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INTRODUCTION

It is well-known that the theory of the strongly
Calderdén-Zygmund operator was originated from a
class of multiplier operators with its symbol given
by €€ /|E]# with 0 <a <1 and 8 > 0. In 1972,
Fefferman and Stein! enlarged the multiplier oper-
ators onto a class of convolution operators. Later,
Coifman? studied a related class of operators in the
casen=1.

In 1986, Alvarez and Milman® introduced a
class of non-convolution operator whose kernel is
more singular near the diagonal than those of the
classical Calderén-Zygmund operators.

Definition 1 (Ref. 3) Let T : & — %’ be a bounded

linear operator. T is called a strongly singular

Calderén-Zygmund operator if the following condi-

tions are fulfilled:

(i) T extends to a continuous operator from L? into
itself.

(i) T is associated with a certain standard ker-
nel. More precisely, there exists a function
K(x, y) continuous on the diagonal of R?" such
that |[K(x,y)—K(x,2)| + |K(y,x) —K(z,x)| <
Cly —z|%/|x —z|™*%/* with 2|y —z|* < |x —z|
for some 0 < 6§ < 1,0<a <1 and (Tf,g) =
fK(x,y)f(y)g(x) dxdy for f, g € & with dis-
joint supports.

(iii) For some @ << %, both operators T and
T* extend to continuous operators from L4 to L2

with%=%+§and1<q<2.

(iv) From (iii), we know that T also extends to a

continuous operator from L2 to LY with % =

1_1_p

1— a =3

Alvarez and Milman?® proved that the strongly
singular Calderén-Zygmund operator T is bounded
from L*° to BMO and from L' to L“°°. Here,
BMO is the bounded mean oscillation space and its
definition can be stated as follows.

Definition 2 (Ref. 4) A function f is said to belong
to BMO(R") if the following sharp maximal function
is bounded

fix) = nggﬂ [51f () —fyl dy < o0,

where the supreme is taken over all balls B C R".
Moreover, f5 = g7 [, f(x)dx and || llgwio = I1f ¥l -

Then, using the interpolation theory, we know
that T is bounded on LP space with 1 < p < oo.
Moreover, Alvarez and Milman?® gave the estimates
of the sharp maximal function (T f)*, which implies
that the weighted norm estimates for T can be
obtained. Thus, by the well-known theorem proved
by Alvarez, Bagby, Kurtz and Pérez in Ref. 5, we
have the following theorem.

Theorem 1 (Ref. 6) Suppose that T, is the commu-

tator generated by the strongly singular Calderdn-
Zygmund operator T and a BMO function b. Then,
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T, is bounded on LP(R? with 1 < p < oo and the
definition of T is defined by

Tpf (x) =b()T(f)(x)—T(bf)(x).

Here we would like to mention that the operator
T, was originated from the commutators of the
classical C-Z singular integral operators which was
proposed by Coifman, Rochberg and Weiss” in 1976.

In 1995, Pérez® gave a counterexample to show
that the commutator of the C-Z singular integral
is not bounded from H' to L!. Later, Harboure,
Segovia and Torrea® gave sufficient and necessary
conditions for the endpoint estimates of the com-
mutator generated by the C-Z singular integrals on
L* and H' spaces.

On the other hand, for the study of commutators
generated by the strongly singular integral opera-
tors and BMO functions, one may see Refs. 10-12
for more details. However, the sufficient and neces-
sary conditions for the endpoint estimates of T is
still unknown. In this paper, we will give a positive
answer to this question.

Before giving the main results of this paper, we
give the atomic decomposition of H' space. For
more details about H' space, one may see Ref. 1.

Definition 3 (Ref. 1) We say a function a(x) is an
atom of H' if a satisfies the following conditions

(1) supp(a) C B(xo,1),

(ii) lallL < 1BCxo, P,

(i) [ a(x)dx =0.

It is well-known that if a function f belongs to
H', then it can be written as f = >..~, A;a; where
each a; is a H atom. Moreover, we have

+00
1l ~inf{ >, |ai|},

where the infimum is taken over all decompositions

of f.

Our results can be stated as follows.

Theorem 2 Let a, 3 and 6 be the same as in Defini-
tion 1. Suppose that T, is a commutator generated
by the strongly singular integral operator and a BMO
function b, then the following two conditions are
equivalent:

(i) T, is bounded from L*° to BMO.
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(ii) For any cube Q =Q(z,r), ifr > 1,

1
(@ fQ |b(x)— bQIdx)

J K(z,y)f (y)dy
(Q(z,2y/mr)e

where the constant C only depends on n, a, 3 and
6. On the other hand, for thecase 0 < e <r <1
with any € > 0,

1
— b(x)—b o |d
(|Q| JQ| (X) Q(z,24/nr )l X)

J K(z,y)f(y)dy
Qz,2ymre)

where the constant C only depends on n,a, 3,6
and e.

X < Cllf Mlpees

X <Cj”f”L"":

Theorem 3 Let a, 3 and 6 be the same as in Defi-

nition 1. Suppose that Ty, is a commutator generated

by the strongly singular integral operator and a BMO

function b, then the following two conditions are

equivalent:

(i) T, is bounded from H! to L1.

(ii) For any H' atom a(x) supported on Q(z,r), if
r>1,

J. K(x,Z)dXJ b(y)a(y)dy
Q(z,24/nr) Q

where the constant C only depends on n, a, 3 and
6. On the other hand, for thecase 0 < e <r <1
with any € > 0, there is

f K(x,Z)dXJ b(y)a(y)dy
Q(z,24/nre)c Q

where the constant C only depends on n,a, 3,0
and €.

<C,

<C,

ENDPOINT ESTIMATES FOR T, FROM L*° TO
BMO SPACE.

Before giving the proof of Theorem 2, we give some
lemmas that will be very useful throughout this

paper.

Lemma 1l (Ref 4) Let 1 < p < 00, and let f €
BMO(R™"), then we have

1/
@ 1 o ~ sup (7 [, f C)— fal” dx) ™
@) I llswo ~ sup inf g7 [ 1f(x)—al dx.
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Lemma 2 (Ref 4) Let f € BMO(R"), andlet1 <q <
oo and ry,r, € R, then

1
|B(Z, rl)l B(z,r1)

r
<C (1 +| logr—l|) IIf llzmo
P

1/q
If(x) _fB(z,rz)lqu>

for any z € R™.

Now, we are going to give the proof of Theo-
rem 2 and we may consider this problem into the
caser>landO0<e<r<1.

(i) Thecaser > 1

For any cube Q = Q(z,r) with r > 1, splitting f as

f=fi+fywith f(x) = f(X)XQ(z,zﬁr)- Then using
some basic ideas from Ref. 9 (p. 680), we denote

o1(x) = T f1(x),
05(x,2) = (b(x) — b )(T f5(x) — T f5(2)),
03(x,2) = T((b—bqg)f2)(z) — T((b—bg)f2)(x),
04(x,2) = (b(x) — bo)T fo(2).

Thus, we may split T, f (x)— (T, f)q as

Tpf () = (Tpf)q = 01(x) = (01)q + 02(x,2)
+04(x,2)—(02(-,2))q
+(03(x,))q-

Next, we will give the estimates of
m fQ(z,r) loildx (i = 1,2,3), respectively.
For 0,(x), from (i) of Definition 1 and Theorem 1,
we have

d
1Q(z, )| Q(Z’r)|o.1(X)| 8
1
= T d
QG Q(Z,r)| pf1(00)|dx
1 1
< mHbelHﬂQ(Z, )|

< Clfill21Qz, )72
< ClIf Iy 1Q(z, 2v/nr)|Y2|Q(z, )2
< ClIf Il oo (1)

To estimate o,, we give the following estimates.
For any x € Q(z,r) and y € Q(z,2+/nr)", there is
2lx —z|* < 2(v/nr)* < 2ynr < |y —z| with r > 1
and 0 < a < 1. Then, using (ii) of Definition 1, we
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have

|Tf2(x) - sz(z)|
< f IK(x,y)—K(z )] x 1f()ldy
ly—z|=2y/nr

lx—z|°
< ClIfllzes f ——dy
|y—z|=24/nr |y—Z|”+E

oo
< ClIfllze rﬁf
24/nr

1
< Cllfllpeor®@ < ClIf llpees

1 B
rlradr

where the last inequality follows from ro-3)
r% = 1. Thus, we obtain

1
1Qz, )l

loa(x,2)|ldx < Cl|bllgyollf Il o

Q(z,r)
(2
For o4, we have

|o73(x, 2)]

=|T((b—bq)f2)(z)—T((b—bqy)f:)(x)
f(b(y)—bQ)fz(y)(K(z,y)—K(x,y))dy
Rn

< J Ib(y)—bollf (WIIK(z,y)—K(x,y)ldy
ly—zl>2//nr

< ”f”L‘X’J [b(y)—bollK (2, y)—K(x,y)ldy.
ly—z|=>24/nr

As 0 < a < 1, we have 2|x —z|* < 2(/nr)* <
24/nr < |y —z|. Then, using (ii) of Definition 1 and
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Lemma 2, we get

los(x, ) <C“f||L°°f |b(y)— bql
ly—z|>2+/nr

lx—=/°
|y_z|n+6/a

cufanZf

27 2/nr<|y—z|<2/t1-2/nr

|x —2|°
|b(J’)—bq|m y

o

9
,
<Clfllie X g 7mrymiare

j=0

XJ [b(y)—Dbqldy
2i-24/nr<|y—z|<2/t1.2/nr

> 5 j+1 n

ro - (2% 24/nr)

< Cllbllgmoll flIpe E @ - 2y/mr)ola
=0 nr

oo
< CIbllawolIf Nl 0= D (2124 +1)

j=0
< C||b||BMO”f||L°°rO = C||bllgmoll f oo

which implies

1
IQz, )

Clibllgmollf o
3)

|los(x,2)ldx <
Q)

(ii) Thecase 0 <e<r <1

For the case 0 < € < r < 1 with any € > 0, splitting f

as f = f1+fy with f; = f xo(z.2/mre)- Then, following
some basic ideas from the case r > 1, we may denote
01,0, 03 and o, as follows.

o1(x) = Ty f1(x),
oy(x,2) = (b(x)— bQ(z,zﬁra))(sz(x)_ T f5(2)),
03(x,2) = T((b—bo(z 2,mre))f2)(2)
—T((b—bg)f2)(x),
04(x,2) = (b(x) — bz 2 /mre)) T f2(2).

Thus, we have

Ty f () = (T f oz 2vmre)
= 01(x) = (01)q@2ymre) + 02(x,2) + 04(x,2)
- (0'2("2))Q(z,2ﬁra) +(o5(x, '))Q(z,zﬁra)-

Next, we will estimate Klz_l f 0 |oildx with i =
1,2,3, respectively. For o;, we may give the esti-

www.scienceasia.org

ScienceAsia 44 (2018)

1
mates of ] fQ |o1(x)|dx as

|<12_|f o (x)ldx

fIT((b(X) b(-))f)(x)ldx

]
=3 J ITCENBE) = bge g ldx
T+ J IT((Bage pyrn — BCf)()ldx

il J,
=I1+1I.

G+1)

For I, by using the Holder inequality, the fact that
0<e<r<1,the L2 - L7 boundedness of T ((iv)
of Definition 1) and Lemma 2, we get

IQIJ IT(f)COIb(x) = bog 2 mreldx

/q
Q| /s (1 J '
< x| — | [b(x)—bgay/mlldx
o~ \al J,

1/q
X U |Tf1(x)|q’dx)
Q

l
< Clllpollfill: 'Q|('2|

1/q
< Clbllolf 11QCz, 24 /2 L

Ql
a1
ClIbllgmollf ll oo r™E a1

<
< Clibllgmollf llzees

where the last inequality follows from the fact 0 <
1 4 _ 1,8 1,1 _a_

r<1and %4—6—1 = %—1+§+; = %—54-2—% =0.

For II, using Lemma 2, the Holder inequality
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and the L2 — L9 boundedness of T, we have

=1l f 1T ((bogs,2ymrey = b())f1)(x)|dx

|Q|||T((bQ(zzfra) b()f1 (Il QI

< @“(bQ(z,zﬁra)_ bNAC)=1QIM
<If =™

1/2
X (f |bQ(z’2ﬁra)—b(x)|2dx)
Q(z,24/nr®)

< Clf Q79 |Q(z, 24/nr®)| /2

1
g (|Q(z,2ﬁra)|

|b(x)_bQ(z,2ﬁra)|2dx
< ClIbllgyollf Il r"(@/21/aD)
= C||bllgmollf [l e

Combing the above two estimates, we get

Q(z,24/nre)
)1/2

1
—f |04 (Oldx < Clibllpyollfllz- (4
il J,

Next, we give the estimate of o5(x,z). As y €
Q(z,24/nr*) and x € Q(z,r), there is 2|x —z|* <
24/nr® < |y —z|. Thus, we obtain

ITfo(x)—T f,(2)]

<f IK(x,y)—K(z,y)If2(y)ldy

< f IK(e,y)— Kz, )l 00)Idy
ly—z|=>24/nre

|x —z/°

< “f”LOOJ ——dy
ly—s|>2yare |y —2|""a

oo
< C||f||Loor5f
24/nra

Using Lemma 2 and the fact 0 < € <

1
Ql L |ora(x, 2)|d x

< C||f||m<>@ XJ [b(x) — bz 2 mreyldx

< Cl|bllgmollf e (5)

where the last inequalities follows from the fact 0 <
esr<l.

tn 1 —n “dt

Cllf e

a <1, we get

417

For 05(x,%), by the fact 2|x —z|* < 24/nr®* <
|y — 2|, Lemma 2 and (ii) of Definition 1, we get

los(x,2)| =

J (b(J/) - bQ(z,ZﬁrO‘))
Rn
xfo(¥)(K(z, y)—K(x, y))dyl

< f |b(Y) - bQ(z,2ﬁr'1)|
ly—z|>2y/nre
x|fIK(x,y)—K(z,y)ldy

S Cllf [l f 16(y) — bz 2ymr)]
|y—z|=2y/nre

|x —2[°
X 5
ly —z|""=
00
<CIIfllzes Zf
j=0 J 2J-2y/nre<|y—z|<2i+1-24/nre
|x —2[°
b b | ——————
| (y) Q(z,24/nr )Il z|n+E

oo

<ClIfll= Y.

.
= (2 -2ymre)rta

|
2i-24/Are<|y—z|<2+1-2y/nre
15() = bog 2y ldy
< Cllbllgmoll f e
(ST 2+ 1)
= (271 .2 /nre)ta

_5¢i .
< ClIbllayollf ll 2750 V(j +1)
j=0

< Clibllsmollf llees

which implies
1
_f los(x,2)ldx < Clbllgmollf - (6)
il J,

Proof of Theorem 2

Now we are ready to give the proof of Theorem 2.
For any cube Q = Q(z,r) with r > 1, as 0,4(x,2) =
Tpf (x) — (Tp(f)q — 01(x) + (01)q — 02(x,2) +
(03(+,2))q —(03(x,+))q. From (1)-(3), we find that
if T, is bounded from L°° to BMO, then it is easy to
get

|Q|J |0'4(X z)|dx < Cl|bllpmollf ll o @)
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By the definition of o4, (7) is equivalent to Holder inequality, we have

e Ol = 1T (D11 (@ 2vmr
if [b(x)—bgldx Mkl b AL Qe 2vAr)
IRl J,

= f | Ty (a)(x)ldx
Q(z,24/nr)

x f K y)f()dy|<Cllfllp. (& 1/2
(@QG.2v/ar)) < ClQ(z, 24/nr)| V2 U ITb(a)(X)IZdX)
RH
On the other hand, if (8) holds, it is clear that T} is n
oo < Crz|all;:
bounded from L°° to BMO.
<clQV?Q V2 < c. )
Similarly, for any cube Q = Q(z,r) with 0 < € < .
r <1, using -, it is easy to see that the boundedness For us, as ax < Q(z,GZﬁr) and y € Q(z,r),
of T, from L to BMO is equivalent to there is 2|y —z|* < 24/nr® < 24/nr < |x —z|. More-
over, by the cancellation condition of a and (ii) of
1 Definition 1, we obtain
(@ f |b(X)— bQ(z,Zﬁrf’)|dx)
Q o (Il
x J K(z,y)f (y)dy| < Clbllgmollf ll oo - =J (b(x)— bQ)f K(x,y)a(y)dydx
(Q(z,24/nr®)) Q(z,2y/mr)e Q
Thus, the proof of Theorem 2 has been finished. = f (b(x)—bq)
Q(z,2y/nr)

ENDPOINT ESTIMATES FOR T, FROM H! TO L!

SPACES. X L(K(X,y)—K(x,Z))a(y)dydx

19
—2Z
f el oy
Q

|X—Z|n+a

< rﬁf |a(y)|dyf de.
Q Q

5
(z,24/nr)C |X _z|n+§

In this section, we will give the proof of Theorem 3.
For any H' atom a(x) supported on Q = Q(z, 1), we < [b(x)— by
will estimate Tya(x) in two cases. Qlz,2v/mr)e

dx

(i) Thecaser > 1

For the case r > 1, we may decompose Tya(x) by

Tya(x) = Tba(X)XQ(z,zﬁr)(X) As
+ Tpa(x) ¥ (qez,2vmrye (X) [b(x)— bl
_ ———dx
= Tpa(x) Xz 2/mr) (%) Qv Jx—z|mte
+ T(a(‘)(b(‘)—bQ))(x)X(Q(z,zﬁr))c(x) 00 |b(x)—bQ|
+ X2y (X)T((b(-) — bg)a)(x) < J , , el d
j=1 J 2ir<|x—z|<2/*1r |x —z|"*a
= Tpa(X) ¥ qe2ymr) (X) o
+ T (a()(b(-) = b)) (%) X (qez, 2var): (%) < @ty e f |b(x)— boldx
j=1 Q(z,27*1r)

8

+X(Q(z,21/ﬁr))f(x)f (K(x,y)—K(x,2)) . . L

Q < Z2‘0“)(”5)]'7"_"_5(2’+1r)"||b||BM0

x (b(y)—bgla(y)dy + x(qe.2vmr) (x) j=1

x f K(x,2)(b(y)—bglaly)dy
Q

_s
< Cl|bllgmor .

Thus, we get
= g (00) 4 pa (o) + s (x, 2) + pg (x, 2).
Mir < Clbllanor® @ lall 2 1QI V>
Then we will give the estimates of ||u;(-)||;1(i = 2Ol Iblpvo 0 lall:zICl
1,2,3), respectively. For u;, by Theorem 1 and the < Clibllsmor™ = ClIbllzmo- (10)
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For us, as x € Q(z,24/nr)° and y € Q(z,r),
there is 2|y —z|* < 24/nr* < 24y/nr < |x —z|. Thus,
using the Holder inequality and Lemma 1, we obtain

ly —=/°

_Z|n+%

s> 2l <j

Q(z,2¢/nr)* |x
x|b(y)—bglla(y)ldydx

Sréf la(y)IIb(y) = bqldy
Q

1
R —
Qz2yary X2

1/2
<crlllall (J Ib(y)— bqlzd}')
Q

oo
18
xf e dr
24/nr

C1y
C||b||BMOr5(1 “)|Q| 1/2+1/2

<
< C||bllgmo-

(11)

The caser <1

For any H' atom supp(a) C Q = Q(z,r) with 0 < € <
r < 1, we may decompose Tya(x) as

Tya(x)
= Tya(x) X o 2vmra) () + Tpa(x) x(qez 2 /mray): (X)
= Tba(x)XQ(z,zﬁra)(x)
+ T(a(-)(b(-) = bogz,2ymra) ) () X (e, 2varay: (%)
+ X (ez.2varay ()T (b 2ymray — b(-))a)(x)
= Tpa(X) ¥z 2. ymre)(X)
+ T(a()(D() = bo 2 viir))) (X)X @z 2 viirey): (X)

+ X(Q(z,zﬁra))C(x)J (K(x,y)—=K(x,2))
Q

X (b(y) — bqe 2 mra))aly)dy
+ X QG 2vara) (X)

x f K(x,2)(b(y) = bq(z 2 mry)aly)dy
Q

1=y () + () + s (x, 2) + pg(x, 2).

419

(i =

Next, we will give the estimates of ||u;]|1
1,2, 3) respectively.

1@/

= f [T((b(x)—b(-))a(-))(x)dx|dx
Q(z,24/nr*)

< f |Ta()l|b(x) — bogs 3y |dx
Q(z,24/nr*)

+f IT((b(-) = o 2ymrey)al-))(x)ldx
Q(z,2¢/nre)

=I1+1II.

For I, by the LY — L2 boundedness of T ((iii) of
Definition 1), we have

I= f ITaC)|b(x) ~ bog 2o ldx
Q(z,2v/nre)

1/2
< (f |b(x)_ bQ(z’zﬁra)lzdx)
Q(z,24/nre)

1/2
(J |Ta(x)|2dx)
Q(z,24/nre)

< CIIbIIBMolQ(z,Zw/ﬁr“)ll/zllallm
<

ClIbllppor™ 2 F1/aD.

X

a 1 _a 1, B a 1,1 a__
As §+a—1—§—1+§+;>§—§+§—§—Oand
0 <r <1, we may get

I< CHb”BMOrO = C||bllpmo-

For II, using the Holder inequality, Lemma 2 and
the LY — L?(1 < q < 2) boundedness of T, we have

1= J IT((b(-) = bogz,2mrey)al-))(x)dx
Q(z,24/nr)

N

1/2
( f 1T((b(-)—bQ(z,mra))a(-))(x)Fdx)
Q(z,24/nr%)

x |Q(z, 2v/nr")|"/?
< Cl(() = bog,2yirsy)aC)llar "

2q
a 29
<Cr2”llalle(J Ib(X)—bQ(z,zﬁra)IZ-qu) .
Q)
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Recall 3 + % —12> 0. Then, using the fact 0 < € <
r <1 and Lemma 2, we get

2-q

a 1 2q. =
11 <rz"all. (—f Ib(y)—bQ(z,zma)l“dY)
Ql J,

% |Q|(1—%)%

a 1

< C||bllgyor 2r" 0~

q r_%
= Cllbllguor™ 4™ < Cllbllpwo-
Combining the above two estimates, we obtain
lua (2 < ClIbllgmo- (12)
For u,, by the fact y € Q(z,r) and x € Q(z, 2+/nr?),
there is 2|y —z|* < 24/nr® < |x —z|. Thus, we get

lua (Il < J |b(x)— bQ(z,zﬁraﬂ
Q(z,24/mra)s

T
« f ly=zllal 0 g
Q(z,r)

|X—Z|”+§

<r? f la(y)ldy
Q)

b(x)—b a
Xf | ( ) Q(z,Z(;ﬂr )ldx.
QG2yare)x  |x—z"a

As

J |b(X) - bQ(z,Zﬁr“)l
5 dx
Qe2yarey  |x—z|"a

f [b(x)— bQ(z,zﬁra)|
= . dx
|x—z|=24/nre |X _z|n+;

oo
<3
j=1 J 2/ y/nre<|x—z| <2+l /nre

b(x)— bo(z 2. /mra
[b(x)—bog2ym )ldx

|x_z|n+§

8

(o]
<@ vy f
j=1 Q(z,2*14/nre)

| b(X) - bQ(z,Zﬁrﬂ) |dX

o

< Clbllgo Y (271 V/Ar®) i (j+1)

=1

x (2j+1ﬁra)n
= Cllbllgyo Y (271 V/Ar®) T (j+1),

J=1
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we may get

sl < Clibllgmor® lall21Q1M2
oo
X > (21 Y/mr®) 75 (j+1) < Cllbllpyo-
- (13)
For us(x,2), note that 2|y —z|* < 24/nr® <
|z — x|, the fact 0 < e < r < 1 with any € > 0 and

0 < a < 1. Then using (ii) of Definition 1 and
Lemma 2, we get

llus (- 2l

:f f |K(x,y)—K(x,2)|
Q(z,2v/nre) JQ
X |b(y) = boe,2mrmllaly)ldydx

19

—2Z
<J J ly |5
Qz2ymreyr Jq |z —x|"*e

x|b(y) = bogz 2 mrllaly)ldydx

<r? J laNIb(Y) = boe 2ymraldy
Q

1
. f R NN
Q(z,2¢/nre)c |Z - x|n+g
< Crofall1QIM?

1 1/2
X(_J‘ |b(y)_bQ(z,2ﬁra)|2dy)
1l J,

[e)
5
x f tn—l—n—gdt
24/nra

5
< Cr ”a”L2|Q|1/2“b”BMO x f
24/nra

[ee]

8
tl e d e

< Cl[bllgmo- (14

Proof of Theorem 3

Finally, we will give the proof of Theorem 3. From
Definition 3, we know that for any f € H, f can be

decomposed by
f= Z )Ljaj;
J

where q; is an H ! atom. By using the main results of
Ref. 13, we know that the boundedness of T}, from

H! to L is equivalent to
I Tyall: < C, (15)

where a is an H! atom supported on Q = Q(z, ).
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For case r > 1. By the definition of u,(x, ), the
estimates of u; (i =1,2,3) and (15), we know that
if T}, is bounded from H! to L'. Thus, we obtain

f K(x,z)dxf(bQ—b(y))a(y)dy <C.
Q(z,2¢/nr) Q

(16)
By the cancellation conditions of a, (16) is equiva-
lent to

f K(x,z)dxf b(y)a(y)dy|<C. (17)
Q(z,24/mnr) Q

On the other hand, if (17) holds, combining (9)-
(12), we may get (15), which is equivalent to the
fact T, f (x) is bounded from H® to L®.

Similarly for the case 0 < € < r < 1, we know
that the boundedness of T, from H' to L! is also
equivalent to

J K(x,z)dxf b(y)a(y)dy|<C.
Q(z,2¢/nre)e Q

Consequently, the proof of Theorem 3 has been
finished.
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