to demonstrate
practical phenomena. And travelling wave solutions
of these equations have been studied universally be-
cause of their important applications. Throughout
this paper, a travelling wave solution of (1) always

refers to a pair (¢, c), where ¢ = ¢(§), & = x +ct,
is a function on R satisfying

c'(&) = dep" (%)
+F( (%), f JF(@(E—y—cr))dy).

€]

F=

Furthermore, if ¢ is monotone and bounded, we call
it a travelling wavefront.

For reaction-diffusion equations, monotonicity
and quasi-monotonicity of reaction terms are com-
mon hypotheses to ensure the existence of trav-
elling wave solutions. Without these hypotheses,
many authors have studied the existence of travel-
ling wave solutions. For example, Ma! established


http://dx.doi.org/10.2306/scienceasia1513-1874.2018.44.421
http://www.scienceasia.org/2018.html
mailto:lgr5791@sxu.edu.cn
www.scienceasia.org

ScienceAsia 44 (2018)

the existence of travelling wave solutions for a
class of delayed nonlocal equations without quasi-
monotonicity by constructing two associated auxil-
iary functions and applying Schauder’s fixed point
theorem. Similar results can be obtained?3, i.e.,
they proved the existence of non-monotone travel-
ling wave solutions. Wang* proved the existence
of travelling wave solutions for (1) by using upper-
lower solutions for associated integral equations
and Schauder’s fixed p oint t heorem. Then for a
class of non-monotone reaction-diffusion equation
with spatiotemporal delays, Xu et al® obtained the
existence and uniqueness of travelling wave solu-
tions by presenting a new method to construct a
closed and convex set and using Schauder’s fixed
point theorem.

Besides the existence of travelling wave solu-
tions of delayed reaction-diffusion equations, the
stability of travelling waves has also attracted great
attention. Let us provide some background on this
topic in the literature. The first conclusion on the
linearized stability of travelling wave solutions was
established by Schaaf® via the spectrum analysis
method. Mei et al” proved the nonlinear stability
of the travelling wavefronts for the local Nicholson’s
blowflies equation with a discrete delay by using a
technical weighted-energy method. Subsequently,
many researchers used this method to obtain the
stability of travelling wavefronts for a variety of
monostable reaction-diffusion equations with de-
lays®? and further improved the former results to
obtain global stability of travelling wavefronts by us-
ing both the comparison principle and the technical
weighted-energy method %11,

Since the monotonicity of both the equations
and the travelling wave solutions are necessary
for these results of stability, therefore we can-
not use the above methods to establish the sta-
bility of non-monotone travelling wave solutions.
Wu et al'? firstly s tudied t he a symptotic stabil-
ity of the non-monotone travelling wave solu-
tions of delayed reaction-diffusion equations with
crossing-monostability by adopting two ideal weight
functions. Subsequently, by using the technical
weighted-energy method and the nonlinear Ha-
lanay’s inequality, Lin et al'® obtained exponential
decay estimate of all non-critical travelling wave so-
lutions including the oscillating waves under some
assumptions for a time-delayed reaction-diffusion
equation. Since there is no result about stability of
travelling wave solutions for (1), the main purpose
of this study is the stability of the travelling wave
solutions for (1) with non-monotone reaction terms.
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PRELIMINARIES AND MAIN RESULTS

In this paper, we assume that C > 0 represents a
generic constant and C; > 0 denotes a particular
constant. We let I denote an interval, typically
I =R. L%(I) is the space of the square integrable
functions on I and H*(I)(k = 0) is the Sobolev space
of L2-functions f (x) defined on I satisfying f ¥ (x) €
L*(I),i=1,...,k. L2(I) denotes the weighted L?-
space with a weight function w, w : R — (0, 00)
is a locally integrable function, with norm defined
by If ey = (f; 0Ge)f2(x)dx)2. HE(I) is the
weighted Sobolev space with the norm ||f]|| HE(D) =
(Zi‘;o f{ w(x)|f D(x)|?>dx)/2. Furthermore, we let
T > 0 be a constant, 8 be a Banach space, and
denote by C([0,T]; #) the space of the %-valued
continuous functions on [0, T]. The spaces of the
%B-valued functions on [0, c0) can be defined simi-
larly. Furthermore, the space G, [—7,T],0< T <
00, is defined by

Cunie[—7> T1:= {v(t,x) € C([—1, T] x R)}

such that lim, _, ., e*2'v(t, x) exists uniformly for ¢t €
[-r,T] and u, > 0, a constant to be defined later,
and

lim v, (t,x)=0, lim v (t,x)=0
X—>0Q0 X—0Q

uniformly with respect to t € [—r, T]. The nonlinear
Halanay inequality is given as follows.

Lemma 1 (Ref. 13) Let z(t) be the solution of the
following linear delay differential equation

2'(t) +kyz(t) —koz(t —r) = af (2(t)) + Bg(z(t — 1)),
2(s) = 2zo(s), s€[-r,0],

where kq, ko, a, B are any given numbers, and f(z)
and g(z) satisfy

If ) <Clz]", |gz) <Clz|", m>1, n>1.
If lko| < kqy forr>0or |ky| >k, forO<r <F,
n—arctan(k;lw/lkﬂz—k%)
NS ’

then if ||zl oo (—r,0) < 1,

F=

12(0] < Cllzgllymrgy e £>0,

for some 0 < v = v(ky,ky, 1) <kj.
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Theorem 1 (existence of travelling waves)

Assume that (A;) — (A4) hold, there exist a minimal
wave speed ¢, > 0 and a corresponding number

A, (c,) satisfying 2 (A,,c,) =0 and ;—Ag’(k*, c,)=0
where

P(A,c)=dA*—cA+3,F(0,0)

+8,F(0,0)f'(0) J J(y)e Mot gy

is the characteristic equation. For any ¢ 2 c,, then (1)
admits a travelling wave solution ¢ (&), & = x +ct,
such that 0 < ¢p(&) <K, ¢p(—o0) =0and

0< ligminf¢(§) < limsup ¢ (&) <K.
—00 g—)OO

If 3,F(x,y) <O, then lim;_,o, ¢(&) =K. In addi-
tion, if f is nondecreasing on [0,K], then ¢(&) is
nondecreasing on R. While for 0 < ¢ < c,, there
has no travelling wave solution. Furthermore, when
¢ >c,, @(A,c) =0 has two distinct positive real roots
A1(c) and A,(c) with 0 < A;(c) < Ay(c) such that

P(A,c)<0ford; <A <A,
When ¢ = c,, it holds that
P(A,c)=0for A =24, = A,.

For any ¢ > c,, we define a weight function as

w(x) = e 2A %)

with x¢y>>1,

where A, > 0 is defined in Theorem 1 and x, will
be defined later. It is obvious that w(x) — oo as
x — —oo and w(x) — 0 as x — oco. Then we state
the main result of this paper as follows.

Theorem 2 (stability of travelling waves)

Assume that (A;)—(As) hold. For the given travelling
wave ¢(&) of (1) with the speed ¢ > ¢, where ¢
satisfies

oo

ex*—azF(o,O)f’(O)(J Jy)ertsen gy )

—0Q

=2d2A%+8,F(0,0),

if ug(s, x)—¢ (x+cs) isin C([—r,0]; C(R)NHZ (R))N
L*>([-r,0]; Hi(R)) and

Vo,00 1= xli)nolo[uo(s,x) —¢(x+cs)] e C[—r0]
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exists uniformly with s € [—r,0], then there exist
constants 6, > 0 and 0 < y < min{uy, Uy}, U1, Uy
will be defined later, such that when

max [t = $ )OI+ 1tg — )OI
0
+f o= I, ds < 52,

the unique solution u(t,x) of (1) and (2) exists glob-
ally and u(t,x)— ¢ (x +ct) isin C([—r,00); C(R)N
HZ(R)) N L*([~, 00); H2 (R)) N Gyyie—T, 00) with

sup | u(t,x)—¢p(x +ct) |[< Ce ™,
x€R

t=0,

where C = /C148,, C1g will be determined later:

Remark 1 By Holder inequality,

f J(y)e ™™ dy < (J J(y)e2hy dy)l/z.

Then
°° 1/2
¢, A,—0,F(0, O)f/(o)(J J(y) e 24y +er) dy)

—2dA?—3,F(0,0) <0,
and we obtain that ¢ = c,.

A PRIORI ESTIMATE

For any ¢ > c,, let ¢ (&) be a travelling wave solution
of (1) and v(t,&) = u(t,x)—p(x +ct), vo(s,&) =
uo(s,x)— ¢ (x +cs), where & = x +ct. Then it can
be verified that v(t, &) defined above satisfies

ve(£, &)+ cve(t, §) — dvee (£, £) — B F(E)v(t, &)
= 3,F (&) f ZJ(y)[f(v +¢)—f(P)]dy +Q,
()]
with v(s, &) = vy(s, &), (s,&) € [-r,0] x R, where
F(E)=F(p(8), [ JO0f ($(E—y—cr))dy),
Q=F(v(t, &)+ (&), f B JONf v+ ¢)dy)
) - AR D)
—8,F (&) f :J(y)[f(v +¢)—f($)]dy. 5
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For any T 2 0 and T = 0, define a space

X(t—rT+1)= C([T—r,T—I—T];Hf)(R))ﬂ
LY ([t—r T+ T];HZ(R)) NGl T—1, T + 7]
with the norm

MT(T)Z = sup

te[t—r,T+71]

(lu(ON1Z + ||u(t)||,2,i),

and denote u(t) = u(t,-) and M(T) = My(T). The
estimate of v(t, &) in the space Hi(R) is the follow-
ing.

Lemma 2 Ifv(t,&) € X(—r, T), then

Iv(OIlZ
+ f f e 2B, ,(E)—CiM(T)]wv? dE ds
0 J—oo

<G 6_2’“ IIVo(O)II J vo()II7

where

Bn,u,w(g) =An,a)(€) —2u—

@azp(o, 0)
M

X(ez‘”—l)J J()eU*dy,  (6)

G —c% —d (%)2

—28,F(&)—nf'(0)2,F(0,0)

1 w(E+y+cr)
f (0)3,F (0, 0)f J(y )—(g)

and w,n,C;, i = 1,3 are positive numbers to be
defined later.

dy,

Proof: Multiplying (4) by w(&)v(t, &) e, we have

(% ez‘“wvz)t + e2ut (%ca)v2 — dwvvg)g

+ ez‘“dwvg +e* dw'vvg
/

w
+ (_%Z —p) e wv? — 3 F(§) e wy?

= Zufwvazzr(g)f Jf(p+v)—f(¢p)ldy
+e24t Q.  (7)
Further,

2
/
le? dw'vve| < 3d e wvi+ 4 (%) et wy?,
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Thus (7) is changed into
(% ez“fwvz)t + %d ez‘“wvg
+ 21t (lcwvz—dwvvg)g
(=52 —u—4 (L) ~ar©) e oy
< ez‘“wvé’zF(g)J Jf (P +v)—f(¢)]dy

+e?wyQ. (8)

Integrating (8) over R x [0, t] with respect to & and

t and note that (v V) |reiroo= (V0V) lec100= 0,
we obtain

t
ezutnv(t)'lzz(R)'i'df ZMSHV&(S)HLZ(R)
c——Z,u d(< )—281F(g))

2 w(E)v?(s, &) dE ds
“vO(O)”LZ(R)'i_zf f eZ
0 J—oo

+ zf f e w(E)v(s, E)AF (&)
0 —00

P w(E)v(s,£)QdE ds

XJ JWFW+P)—f(¢p))dydEds. (9)

—0Q

Note that
2|v(s;§)|82F(€)J JIIfv+@)—f()ldy

< 0,F(0,0)f ’(O)J J(y)

x (nv3(s,8) + 2v¥(s—r, =y —cr)) dy,

where 1) > 0 will be specified later and

[ e
0 J—o0

xJ JyW(s—r,E—y—cr)dydEds

t oo oo
< %ez’”f J J et
0 J—oo J—-o0

x J(y)v3(s,£)dy dE ds

0 <] oo
+ % e2ur f f f e
—r J—00 J—o0

X J(y)vg(s, &)dy d& ds.

*w(E+y+cr)

Pw(E+y+cr)
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Hence we obtain

J, .2

XJ JNIfFv+¢)—f(P)ldydEds

P w(&)v(s, E)I0,F(E)

<T)32F(0,0)f/(0)f f e w(Ev¥(s, ) dE ds
0 J—oo

++8,F(0,0)f'(0) e

XJJ f J(y) e w(E+y+er)v3(s,&)dy dEds
0 J—ooJ —c0

+ 36,F(0,0)f'(0) ™"

0 [ee] oo
xf f f J(y)ez“sw(£+y+cr)vg(s,f)dydgds.
—rJ —ooJ —oco (10)

For the nonlinearity Q, by applying Taylor’s formula
to (5), it follows that

Q=38,F(¢, P)v?
+612F(</5,¢3)U

—0Q

J(y)[f(V+¢>)—f(d>)]dy]v

2

+%azzF(<5,qS)[ f J(y)[f(v+¢)—f(¢)]dy] ,
(11)

where ¢ is between ¢ and ¢ +v and ¢ is between

Jooo TONf ($(E —y —cr))dy and [T J(Nf (v +
¢)dy. For the third term on the right-hand side of

(11), using Holder’s inequality gives

U JIfv+e)—f(P)ldy

< f Jf O(s—r,E—y—cr)ldy

< (J IO (FOVs—rE—y—cr) dy)".

Because of the definition of M(T) and A;, then
t [ee]
Zf J e?
0 J—oo

t [ee]
< ClM(T)J J et
0 J—oo

0 )
+C2ff ez“‘sa)(i)vg(s,g)dids, (12)

P w(E)v(s,£)QdEds

*w(E)?(s,£)dE ds
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where
¢, =L(1+£'(0)+2f/(0) ezﬁ"f J(y)e 2 dy),
Cy = 2LM(T)f'(0) e f J(y)edy

and L = max{|d;;F(x,y)} for (x,y) € [0,K] x

[0,f(K)],i,j=1,2.
Substituting (10) and (12) into (9), we obtain

e lv(O)I7, +

dJ e [lve(s)II7, ds

0

+J f e (B, 1. (§)— CM(T)) wv*dE ds
0 —

Cs Ivo ()7 J o7 ds (13)
where B, , (&) is given in (6) and C; = max{1, C,+
(F'(0)/ma,F(0,00e*" [T J(y)e?dy}. D

Lemma 3 Let 1 = (f_o; J(y)e2h0rter) gy )1/2,
Then for ¢ > ¢, we have A, ,(§) = C4 > 0 for £ €R.

Proof: Since w(&) = e %60 o/(&)/w(E) =
22, w(E+y+cr)/w(E)=e? 0+ and ¢ > ¢,

Ay (&)
> 2cA, —4dA%—20,F(0,0)—n&,F(0,0)f'(0)

oo
- %aZF(O; O)f/(O)J J(y)e_ZA*(_)"FCT) dy
=:C4>0.
O

Lemma 4 Let v(t,&) € X(—r,T) and u, > 0 be the
unique root of the equation

Cy—2u—3,F(0,0)f"(0)(e*" —1)

= —22,(y+er) g, )2
x( J(y)e MV d_y) =0.

—0Q

Then for 0 < u < u,, we have
t
Iv(OII2, + f _2““_S)IIV(S)IIZ ds

< Cge (”Vo(o)“ f Ivo(s)IIZ dS) (14

where M(T)<<1 and Cq will be defined later.
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Proof: By Lemma 3 we have that for 0 < y < yq,

By uo(€) = Ca—2u—8,F(0,0)f'(0)(e™ —1)

> —22A, (y+cr) 1/2
(| Joe I dy)
—0Q

=:C5>0. (15)

Substitute (15) into (13) and let 0 < M(T) < C5/C,4
be small enough, then

t

e [lve(s)II7, ds

e lv(OlI7 +J

0

t
+J ez”sllv(s)H%i ds
0

0
< (IO, + f (I, ds),  (16)
where Cg := C3/min{l, d, Cs—C;M(T)}. O

Lemma 5 Let v(t,&) € X(—r, T). Then for ¢ > ¢,

t

llve(OII. +f & g (s)II7, ds
0

0
<cue2“f(||vo(0)||,ii+f (9l ds). (17)

Proof: By differentiating (4) with £ and multiplying
it by ez‘“a)(i)vg(t, &), we have

1 _2ut 2 d 2ut 2
(2e covg)t+2e cov55
+ez‘“(%ca)v§—da)v€v§§)g

+ (—% (%)2— $L—p— 31F(€)) e wv?
<[3F(&)]: e wvve + e wvg
x (52F(5)f JWIf (@ +v)—f(P)]dy +Q)§-
(18)

By integrating (18) with respect to £ and t over R x
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[0, t], we obtain

t
e [vee(s)II7; ds

e |ve(0)lI7, +d f

0
+JT’°{_d(%’)lc%—zu—zaﬂa)}
0 J—oco
X ez“sa)vg déds

<J f 2{[0,F(E)]:v+ Qs } e wv, dE ds
0 —00

+f f f JIf (@ +v)—f(P)]: dy
0 —00 J —00
x 20,F()e* wv: dEds.  (19)

Note that
[alF(g)]g v
+(2F (&) f T (@ +v)=f(@)]dy +Q),

= {5’1F(<ﬁ, f JO)f (¢ +v)dy)v}§—alF(s)v§

+{82F(¢,¢)f J(y)[f(qs+v)—f(¢)]dy}5

+azF(5)(f TS (@ +v)=F(§)]dy),

—azF(g)(f JONf (@ +V)—F(#)1dy),
where ¢ = ¢+(1—6)v, =6, [ J(Y)f ($)dy+

(1—6,) [~ J()f (¢ +v)dy with 6,6, € [0,1].
Hence (19) becomes

t
ez”[||v§(t)||ii +df ez’“llVgg(S)Ilii ds
0
t (o]
+Jf Bn%w(i)ez“scovgdids
0 —00
t t
<C7f ez“SIIV(S)IIfi dS+Csf ez’“IIVg(S)IIfids
0 0

0 0
+C9J ||Vo(5)||%id5+clof [Ivoe ()17, ds.  (20)

Combining with (16), it holds that

e |ve(0)lI7 +f

0

t
e (Ivze )2, Ive ()12, ) ds

0
< cu(Iv©IE, + f (s, ds),
-r
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maX{C6C7 + C6C8 + Cg, CIO}
min{1,d, Cs} ’
Similarly, we obtain the estimate of v¢(t, &).

where C;; =

Lemma 6 Let v(t,&) € X(—r,T). Then for ¢ > ¢,
there exists C15 > O such that

Ivee (DI, + f

0

t
& |y (s)II7, ds

0
<cue-2“f(||vo(0)||§i+J (Il ds), 1)
-r

on condition that M(T) << 1.

By combining with (14), (17) and (21), we obtain
the lemma.

Lemma 7 Let v(t,&) € X(—r, T). Then for ¢ > ¢,

t

V(O +J e O]
0

0
<cme2“f(||vo(0)||,ii+f (oI, ds), 22)

when M(T)<<1 and C;5 = max{Cg, C11,C13}-

By applying the Sobolev embedding theorem
H%(R) < C(R) and noting that w(§) =1 for £ €
(—o0,xy], xo will be defined later, we obtain the
following decay results.

Lemma 8 Let v(t,&) € X(—r,T). For t €[0,T],

sup
£€(—00,x,]

[v(t, &) IS Crgllv(Ollg> < Crallv(Ollz

0
12
< G5 (O)I1Z, + f o2, ds)" e,
(23)

where Cy4 is the embedding constant and C;5 =
C14v/ Cr3.

To prove the exponential decay of
v(t,&) for & € [xy,00), we first show
the result of v(t,&) when & = oo. For
v(t,&) € X(—r,T), limg_, o v(t, &) exists uniformly
and limg,oo ve(t,€) = limg,ovee(t,€) = 0
uniformly for t € [0, T]. We define z(t) := v(t, 00),
20(s) 1= vy(s, o0) for s € [—r,0]. Furthermore, we
verify that v(t, &) satisfies

ve(t, &) +cve(t, &) —dvee(t,8) —  F(E)v(t, &)
= azF(E)f J)f'(¢Ivdy +Q(v),

V(S, 6) = VO(S> 6), (Sa 6) € [_r> 0] X R; (24)
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where

F(e)=F(¢>(£),f T ($(E—y —cr))dy),

Q) = F(v+¢>,f Jf (v +¢)dy) —F(&)

—31F(€)V(t,€)—3zF(€)f J()f'(¢)vdy.
By letting & — oo to (24), we have

()= 3 F(K, f (K))z(t)
— & F (K, f(K)f ' (K)z(t —r) = Q(2),

2(s) = 20(s), se€[—r,0]. (25

Lemma 9 If (As) holds and z(t) is the solution of
(25), then there exists C;¢ > 0 such that

l2(t)] < CeM(0)e™', >0,

when 0 < uy, < —0;F(K, f(K)) and M(0) << 1.

Proof: Llet |} = —8,F(K,f(K)) 2 0 and [, =
&, F(K,f(K))f'(K) > 0. It follows from Lemma 1
that if I, < l; with any r > 0, or if [, > [; with
0 < r <7, then there exists C;c > 0 such that

()] < CgM(0)e ™', >0,

with some constant 0 < uy, = Uy(ly, Iy, 1) < 1y, if
M(0)<<1 and 7 is defined in (3). O
Note that lim;_, o, [e"2v(t, E)—e*2'v(t, 00)| = 0 uni-
formly for t € [0,T]. Then for € = M(0), there
exists x, = xo(M(0))>>1 such that |e*2'v(t,&) —
et2ty(t,00)| < € if £ = x,. That is,

|e v (t, &)l —et=* [v(t, 00)||

< |e“2tv(t,§)—e“2fv(t, oo)| <e.
Thus from Lemma 9,

e v(t, &) < CiM(0)+e,  &>xo, t€[0,T].

Lemma 10 Let the assumptions defined in Lemma 9
hold. Then there is x,>>1 independent of t such that
(26)

sup | v(t,&) |< C;M(0)e !

&€[xq,00)

fOT‘ te [0, T], Where C17 == C16 + 1.
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Hence we can obtain the following result.

Theorem 3 (a priori estimate) If assumptions in
Theorem 2 hold and v(t,&) € X(—r,T) is a local
solution of (4) with a given positive number T, then
there are numbers 6, > 0, 0 < u < min{u,, u,} and
Cy5 = max{Cys, (Cy5 + Cy7)?} independent of T such
that when M(T) < 64,

Iv(OIE + IV(OIIE:

t
+f e 2y (s)|IZ, ds
0 w

S Cg efz“t(sg[l:ar)%]||v0(s)||% + ||Vo(0)||12qi)
0
+Cg ezutf lvo(s)IIZ, ds, t €[0,T]. (27)

Proof: Combining the assumptions with (22), (23),
and (26), we obtain (27) directly. O

STABILITY OF TRAVELLING WAVES

This section is devoted to prove the stability of
travelling wave solutions for (1). To obtain the
exponential decay estimate, we give the following
local existence result.

Proposition 1 (local existence) For the following
problems with the initial value T = 0,

ve(t, &) +cve(t, &) —dvee(t,8) — A F(E)v(t, &)
= 32F(€)f JILf(v+¢)—f(P)ldy +Q,

(t,€) € (7,00) xR,

v(s,8) = ug(s, & —cs)— P (&) =: v:(s, ),

s, &)e[r—rt]xR. (28)
If v.(s,§) € X(t —r,7) and M,(0) < &, for some
constant &6, > 0, then there is ty = ty(65) > 0
such that v(t,&) € X(t —r,7 + ty) and M (ty) <

V20 +r)M.(0).

Next we give the following result for (4), which
suggest Theorem 2 directly.

Theorem 4 (Stability) Suppose that (A;) — (As)
hold. For a travelling wave solution ¢(&) of (1)
with ¢ > ¢, € is defined in Theorem 2, if vy(s, &) €
C([—r,0];C(R) N H2(R)) N L*([—r,0]; H2(R)) and
limg_, o0 vo(s,&) =: vg00(s) € C[—1,0] exists uni-
formly for s € [—r, 0], then there are numbers 6, > 0
and p > 0 independent of v(t,&) such that when
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M.(0) < &, the unique solution v(t,x) of (4) exists
globally and satisfies

t
e 2|y (s)|I7, ds

IVCONE + V(DI +J

0

—2ut 2 2
< Cige ™ max Ivo(s)IE + Ivo (0D )

0
+Cgemt f o)l ds, € [0,00).  (29)
—r

Proof: The proof is similar to the previous ones,
thus we give the main points as follows. Since
positive numbers &;, C;g, and u given in Theo-
rem 3 are independent of T, by choosing 6, =
61/v/2(1+r), 6, = max{4/2C5(1+1r)M(0),5,},
and M(0) < §, < 8; < 8,, and by Proposition 1,
there is t, = t((6,) > 0 such that v(t, &) € X(—r, t,)
and M(ty) < v/2(1+r)M(0) < §;. Thus for t €
[0, to], Theorem 3 gives

t
e 2|y (s)|IZ, ds

IVCONE + V(DI +J

0

—2ut 2 2
< Cige ™ max Ivo(5)IE + Ivo (0D )

0
+cme-2'“f Ivo(s)I2: ds, £ € [0, 5] (30)
-r

When consider (28) at T = t;, it clear that
M, (0) < M(ty) < 6; < &, and by Theorem 3
we have v(t,§) € X(—r,2ty) and M, (ty)) <

v2(1+r)M, (0). Combining with

Mto(o) = sup (||u(f)||§(R) + Hu(t)”?{‘zu(m)

[to—n:to]

64
V20+r)

we obtain M, (to) < 8;. Then

<

M(2to) = sup (Ol + (Ol )

[—r2tg

5,
<—-1
V2(1+r)

Consequently, by Theorem 3, we can obtain the
exponential decay for t € [0, 2t,]. By repeating this
process, we can prove v(t, &) € X(—r, co) and (29)
for t € [0, 00). O

< 61-

APPLICATIONS

In this section we shall apply our consequences
obtained in the former sections to some important
models arising from practical problems.

www.scienceasia.org
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Example 1

Consider the case of (1) with the heat kernel

J(y)= \/iﬂ_pe_yz/‘“’, o > 0. We obtain the fol-

lowing exponential stability of the travelling wave
solutions for (1).

Corollary 1 Assume that (A;) — (As) hold. For the

given travelling wave solution ¢ (&) of (1) with the

speed ¢ > ¢, with ¢ satisfying
éA,—da2—2,F(0,0)

= ehP 31
cr—av—aroo < GV

if up(s,x)— P (x +cs) € C([—r,0]; C(R)NHZ (R)) N
Lz([—r,O];Hi(R)) and lim,_, . [uy(s,x) — ¢p(x +
¢cs)] =: vy oo € C[—1,0] exists uniformly with s €
[—r,0], then there are numbers 6, > 0 and y > 0
such that when

serflflr)%]”(uo = OONIE + 1o — IO

0
+J 1(uo — ) (5)Il7z ds < &g,

the unique solution u(t,x) of (1) and (2) exists
globally and it satisfies

u(t,x)—¢(x +ct) € C([—r, 00); C(R)NH(R))
N L2([—r, 00); HZ (R)) N Gyt —T, ©0)
and

sup |u(t,x)—¢(x+ct)|<Ce™, t=0.

x€R

Remark 2 The condition (31) implies that we may
obtain the stability of the slower waves with wave
speed near to the critical speed if p is sufficiently
small.

Example 2
Taking F(x,y) = —a;x +a,y and J(y) = 6(y), a
Dirac delta function, the equation (1) is reduced to
u(t,x) =du,,(t,x)—au(t,x)

+a,f (u(t —r,x)),

where a;, a, > 0. We assume the following two

assumptions for (32):

(Hy) f(K)=a,K/a,, f(x)>a;x/a,, x €(0,K].

(Hy) f'(K) < a;/a, with any r > 0, or f'(K) >
a,/a, with 0 < r < 7, where

) n—arctan[a;l,/(azf’(K))z—a%:I
o=
V(@ f (K)2—a}

(32)
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Set Z(A,c) =dA%?—cA—a; +a,f’'(0)e™™". Then
there exist ¢, and A, such that #(A,,c,) = 0. From
Ref. 4, (32) admits a travelling wave solution ¢ (&),
& = x +ct, for any ¢ > ¢, such that

0<¢(8)<K,  ¢(—00)=0,
0 <liminf¢(&) < limsup ¢ (&) < K.
§—oo0 E—o00
Clearly, &;F(x,y) =—a; <0, 6,F(x,y)=a, >0,
then limg_, ., $(£§) = K. We obtain the following
stability result of (32).

Corollary 2 Assume that (A,), (H,)—(H,) hold. For
a travelling wave solution ¢ (&) of (32) with the speed
c>c,, if up(s,x)—¢(x +cs) € C([—r,0];C(R)N
HZ(R))NL*([—r,0]; H2(R)) and lim,_, o [uo(s, x)—
P (x +cs)] =: vy oo € C[—1,0] exists uniformly with
s € [—r1,0], then there are 6, > 0 and u > 0 such that
when

sen[liar)g]“(uo = @IS + (o — IO

0
+J 1o — @I($)IIZ2 ds < &g,

the unique solution u(t,x) of (32) and (2) exists
globally and satisfies

u(t,x)—¢(x+ct) € C([—r, 00); C(R) ﬂHf)(]R))
NL2([~r,00); Hy, (R) N Gynie[ —T, 00)

and

v
=}

sup | u(t,x)—¢p(x +ct) |[< Ce™, t
x€R

Example 3

Consider the following general population model,
which derives from the evolution of the mature pop-
ulation with an age structure of a single species !,

u (t,x)=dAu(t,x)—g(u(t,x))
+h(U(t,X))J. J(x=y)f (u(t—r,y))dy, (33)

where d > 0,r = 0.

assumptions.

(P1) h(x),g(x) € C*([0,K] x [0, f(K)],R), g(0) =
0, h(K)f (K) = g(K), h(x)f (x) > g(x), h(x) >
0,h'(x)<0,¢g'(x)=¢g'(0)=0forxe(0,K],K
is defined in A,.

(P,) There exists 0 < 6 < K such that f is increasing
on [0,0], and 0 < 1 < K such that for any y €
(0,m), h(x)y = g(x) has a solution x € (0, 9).

We assume the following
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(P3) h(K)f'(K) + ' (K)f (K)— g'(K) < 0 with any
time-delay r > 0, or h(K)f'(K)+ h' (K)f(K)—
g’(K) > 0 with time-delay 0 < r < #, when

__ m—arctan((R'(K)f (K)—g'(K)) ' M)

= 7 ,
M = /(h(K)f"(K))>— (W' (K) f (K) — g’ (K))>2.

Taking F(x,y) = —g(x) + h(x)y in (1) to obtain

(33). It is easy to check that u =0 and u =K are

two constant equilibria of (33). Clearly,

01 F(x,y)=—g'(x)+h(x)y <,F(0,0) <0,
0 < 3,F(x,y) =h(x) < 3,F(0,0),
F(x,y) < —g'(0)x +h(0)y,

for (x,y) € [0,K] [0, f(K)]. Set

P(A,c)=dA?—cA—g

+h'(0)f'(0) f J(y)e N gy.

Thus there exist ¢, and A, such that 2(A,,c,) =0.
From Ref. 1, (33) admits a travelling wave solution
¢(&), & =x +ct, for any ¢ > c, such that

0<¢(&) <K, ¢p(—00) =0, Elirgo $(&) =K,
and obtain the following stability result of (33).

Corollary 3 Assume that (A;)—(A,) and (P;)—(Ps)
hold. For a travelling wave solution ¢ (&) of (33) with
the speed ¢ > ¢, with ¢ satisfying

e, — (0)f'(0)( f Jy)ertem gy )

=2dA2—g'(0),
if up(s,x)— P (x +cs) € C([—r,0]; C(R)NHZ (R)) N
L*([—r,0};H2(R)) and lim,_oo[ug(s, x) — ¢(x +
cs)] =: vg oo € C[—1,0] exists uniformly with s €
[—r,0], then there are 6, > 0 and u > 0 such that
when

sé?g;%]||(uo = )IE + 11 (uo— ¢)(0)II§5

0
+J 1o — @ISl ds < &g,

the unique solution u(t,x) of (33) and (2) exists
globally and satisfies
u(t,x)—¢(x +ct) € C([—r, 00); C(R)NH(R))

N L?([—r, 00); HZ (R)) N Gypigl —1, 00)
and

sup | u(t,x)—¢(x +ct)|< Ce™, t=0.

x€R
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