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ABSTRACT: We apply Stein’s method to obtain a non-uniform exponential bound for normal approximations for certain
types of random variables. In particular, we establish the bound for a random variable such that its exchangeable pair
coupling exists and the distance between the pair is bounded. Using our result, we obtain better bounds for a wide

range of applications, such as sums of bounded independent random variables, the combinatorial central limit theorem,
and the numbers of descents and inversions of a permutation.
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INTRODUCTION

The central limit theorem and Berry-Esseen theo-
rem play important roles in probability theory and
statistics. The theorems guarantee that a certain
distribution can be asymptotically approximated by
a normal distribution. Several techniques to deal
with different variations of the central limit theorem
and the Berry-Esseen theorem have been proposed.
For example, the Laplace Fourier method can be
used to prove the classical central limit theorem,
and many significant results related to the limit
theorem and Berry-Esseen bounds arise from this
method. However, it is quite difficult to apply the
method to the case of dependent random variables.
The breakthrough finally came from Stein!. He
introduced an alternative approach to the Berry-
Esseen normal approximation which is known as
Stein’s method. His idea is to replace the distance
between the characteristic functions in the Fourier
analytic method with the distance between the tar-
get random variable and the normal distribution. In
particular, he showed that Z ~ A4(0, 1) if and only
if
E[Zf(Z)—-f'(Z2)]=0,

for any absolutely continuous function f for which
this expectation exists.

There are many advantages of Stein’s method
over the classical Fourier analytic approach. For
instance, Stein’s method can directly yield the error

bound for the normal approximation even when
the random variables are not identically distributed
or independent. Consequently, Stein’s method and
its extensions and variations have opened up many
applications in distribution approximations such as
with the multivariate normal approximation?. Re-
views of Stein’s method and its extensions can be
found Refs. 3, 4.

Generally, there are three widely used ap-
proaches in Stein’s method which are the concen-
tration inequality approach, the inductive approach,
and the coupling approach. The coupling approach
is one of the most important tools in Stein’s method.
The key idea of this approach is to construct a new
random variable coupling with the target random
variable. There are three different couplings we can
make which are exchangeable pair®®, zero bias”8
and size bias®1°.

The setting of the exchangeable pair coupling
is as follows. For a random variable W, we say
that the pair (W, W’) is an exchangeable pair if for
all measurable sets B and B, P(W € B,W’ € B') =
P(W € B’,W’ € B). The exchangeable pair (W, W’)
is said to be A-Stein pair if®

EV(W—-wW') =AW, @)}

where 0 < A < 1. Generalizations of the A-Stein pair
construction can be found in Refs. 11-13.

Rinott and Rotar!! gave a uniform bound for the
error of the normal approximation via the distance
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of exchangeable pair random variables satisfying (1)
and |W’—W| < A for some constant A. In particular,
for any real number x, they found that

|P(W < x)—&(x)|

484° 8A?
+ R

A VA~

< 7\/Var(EW(W’—W)2)+ 2

This result was then used to obtain uniform bounds
on the normal approximation in various applica-
tions. For example, W can be the numbers of
descents and inversions of a permutation '* 1,

Shao and Su'® established a uniform bound
similar to (2) as follows.

IP(W < x) — &(x)|

0.41A°
4 +1.5A.

< %\/Var(EW(W’—W)Z)—i— 3)

Much effort has been put into obtaining non-
uniform bounds for normal approximations in dif-
ferent settings. Chuntee and Neammanee *° estab-
lished non-uniform polynomial bounds for the
num-bers of descents and inversions of a
permutation, and then improved the non-uniform
bounds to non-uniform exponential bounds!”. In
this work, we further improve their technique to
obtain a better non-uniform exponential bound for
normal approx-imation of certain types of random
variables. In particular, we establish the bound for
any random variable such that its A-Stein pair
exists and the distance between the pair is
bounded.

The rest of this paper is organized as follows.
First, we state our main theorem. Then we apply the
theorem to obtain non-uniform exponential bounds
for normal approximations in four settings. We
provide the proof of the main theorem in the last
section.

Theorem 1 Let W be a random variable with zero

mean and variance one and W’ be an exchangeable
pair of W such that EYW’ = (1—-A)W with 0 < A <
1. Assume that &, |W'—W| < A for some constant A.
For

z € R such that 4A < |z| < (0.623/1)A,

41A3

IP(Q/\Cﬁz))—ch[és/}ir(EW(W’ W)2)+ Cz(z)
+ 1.5AC3(z)
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where ® is the standard normal distribution and

3 e®/2
Ci(z)=\| —
@)=\ 5 o
+ (2 +el®/ 3)12|z\3/A3)
1 922 , e (/27
Cy(z) =0.610 14 2 | e 7/322
) (l I( ) Wors
+0.620(1 + |z|) e*AZZ/4A2+Az|z|3/sA3’
C3(Z) — geZAIzl/A+4)LZ\z|3/3A3—Az2/2A2‘

12 (e +22),

Furthermore, if max(|z|, |z|>) < 1/A, then there exist

.. —qz2
positive constants a and C such that C;(z) < Ce ™
fori=1,2,3. Hence

z)—@(z)|
<Ce ™ (i VVar(EW (W' —W)2)

IP(W <

0.414°
+

+1.5A).

The non-uniform bound obtained in Theorem 1
is only applicable to a certain interval of |z|. How-
ever, in most applications, A= O(1/4/n) and A =
O(1/n). Then the lower limit of the interval be-
comes a constant while the upper limit tends to
infinity as n — oo. Hence we can guarantee that,

for any given large |z|, we can find a suitable
sample size n such that the theorem is applicable

and the bound obtained is still smaller than any

existing bound. For the case of small Values of |z|,
the uniform bound (3) is already available!

APPLICATIONS

In this section, four applications of Theorem 1 are
discussed. For each application, we first construct

an exchangeable pair W’ of the target random vari-
able W such that "W/ =(1 —A)Wwith0 <A< 1
and &, |[W’— W| < A for some constant A and then
compute a bound for the term Var(EW (W —W")?).

Independent bounded random variables

Let X;,X,,...,X, be independent and not neces-
sarily identically distributed random variables with

zero means and finite variances. Define W =

Zl 1 X; and assume that Var(W) = 1.

Chen and Shao'® gave a uniform bound for a
normal approximation for the sum of independent
random variables with bounded condition |X;| < &
fori=1,2,...,n

sup|P(W < 3.36.

z€R

2) —2(2)| <
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Chaidee ! gave a non-uniform exponential bound
improving this bound for large z as follows. For
every real number z, [P(W < 2)—®(2)| < C5 e #1125,
where Cs = 4.45 + 2.21 e20+(5 (¢ ~1-20))

Here we show that the application of our main
theorem to the sum of independent bounded ran-
dom variables can improve the non-uniform expo-
nential bound in Ref. 19. The theorem is stated
below.

Theorem 2 Assume that |X;| < 6 fori=1,2,...,n
Then for fixed z € R such that max(|z|, |z|®) < 1/26
with 86 < |z| < 1.256n6,

PV <2)—e(@)| < \| \/—ze;'Z

+ J/né* (2+el/6n254)1/2 o5/ (8n5%+4)
2
+2.001n8% e /32( L lz') 4 2001087 2z
lz] 16 Von

+2.034n83(1 + |z|) e = /16n0°+1/48n%5"
+86 e—z2/8n§2+1/2n§2+1/12nz54

Furthermore, if 5 = K/ /n where K = 0.548, then for
8K < |z| < n1/6/(2K)1/3,

IP(W < 2)—a(z)| < —322/64’(2(102431(4

+1.879K3 +1.524K? +0.719K)..

Proof: Let X! be an independent copy of X; and
let I be a uniformly distributed random variable
on {1,2,...,n} which is independent of {X;,X},i =
1,2,...,n}. Define W' = W —X; +X;. Then (W,W")
is an exchangeable pair® satisfying (1) with A =
1/n and 6y, < 25. From Ref. 18, EW(W —W')? =
(1/m)(1+Y,_, EY(X?)). Hence
54

Var(EWY (W —w’)?) < — 4
Substituting A = 25, A = 1/n, and (4) into the
bound in Theorem 1, we obtain, for 86 < |z| <
1.256n6,

3 e—z2/2
Ci(z)= \ ﬂ 2

+ (2 n e(1/3)|z|3/n253)1/ 2 @2 /(8n5%44)

9y 2 722/32 6722/2
C,(2) =0.610 14— e "/ —
)= (| | ( ) J2n )

+0.620(1 + |z() 3_22/4”52+\Z|3/24n253’
Cg(Z) — %elz\/n§+|z|3/6n253—zz/8n52'

279

Hence

3 e %/2
[P(W < 2)—&(2)| < \| — v/nd5?
81 |2

2
L ¥mé (2+e1/6n254)1/2 o—=2/(Bn5%+4)

3
+2 001n53 _7z2/32( 1 + 9|Z|)+ 2001716 e_ZZ/z
|| V2

+2.034n53(1 + |z) 7= /16057 +1/48n°5"
+ 85 % /8n8%+1/2n52+1/12n%5%

where we use the fact that max(|z],|z|®) < 1/26
and direct calculation to obtain the inequality. Fur-
thermore, if § = K/+/n, where K > 0.548, then for
8K < |z| < n'/®/(2K)'/3,

z) —®(2)|
< e—3z2/64K2 K2 3 % (2 +el/6K4)1/2
J/n J 81
32 /64K22.001K3(1 +36K? a1 )

Jn 8K V2m
322 /64K 2.034K3 (14 8K) /481
n

|P(W <

+e

+e

+ % e—322/64K2+1/2K2+1/12K4—522/64K2 (5)

Jn
e 3 /64K% (10 243K* + 1.879K3

+1.524K? +0.719K),

where we use the fact that e =/(K+9)
2 2
e 3 /64K° for K > 0.548 and the fact that
2 2 2 2 2
32" /64K°=72°/32( /12| 4+ 9|2]/16) and (1+|z|) e = /0%
are decreasing in z on [8K, 00) to obtain (5). O
Combinatorial central limit theorem

Forn = 2, let a;; be an n x n matrix of real numbers
and 7 be a random permutation of {1,2,...,n} and

n— 12(% 4~

i,j=1

a; +a)?

1
a..: —_— _. = - ..: — a..'
i n aij, aij, n2 E ij

j=1 i,j=1
. n
Define W = 37" X;n), where x;; = (a;; — a;. —

a;+a.)/o. Then E(W) =0, Var(W) =1 and W
is approximately standard normal distributed. The
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asymptotic normality for W under various condi-
tions were shown in Refs. 20,21. Bahr?? and Ho
and Chen?? obtained a uniform bound for W with
the rate O(1/+/n) under boundedness conditions
sup; ;|x;;| = O(1/+/n). Ho and Chen’s result is that,
for every real number 2,
|P(W, <z)—&(2)| < CB,

where = (1/n)22j=1|xij|3. Bolthausen?* gave
a uniform bound for W with finite third moment
conditions. His result is as follows. There exists an
absolute constant C > 0, such that

sup|P(W <

z€R

z)—%(z)| < Cp ©)

which has an O(1/+/n) rate of convergence. Chen
and Fang?® calculated the constant of the uniform
bound for W in (6) to be 451, and obtained a bound
in the form of
sup|P(W

z2)—®(z)| <4516

for the bounded condition sup; ;|x;;| < &. Chaidee '
gave a non-uniform bound for the normal approx-
imation for W with the same bounded condition
where § = O(1/+/n). The bound is, for any real
number 2,

o
D)) < —20 G

IPW < A+ Er)’

where C is a positive constant.

We now apply our main theorem to improve the
non-uniform polynomial bound to an exponential
bound in the form of ™. The obtained bound is
much smaller than the polynomial bound given in
(7) for sufficiently large z.

Theorem 3 Assume that sup; ;|x;|

fixed z € R such that max(|z|,|z|®) <
166 < |z| < 1.256(n—1)0,

—22/2
P(W < 2)—0(z)| < \| 2= /r52S
471 |z

+ 4 / 1_21‘/H52 (2 + e1/6n254)1/2 e—ZZ/(16n62+8)
+8.004n5% 777 /32 ( L %) | 8.004n8° )
lz| 16 Jon
+8.135n83(1 + |g|) e = /300" +1/48n°5"
+ 168 e~ /16n8%+1/2n52+1/12n%5*

< 6. Then for
1/46 with
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Furthermore, if 6 = K/ /n where K = 0.548, then for
16K < |z| < n1/6/(4K)1/3,
—3z2/1281<2(22 194K4

IP(W <z)—(2)| <

+ 4.582K3 +6.961K% +0.012K).

Proof: For a random permutation 7 on the symmet-
ric group S, let a pair (I,J) be a random variable
independent of = with P(I =i and J = j)=1/n(n—
1) foreveryi,j€{1,2,...,n} such thati # j. Define

n/ and W’ by
n(), i¢{l,J},
(@) =1 n(J), i=I,
n(l), i=J,
and W' = W'(n) = W(r') = Y, Xip(py. From
Ref. 6, (7, ') is an exchangeable pair. Hence

(W,W’) is also an exchangeable pair. Since W’ —
W = X1y + X5n0) — Xin() — Xsn()s Supi,jlxijl <6,
and 6y, < 46. Furthermore, the exchangeable pair
(W, W) satisfies (1) with A = 2/(n—1). Following
the proof in Ref. 6, we can show that

Var(EW(W’ —W)?) < Var(E* (W' —W)?)

< nz(n— 1)2 [ ZXU tn ZXU

i,j=1 i,j=1
+ Zvar(xm(j)xjn(i) + xin(i)xjn(j))]-
ij=1

Applying the inequality (a+b)? < 2(a®+b?) and the
Holder inequality, we can show that

n n
ZVar(xm(j)xjn(i) + xin(i)xjn(j)) <8 ZX?J
i,j=1 i,j=1

Hence

4
Var(EY (W —W)?) < 88: (8)

Substituting (8), A = 46, and A = 2/(n— 1) into
the bound in Theorem 1 we obtain, for 166 < z <
1.256(n—1)5,

3 e—zz/Z
Ciz) s \| —
1(2) <\ n Tl

+ (2 + e(2/3)\z|3/n263)1/2 o—#*/(16n5°+8)

9z 2 722/32 e—zz/z
C,(2) < 0.610 1+— |e "/ —
)< (| | ( ) J2n )

+0.620(1 + |z|) 7= /320" +al /120767
Cy(z)< 8 8 2lz|/n5+|z /3n°5°—22 /16n5?
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Hence

—22/2
IP(W <2)—&(2)| < \ j_31/_n52e
TT

|z
+ 4 / 171 /62 (2 + e1/6n254)1/2 e—zz/(16n62+8)
+8.004n5% e 75132 (i + %) | 8.004n5”
|z 16 Nor
+8.135n8%(1 + |z|) o—%°/32n5°+1/48n°5*
+ 168 e—%"/16n6%+1/2n6%+1/12n°5*

2
ez/2

where we use the fact that max(|z|, |z|®) < 1/48
and a direct calculation to obtain the inequality.
Furthermore, if 6 = K/+/n where K = 0.548, then
for 16K < |z| < n'/®/(4K)'3,

IP(W < 2)—o(2)]

2
_32/128k2 K 33 1 2/6k+) /2
<e ¥/ ﬁ(\ 4—n+\/7(2+e/ )

o352/128C 8.004K> ( 1+144K2 oosek? 1 )
vn 16K V2m

o—32°/128K° 8-135K3 (1+16K) o 2+1/48K>
n

+

+
+ 16K e—3z2/1281<2+1/21<2+1/121<“—5z2/1281<Z 9)
J/n

1
< —— 73 /128K% (95 194K* + 4.582K3

3

+6.961K2 +0.012K),

2 2
where we use the fact that e = /(16K™+8) <

e 3 /128K for K > 0.548 and the fact
that  e%/128K*-7%/32(1 /15| 4+ 9lg|/16)  and
(1 +|z])e /128K gre decreasing in z on [16K, 00)
to obtain (9). O

The numbers of descents and inversions of a
permutation

For a random permutation 7 on the symmetric
group S,,, let Des(m) be the number of descents of
permutation 7. Then Des(7) is the number of pairs
(i,i+1) with 1 <i<n—1such that (i) > n(i+1).
Similarly, let Inv(7t) be the number of inversions
of permutation 7. Then Inv(7) is the number of
pairs (i, j) with 1 < i < j < n such that 7(i) > 7(j).
The expectations and variances of the numbers of
descents and inversions are E(Des(7t)) = %(n —-1),
Var(Des(7)) = %(n+ 1), E(Inv(m)) = %n(n—l) and
Var(Inv(n)) = s5n(n — 1)(2n + 5), respectively 4.
The asymptotic normality for the number of de-
scents is proved in Ref. 26 and for the number of
inversions is proved in Ref. 27.

281

Fulman'# gave uniform bounds of the normal
approximation to the numbers of descents and in-
versions. The exchangeable pair techniques of
Stein’s method and the theorem in Ref. 11 were
used to prove the results '

Des(m)— E(Des(m)) < ) _ < C
22]15 3 ( Var(Des(7)) )o@ < Vi
Inv(7t) — E(Inv(m)) _ Gy
?zlelﬂg P ( Var(Inv(7)) s z) 2z < Vi

where C; and C, are positive constants.

Chuntee and Neammanee !° calculated the con-
stants in Fulman’s results which are 1096 and 5421,
respectively. In their work, they also proposed a
method to reduce the constants to be 13.42 and
14.24 for the number of descents and the number
of inversions, respectively. Furthermore, they gen-
eralized the two bounds to be non-uniform bounds
in polynomial form. Chuntee and Neammanee!”
improved the rate of convergences for descents and
inversions from the polynomial bounds to expo-

nential bounds. Their results are as follows. For
sufficiently large n,
p (Des(ﬂ:) — E(Des(m)) < z) _a(2)
Var(Des(7))
51.25
< k4 (10
7n e (10$)
and
P (Inv(rc) —E(Inv(7)) < z) —a(z)
Var(Inv(m))
792.71
< el A
7 e (1mn

Here we provide smaller exponential bounds for
normal approximations to the numbers of descents
and inversions.

Theorem 4 For fixed z € R and n > 2%. If |z| > 8+/3,
then

‘P (Des(ﬁ) — E(Des(1)) < z) —a(z)
Var(Des())
10.980 .23,
< —ﬁ e . (12)
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Table 1 Comparisons of the constant C for the number of
descents and inversions in the form of C/+/n.

bound 2=25 2z =100 z = 1000

(10) 0.3454 7.2x 10710 1.4 x 107197
(12) 2.0x 1077 2.2 x 107135 2.2 x 10713571
11) 1.5303 1.2x1078 2.2 x 107106
(13) 0.1391 5.4x107% 1.2 x 107422

Theorem 5 For fixed z € R and n > 2°, if |z| > 24,
then

'P (Inv(n)—E(IDV(ﬂ)) < z) —3(2)
Var(Inv(m))
93.467 —22/96
< 7 e . (13)

Remark 1 For sufficiently large n, the bounds given
in Theorems 4 and 5 are smaller than the ones given
in Ref. 17 when z > 8+4/3 and z > 24 for the cases of
descents and inversions, respectively.

From Table 1, we can see that our bounds (12,
13) are respectively smaller than the exponential
bounds (10, 11) in Ref. 17 when n satisfies the
condition that n > 2°. The improvements are clearly
seen for large values of z.
Proof of Theorem 4: For m € S,, define

W e Des(mt)— E(Des(m))

Var(Des(7))
and
(i), i¢{I,I+1,...,n},
m(i)={ n(i+1), ie{l,I+1,...,n—1}, (14)
n(I), i=n,

where I is a uniform random variable taking values
on {1,2,...,n}. The permutation ©’ was shown by
Fulman'# to be an exchangeable pair of 7. Conse-
quently,

W e Des(nt’)— E(Des(7t"))
' Var(Des(r'))

is an exchangeable pair of W. Moreover, the ex-
changeable pair (W, W’) satisfies (1) with A =2/n
and &, < 2+/3/4/n.

Chuntee and Neammanee '*> showed that

25.6

Var(EWY (W —W)?) < — (15)

www.scienceasia.org
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Substituting (15), A= 2+/3/4/n and A = 2/n into
Theorem 1, we have, for |z| > 8+4/3,

,2/2
Cr(z) = \| =S 4 (24 @9V V) o516
! 21 |z]

2 —22/2
CZ(Z) = 0610 (l (1 + 9i) e_(7/32)zz + € i )
|z 16 V2n

+0.620(1 + |z]) e /24+(1/18V3)P [/

Cy(z) = %e(Z/«/E)\ZI/ﬁ+(2/9~/§)IZI3/ﬁ—z2/12_
Hence
|P(W < z)—2(z)|
< /256 e—zz/32|: i e—lSz2/32
44/n J 21 g
+V2+e4/9V3 e_zz/”]

—22/32 2
e 16+ 9z 2
+ 5.199 7 (67327
Vvn [ ( 16]z|

+5.284(1 + |z|)e—zz/96+1/1m]

e—(15/32)z2 )
Vam

+e5/32 8v3 2/3+2/9v3-52/96

(16)

n

L 10980 oy,

ﬁ b
where we use the fact that n > 2° to
obtain (16) and V3/2me P2 7| +
(2 + eE)2e 2 < 00045,  ((16 +

922)/16|z))e 6°/32 4 (753 /om) <
1.83 x 10715, (1 + |z|)e=/96+1/18¥3 < 3 0762,
e2/V3+2/9V3~(5/96)" < 0.0002, for |z| > 8+v/3 to
obtain the last inequality. m]
Proof of Theorem 5: Similarly, for

W Inv(7t) — E(Inv(m))
' Var(Inv(7))

define the exchangeable pair random variable W’ by

_ Inv(n’)— E(Inv(n"))
Var(Inv(n'))

w’:

Fulman'# showed that the exchangeable pair

(W, W’) satisfies (1) with A =2/n and &, < 6/ /1.
Hence '®

Var(EY (W' —w)?) < @.

- (17)
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Substituting (17), A = 6/4/n, and A = 2/n into
Theorem 1, we obtain, for |z| > 24,

—22/2
Ci(2) = 3/ + (24 e@/BDEP/VR)? 2220
21 |z|

1 2 , —22/2
C,(2) = 0.610 (— (1 + 9i) /32" | & )
|z 16 J2n

+0.620(1 + |2|) o72/72+ |21 /162v7R
Cs(z)= ge(2/3)\l|/ﬁ+(2/81)\z|3/,/5—22/36.

Hence

[P(W < 2)—o(2)|
< /308 e722/96|: i 674722/96
4/n J 21 |z
4 (2 n e4/81)1/2 e—19z2/480:|

2
+ L e—22/96|:27.011(16+—9z e—(5/24)Zz
Jn 16]z|

e~(47/90)% 2/288+1/162

+ —)—1-27.454(1 +|z|)e”? ]
v
+ e—zz/%ﬁ e2/3+2/81—5,z2/288
Jn
< 93_467 e*zz/%’ (18)
Jn
where we wuse the fact that n > 2° to
2

obtain  (18) and  /3/2me ¥F/%/|z] +
(2 + e4/81)1/2 e71922/480 < 2.19 x 10710’

(16 + 922)/16|z])e 5124 + (e¥%'/9%/y/2m) <
1.04 x 10751, (1 + |g|)e ="/288+1/162 < 3 4044,
2/3+2/81-55/288 < 9 07 x 1075, for |3| > 24 to obtain
the last inequality. O

PROOF OF MAIN RESULT

Recall that the exchangeable pair (W, W’) satisfies
EW(W —W’) =AW and 6, <A. Chen and Shao'®
proved that

[ee]

EWg(W)zEJ g W+ K(t)dt, (19)

—00

where

N 1

K(t)= ﬁ(W’—W)[]I(O St<W—-w)
—I(W'—W <t <0)],

and g is a continuous and piecewise continuously
differentiable function. We can see that K(t) is
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always non-negative and K(t) = 0 for |t| > &, and

(20)

> 1 A2
K()dt = —(W'—=W)> < —.
f (0)de =3¢ <%

—0oQ
To prove the main result, we first obtain an expo-
nential bound for the moment of W.

Lemma 1 Lets > 0 and sA < 1.256. Then

EeVg eA232/4A+A3s3/3A

Proof: We first prove the inequality e*— 1 < 2x
for 0 < x < 1.256. Note that e*— 1 = 2x when x =
0. Let g(x) = (e*— 1)/2x, for x > 0. Then g is an
increasing function on (0,00) and g(1.256) =
0.9997. This implies that g(x) < 1 for 0 < x
<1.256. Hence e*— 1 < 2x for 0 < x < 1.256.

For s € (0, 00), let f : R — R be defined by f (w)
=e™and hy,: (0,00) — R be defined by hy, (t) =E
e". Following Ref. 17, we can show that

sA? A3s?
hy,(s) < ﬁEeSW + -
where we use the fact that 0 < 56y, < sA < 1.256,
the property of exchangeable pair (20), and the
inequality e* —1 < 2x for 0 < x < 1.256 to obtain
the inequality. Dividing the inequality by hy,(s) and
then integrating we obtain

sW
Ee™,

242 3.3
hW(S) <é’ A% [AA+A%s /BA.

O
Proof of Theorem 1: By the symmetry of the
standard normal distribution, ®(z) = 1 — ®(—z), it
suffices to prove the main result for the case 4A <
z < 0.623A/A. Stein’s equation for the standard
normal approximation is

gw)—wgw) =I(w <z)—2(z), (21)

where @ is the standard normal distribution, g :
R — R is a continuous and piecewise differentiable
function. The solution g, of Stein’s equation (21) is
given by®
w) Zﬂewz/ztb(w)[l—fb(z)], w<z,
w)=
8 VIT e 2o(2)[1—d(w)], w> sz,

and

g (w)
_[a-e)A+vV2rwer 2e(w)), w<z,
- {<I>(z)(—1 +/2nwe” 2(1—3(w))), w>z,
(22)

www.scienceasia.org


http://www.scienceasia.org/20??.html
www.scienceasia.org

284

ScienceAsia 44 (2018)
satisfying the following properties: foralls, t,w € R,

To bound |T;|, we follow the technique used in

Ref. 17 to obtain
v2 1
0<g,(w)< min( T

—,— |, for 0,
7 |z|) i
lg/wW)I <1, lg/(s)—gl(t) <1,

2
Tl < ,/E(g;(W))ZJ B(1- e ov-wy).
g(w+s)—gl(w+1t)— J‘h(w+ u)du

< I(z —max(s, t) < w < z—min(s, t)).

(26)
By using (1), we obtain

(23) EW—-W)?=EEY(W-w")?) =22
For ¢ > 0, using (22) and the fact that and therefore
—22/2
1—-d(2) < forz >0, 1 2 var(EW (W' =W)?)
E{1—-—E" W’—Wz) = .
fﬂ/zz ( b ) 422 o
e 27
<
() V27|z| forz <0 To give a bound for Elg;(W)lz, we apply the prop-
we have

erties of Stein’s solution g, stated in (24). Hence

0<g/(w)=( —d)(z))(l + mwewz/zé(w)) Elg(W)I* = Elg;(W)PI(W < 0)

z
o +E|g;(w)|2]1(o<vv< 1+€)
< , forw<o, P
V21z +E|g/(W)IT (W > )
1+¢
/ 6722
lg(w)l <1, forw> oo < 2P(W<O)
272z
and e % ) ) b4
+(—+2ez (1/01+e) _1))P(O<W< )
0<g/(w) mz2 1+¢
Z 2 2
<(1- Nor 2 /2(1+¢) +P (W > )
<@ zp(z))(1+ 2n(1+8)e ) —
e_zz/ 2 2
< 1/2_— + e(z /2)(1/(1+£) _1), forO<w<
Tz

Tte Applying Markov’s inequality and Lemma 1, we

obtain
By using the inequality (a+b)? < 2(a®+b?) fora, b €
R, we obtain

z 2AzW 2222
P (W > ) =P >
2 l+e¢ A2 A2(1+¢)
571%2 ’ w<0, < e(721z2)/A2(1+6)E e27tzW/A2
/ 2 ¢ —z 2 2_
|gz(w)| h erc_z +2¢f (/o) 1)’ 0<ws 1Z?f < (222 A (1+e)+A2% AP +82%2% [34°
1, w> . o
24 .
Following Ref. 17, Choosing ¢ such that

U1 +¢) = (A +
VA + A2), + A2) /A? gives
[P(W < 2)—2(2)| < |T1|+Tal,

(25)
where

2

3e*
Elg/(W)P* <

2mz2
oo
. (8/3)A%2% /A% \—z*(A/A?)((—2A+2VAP+AZA+22) /A2—1)
T, =Eg;(W)—Eg;(W)f R(6)de, +(2+e )e
—00

_2
oo / / ) < e Zz +(2 + e(8/3)7LZZS/A3) e 2 ((M/(A+22))
T,=E| (g/(W)—g,(W+t)K(t)dt. 2nz
—0Q

(28)
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Combining (26)-(28),

T,

r 52 1/2
< 3e 4 (2 4 81 /3A3) o2 /(A2422)

| 2m2?

1
X — 4/ Var(EW (W' —W)2)
224

< 3 e—zz/2
h 2n 2

1/2
e

+ (2 4 8V /3A3) —zZA/Z(A2+2A)]

1
i r_ 2
X oo VVar(EW (W' —W)?). (29)

To bound |T,|, we notice that

|T,| < Ef gL (W) —gl(W + )| K(t)dt

S Top + Tog + Tog, (30)
3

where

T =15 > 3 f 18, W)— g (W + OIR(0)de

z

f]l(z—max(O t) < W < z—min(0, t))K(t)dt

f Jh(W+u)K(t)dudt

and h(w) = (wg,(w))'. The term T,; vanishes by
the assumption that z > 4A. Hence the bound for
T, only depends on Ty, and Ty3. A bound for T,, is
obtained as follows. For |t| < 8y, and z2—6,, <W <
Z2 4 Oy, we have 2 —2A <z—26,, < W 4+t which
implies that

esz(z—ZA) < esz(W+t)

for any s > 0. (3D

Using (31), we can see that
| T5ol

EJ.]I(z—|t| <W <z+|tDK(t)dt
|

t|<8y

< EJ]I(Z—5W <W <z+8,)K(t)dt
|t|<Ey
eZszA

< —
esz?

x E fesz(W“)]I(z —
|

t|<8y

Sw <W <z+8,,)K(t)dt.

(32)

285

Lets =A/A%, 6 > 0and f5 : R — R be defined as

0, t<gz—20,
fs(t)=1 e (t—2+26), 2—26 <t<z+26,
45 et t>z+26.
Then
et 2—20<t<z+26
‘()= ’ ’ 33
f5(0) {O, t<gz—26o0rt>z+20, (33)
Ifs(0)] < 46, forall t €R. 34)

From (19), (33), and (34),

Efesz(w+t)ﬂ(z_
|t|<&y

F/(W+ 0OK(t)dt

t|<8y

<EWfs, (W) <

Sw<W <z+6y,)K(t)dt

4E|W |5y, eV (35)

From (32) and (35) and using the Holder inequality
and Lemma 1, we obtain

4A eZSZ

| Tysl € ———(E|W|?)Y2(E V)12

4A eZsZA
<
esz?
4A eZSZA
< ——
esz?

= 4A ez)\z JA+42%2°% [3A3—2z? [2A%

(E e2szW)1/2

( QA2 /42) (255 +(4% [30)(252)° ) 1/2

Hence

|T22| < 4Ae27Lz/A+4AZZ3/3A3—Azz/2A2. (36)

For the bound for T,5, we notice that

Tys < EH(5W z)
[J Jh(W+u)K(t)]I(
+J._ fh(W+u)I%’(t)]I(W+u>%) dudti|.

(37)

3—2) dudt
4

From the definition h(w) = (wg,(w))’ written as

h(w)
_[(V2ra+wP) e Pe(w) +w)[1-&(z)], w<z,
T (V2R +wH) e 21— d(w) —w)d(z), w>z,
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we can obtain a bound for the function h as follows.
If w < 0, then h(w) < 2(1 —&(z)) < 2e7%/2/+/27z.

If 0 < w < 3z/4, then

2 ) —22/2
h(w) < (v 2n (1 + 9i) e(9/32) +z) =
16 21z
.2
<114 95 o—(7/32)% ﬂ.
Z 16 Var
Hence, for w < 3z/4,
1 922 . e/
hw) < = |1+ = |e 732" 4 — 38
(w) Z ( 16 )e 27 (38)
For w > 3z/4, following Ref. 17 we have
3
h(w) <1.001(1+2) forw> TZ' (39)

Using (38) and the fact that

oo 0 1 A3
K(t)dudt < —|W' —W]P < —,
fooft () du 4)L| | 42

we obtain

Z

(¢S] 0
xf Jh(W+u)R'(t)]I(W+u<%TZ) dudt
—0o0 Jt

A (1 952 , e ®/?
<=1+ |e B2 = | 41
(G5 e =) @

Applying Markov’s inequality and Lemma 1, we
obtain

(40)

p (W > E) —p (AZW > L’Zz) < (A4 4N [34°
2 .

A2 2A2
(42)
Using (39), (40) and (42), we can show that

z
E]I(éw < Z)
oo 0 3y
xf Jh(W+u)IA<(t)]I(W+u> :) dudt
—0Q t

<1.001(1 +z)E]I(5W < 2)

oo 0
xf f I“((t)]I(W+6W>%Z) dudt
—00 t
o) 0 2
<1.001(1 +Z)EJ f k(t)]l(w > 5) dudt
—00 Jt

A3 g
<1.001(1 + —P(W> —)
A+2)23 2

1.001A°

<
42

(14z)e 7" /40+2%2 /347 (43)
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From (37), (41), and (43), we have

’ 2 —(1/2)z*
| Tos| < AL 1+ 9z~ G
Az 16 V2n
1.00143
= () M g
From (30), (36), and (44),
| T,| < 4A2A/A+aN"s* (38022 [24% 4 A
47
— 2
X 1 1+ 9_22 o (7/32)5% ﬂ
=\ 16 J/2n

1.0014°
47
By (25), (29), and (45), we have

IP(W < 2)—&(2)]

3 —22/2
< [\ = C
2n 2

+ (2 + e(8/3)%%° /A3)

(1+2) oM [T +225° (340 (45)

1/2 e—(zz/Z)((A/(A2+2A)))]

1 /
X o V/Var(EW (W' —W)2)

_ 2
+ A_3 1 1+ 9_22 67(7/32)22 + ﬂ
a2\ z 16 V2n

1.00143

47
+4A ezxz JA+422%25 [3A3—222 [2A%

(1 + Z) e—?Lzz/4A2+lzz3 /343

<G (z)% V/Var(EW (W' —W)2)

3

+Cy(2) + 1.5AC5(2)

where

3 e—ZZ/Z
Ci(z)= \ % =

4 (2 + o(8/32%2° /A3)1/ 2 @ /2)((/(a*+22)))

1 922 , e (/22
Cy(2)=0.610 = [ 1+ 2= | 7/32=" 4
=010 (142 ] v

+0.620(1 +5) e A= /A /38
Cg(z) — g e27tz/A+412z3/3A377tz2/2A2.

Furthermore, if max(|z|, |z|®) < 1/A, then we can see
that

Az A% Alz] A

—<—, — < —.

A3 AV A A2
Hence for i =1, 2, 3, there exist positive constants
2

a and C such that C;(z) < Ce ™. O
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