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ABSTRACT: In this paper, we present a new exact and smooth penalty function for nonlinear programming problems
by adding only one variable no matter how many constraints. Through the smooth and exact penalty function, we
can transform the nonlinear programming problems into unconstrained optimization models. We demonstrate that
under some general conditions, when the penalty parameter σ > 0 is sufficiently large, the minimizer of this penalty
function is the minimizer of the primal problem, which can be obtained after finite iterations. Alternatively, under some
mild assumptions, sufficient conditions are derived for the local exactness property. The numerical results demonstrate
that the new penalty function is reasonable and is an effective approach for solving a class of nonlinear programming
problem with equality and inequality constraints.

MSC2010: 90C15

INTRODUCTION

In this paper, we consider the following constrained
minimization problem:






min f (x)
s.t. F j(x) = 0 ∀ j ∈ E,

g`(x)¶ 0 ∀` ∈ I ,
(P)

where f :Rn→R, F j :Rn→ R and g` :Rn→ R ( j ∈
E,` ∈ I) are continuously differentiable functions,
E, I denote the index for equality and inequality
constrained functions respectively.

There are various approaches for solving the
constrained minimization such as SQP-trust region
method1, filter method2, interior point method3,
penalty function method4–6 etc. The interested
reader can refer to reference and references therein.

The SQP-trust region method and the filter
method have to solve a series infinite quadratic
programming and there exists Maratos effect. The
traditional penalty function method is a popular
method. For example, we present the following
penalty functions:

fσ(x) = f (x)

+σ
�∑

j∈E

|F j(x)|+
∑

`∈I

max(0, g`(x))
�

, (1)

fσ(x) = f (x)

+σ
�∑

j∈E

F2
j (x)+
∑

`∈I

(max(0, g`(x)))
2
�

, (2)

fσ(x) = f (x)+λ(x)T F(x)+
σ

2
F(x)T F(x), (3)

where σ > 0 is a penalty parameter, F(x) = [F j(x) :
j ∈ E], λ(x) = (∇F(x))+∇ f (x), and (∇F(x))+

denotes the generalized inverse matrix of ∇F(x).
However, there are also some disadvantages. On
the one hand, the penalty function (1) is usually
continuous only in a neighborhood of the optimal
solution, and may fail to be continuous in the whole
region. On the other hand, the penalty function is
exact and smooth, then it is not simple, and if the
penalty function is simple and smooth, then it is not
exact. For the above three penalty functions, it is
well-known that (1) is a nonsmooth simple exact
penalty function; (2) is a smooth simple penalty
function, but it is not exact; (3) is a smooth exact
penalty function, but it is not simple. Here, the
word simple means that the penalty function only
includes the functions of the primal problem rather
than involves the derivative information of the pri-
mal problem.

Recently, a new exact penalty function7, 8 is
given for the equality constrained minimization
problem (Q), where a new approach is proposed
by adding one variable to equality constrained min-
imization problem (Q) as follows:

min
x∈S

f (x), (Q)
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where

S = {x ∈ [u, v] : F j(x) = 0∀ j ∈ E},

[u, v] is a box in Rn with nonempty interior given
by [u, v] = {x ∈ Rn : u¶ x ¶ v} and ({−∞}∪R)n 3
u < v ∈ ({+∞}∪ R)n, f : D → R and F j : D → R
( j ∈ E) are continuously differentiable in an open set
D containing [u, v]. Then fix w j ∈ R for each j ∈ E
and consider the following equivalent problem:

min
(x ,ε)∈S0

f (x), (Q)

where Sε̄ = {(x ,ε)∈ [u, v]×[0, ε̄] : F j(x) = εw j ∀ j ∈
E}.

Let7

fσ(x ,ε) =






f (x), Case 1,

f (x)+ 1
2ε

∆(x ,ε)
1−q∆(x ,ε) +σβ(ε), Case 2,

+∞, otherwise.

(4)

where, Case 1: ε = 0, x ∈ S and Case 2: 0 < ε ¶
ε̄,∆(x ,ε) < q−1, in addition, ε̄ > 0 and q > 0 are
fixed and β : [0, ε̄] → [0,+∞) is continuous and
continuously differentiable on (0, ε̄] with β(0) = 0.

The corresponding penalty problem (Qσ) is

min
(x ,ε)∈[u,v]×[0,ε̄]

fσ(x ,ε), (Qσ)

where the constrained violation measure is

∆(x ,ε) =
∑

j∈E

(F j(x)− εw j)
2.

fσ(x ,ε) is an exact penalty function of the pri-
mal problem (Q), it is a continuously differentiable
function on {(x ,ε) ∈ [u, v] × [0, ε̄] : ε = 0, x ∈ S}
or {(x ,ε) ∈ [u, v] × (0, ε̄] : 0 < ε ¶ ε̄,∆(x ,ε) <
q−1} respectively, but it is not a continuously dif-
ferentiable function on {(x ,ε) ∈ [u, v]× [0, ε̄] : ε =
0, x ∈ S or 0 < ε ¶ ε̄,∆(x ,ε) < q−1}7. Therefore,
it is worth noting that the penalty function (4) is
not continuously differentiable in the whole region
under the mathematical analysis sense. The main
failure lies in the pair (x∗, 0) case, where x∗ ∈ S,
more concretely, for the case that (x , 0) → (x∗, 0)
where x 6∈ S, the limits of fσ(x ,ε) and∇(x ,ε) fσ(x ,ε)
as (x ,ε) → (x∗, 0), may not exist. However, the
purpose of introducing the new variable ε is just
to make some conveniences in theoretical analysis
and practical computing in order to achieve the
optimal solution. It is meaningless to set ε = 0 at

the beginning of the algorithm. Therefore, from
the practical algorithmic point of view, this failure
is trivial.

Motivated by this, in this paper, we propose a
new exact penalty function for the nonlinear pro-
gramming problems with equality and inequality
constraints. The main feature of our penalty func-
tion is that we only need to add a variable ε for
constraints. The merit function is considered as a
function of x and ε simultaneously which has good
smoothness, exactness properties, even without in-
volving gradient and Jacobian matrices. It remains
bounded below whenever f (x) is bounded below,
which is not shared by l1 and quadratic penalty func-
tions. With the appropriate assumptions, for suffi-
ciently large σ, we verify that the minimizer (x∗,ε∗)
of the penalty problem satisfies ε∗ = 0 if and only if
x∗ solves the original problem (P). This property
demonstrates we can obtain the fact that x∗ is opti-
mal solution of original problem as long as ε∗ = 0 for
the pair (x∗,ε∗). Furthermore, we present the result
that, if a local optimal solution of the penalty prob-
lem satisfies the extended Mangasarian-Fromovitz
constraint qualification, then the minimizer has
the expression of (x∗, 0). As well known, the ill-
conditioning introduced by a large penalty parame-
ter may be detrimental. Therefore, for the new exact
penalty function, we only require the penalty pa-
rameter to be increased by adding a relatively small
constant in order to keep the penalty parameter as
small as possible to avoid ill-conditioning, which is
illustrated in numerical test section. For the penalty
function algorithm, the global convergence property
can be obtained.

AN EXACT AND SMOOTH PENALTY FUNCTION
FOR EQUALITY AND INEQUALITY
CONSTRAINED MINIMIZATION PROBLEM

We reformulate the feasible region as a set S as
follows:

S = {x : F j(x) = 0,∀ j ∈ E, g`(x)¶ 0,∀` ∈ I}. (5)

We introduce a new variable ε into the constraint
function and define Sε = {(x ,ε) : F j(x) = εγw j ,∀ j ∈
E, g`(x) ¶ εγw`,∀` ∈ I}, where w j , w` ∈ (0,1) for
each j ∈ E,` ∈ I , and γ is a positive number. In
particular, when ε = 0, Sε = S. We make some
assumptions for (P):
(1) There exists a global minimizer for (P), this

implies that f (x) is bounded below on S;
(2) If x∗ ∈ L(P), then Lx∗ = {x ∈ L(P) : f (x) =

f (x∗)} is a compact set, where L(P) is the set
of local minimization of (P).
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The penalty function fσ(x , ε) and penalty problem 
(Pσ) can be formulated as follows

min
(x ,ε)∈Rn×(−ε̄,ε̄)

fσ(x ,ε), (Pσ)

where

fσ(x ,ε) =






f (x) Case 1,

f (x)− εα ln(1− ∆(x ,ε)
ε2δ )+σεβ Case 2,

+∞ otherwise

(6)

where Case 1: ε = 0, x ∈ S and Case 2: ε 6= 0, 0 <
1 − 2ε−2δ∆(x ,ε) < 1, α,β ,δ,γ are positive even
numbers and β > 1, in particular, γ > δ throughout
this paper, σ > 0 is a penalty parameter. Denote the
summation of constraint violation as follows

∆(x ,ε)

=
∑

j∈E

(F j(x)− εγw j)
2+
∑

`∈I

(max(0, g`(x)− εγw`))2

=
∑

j∈E

(F j(x)− εγw j)
2+
∑

`∈I+(x ,ε)

(g`(x)− εγw`)2.

where I+(x ,ε) = {` ∈ I |g`(x)¾ εγw`}.
For ε > 0, 0< 1− ε−2δ∆(x ,ε)< 1, we have

fσ(x ,ε)

= f (x)− εα ln(1− ε−2δ∆(x ,ε))+σεβ ¾ f (x).

provided F j(x) = 0 ( j ∈ E) and g`(x) ¶ 0 (` ∈ I).
Therefore, fσ(x ,ε) is bounded below onRn×[−ε̄, ε̄]
whenever f (x) is bounded below on the set D′

consisting of x ∈ Rn satisfying

‖F(x)‖¶
p

2
2
ε̄δ + ε̄γ‖w‖,

‖g(x)‖¶
p

2
2
ε̄δ + ε̄γ‖w‖.

This is a reasonable condition since when f is
bounded below on the feasible set, ε̄ is small
enough. To illustrate the theory developed, we con-
sider the following simple nonlinear optimization
problem:

min x3
1 x3

2
s.t. x2

1 + x2
2 = 4;

x1 ¶ 2, x2 ¶ 2.

There are two global minimizers x∗1 = −x∗2 =
(
p

2,−
p

2) with f (x∗1) = f (x∗2) = −8. If we use the
traditional penalty function, we have the following
conclusions:

• l1 penalty function:

fσ(x) = x3
1 x3

2+σ(|‖x‖
2−4|+(x1−2)++(x2−2)+)

is unbounded below, where x+ = max{0, x}.
Because when x = (−m, m)T , fσ(x)→−∞ as
m→ +∞.

• Quadratic penalty function:

fσ(x) = x3
1 x3

2 +σ((‖x‖
2−4)2

+((x1−2)+)2+((x2−2)+)2)

is unbounded below, because fσ(x)→−∞ for
x = (−m, m)T , as m→ +∞.

For this new penalty function, choosing w1 = w2 =
w3 = 0.5, we have

fσ(x ,ε)






x3
1 x3

2 Case 1,

x3
1 x3

2 − ε
α ln(1− ∆(x ,ε)

ε2δ )+σεβ Case 2,

+∞ otherwise,

where Case 1: ε = ∆(x ,ε) = 0 and Case 2: ε 6= 0,
0< 1−2ε−2δ∆(x ,ε)< 1 and

∆(x ,ε) = (x2
1 + x2

2 −4−0.5εγ)2

+(max(0, x1−2−0.5εγ))2

+(max(0, x2−2−0.5εγ))2.

Since fσ(x ,ε) =+∞ if ‖x‖¾
Ç

4+0.5εγ+
p

2
2 ε

δ or

|x1|¾ 2+
p

2
2 ε

δ+0.5εγ or |x2|¾ 2+
p

2
2 ε

δ+0.5εγ, the
bounded below of this new penalty function below
can be verified easily.

In what follows, we shall show that, under some
mild conditions, fσ(x ,ε) is continuously differen-
tiable with continuous limits on the part of the
boundary with finite values.

Proposition 1 Let x → x∗ ∈ S, 0 6= ε → ε∗ = 0.
Suppose that







2δ−α > 0,

α−δ−1> 0,

β > 1,

(7)

then

lim
ε→ε∗=0
x→x∗∈S

fσ(x ,ε) = fσ(x
∗, 0) = f (x∗),

lim
ε→ε∗=0
x→x∗∈S

∇x fσ(x ,ε) =∇ f (x∗),

lim
ε→ε∗=0
x→x∗∈S

∂ fσ(x ,ε)
∂ ε

= 0.
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Proof : From the fact that ε 6= 0, 0< 1−2∆(x ,ε)
ε2δ < 1,

we have ∆(x ,ε) = O(ε2δ) and

lim
ε→ε∗=0
x→x∗∈S

(1− ε−2δ∆(x ,ε)) = c∗ ∈ [
1
2

, 1],

when ε→ ε∗ = 0, x → x∗ ∈ S. Thus,
∑

j∈E(F j(x)−
εγw j) =O(εδ) and

∑

`∈I+(x ,ε)(g`(x)−ε
γw`) =O(εδ).

From (7), we know 2δ > α and β > 1. This yields

lim
ε→ε∗=0
x→x∗∈S

fσ(x ,ε)

= lim
ε→ε∗=0
x→x∗∈S

f (x)− εα ln
�

1− ε−2δ∆(x ,ε)
�

+σεβ

= f (x∗)

Notice that fσ(x ,ε) is continuously differentiable in
the set D. The gradient of fσ(x ,ε) at (x ,ε) is

∇(x ,ε) fσ(x ,ε) =
�

∇x fσ(x ,ε),
∂ fσ(x ,ε)
∂ ε

�T
,

where

∇x fσ(x ,ε) =∇ f (x)+ εα−2δ ∂x∆(x ,ε)
1− ε−2δ∆(x ,ε)

(8)

and

∂ fσ(x ,ε)
∂ ε

= −αεα−1 ln(1− ε−2δ∆(x ,ε))

− εα
2δε−2δ−1∆(x ,ε)+ ε−2δ ∂∆(x ,ε)

∂ ε

1− ε−2δ∆(x ,ε)
+σβεβ−1

= −αεα−1 ln(1− ε−2δ∆(x ,ε))

+
εα−2δ−1

1− ε−2δ∆(x ,ε)
(−2δ∆(x ,ε)

− ε
∂∆(x ,ε)
∂ ε

)+σβεβ−1

= −αεα−1 ln(1− ε−2δ∆(x ,ε))

+
εα−2δ−1

1− ε−2δ∆(x ,ε)
×
�

2(γ−δ)∆(x ,ε)

−2γ(
∑

j∈E

(F j(x)− ε
γ

k w j)F j(x)

+
∑

`∈I+(x ,ε)

(g`(x)− εγw`)g`(x)
�

+σβεβ−1. (9)

Combing (7), (8) and (9), we have

lim
ε→ε∗=0
x→x∗∈S

∇x fσ(x ,ε) =∇ f (x∗)

and limε→ε∗=0
x→x∗∈S

∂ fσ(x ,ε)
∂ ε = 0. This yields the desired

conclusion. 2

ALGORITHM

Algorithm 1

Step 1 Choose ε̃, ε̄ > 0, η > 0 arbitrarily small,
σ0 > 0, ρ > 0 and (x0,ε0)∈Rn×(−ε̄, ε̄),ε0 6= 0,
set k := 0.

Step 2 For the nonlinear programming problem (P)
we construct the following penalty function

fσ(x ,ε)

=







f (x) Case 1,

f (x)− εα ln(1− ∆(x ,ε)
ε2δ )+σεβ Case 2,

+∞ otherwise,

where Case 1: ε =∆(x ,ε) = 0 and Case 2: ε 6=
0, 0< 1−2∆(x ,ε)

ε2δ < 1, α,β ,δ,γ are positive even
numbers, and β ¾ 2,

∆(x ,ε)

=
∑

j∈E

(F j(x)− εγw j)
2

+
∑

`∈I

(max(0, g`(x)− εγw`))2

=
∑

j∈E

(F j(x)− εγw j)
2+
∑

`∈I+(x ,ε)

(g`(x)− εγw`)2

and I+(x ,ε) = {` ∈ I |g`(x) ¾ εγw`}. Use any
unconstrained algorithm to solve

min
(x ,ε)∈Rn×(−ε̄,ε̄)

fσ(x ,ε)

and denote the solution (xk,εk) of (Pσ).

Step 3 If |εk| ¶ ε̃,‖∇(x ,ε) fσk
(xk,εk)‖ ¶ η, then

stop. The point obtained xk is an approxima-
tion solution of (P). Otherwise, choose σk+1 =
σk +ρ.

Step 4 Set k := k+1 and return to Step 2.

Lemma 1 If (xk,εk) ∈ L(Pσk
) with finite fσk

(xk,εk),
εk 6= 0, then (xk,εk) 6∈ Sε = {(x ,ε) ∈ Rn+1 : F j(x) =
εγw j ,∀ j ∈ E, g`(x)¶ εγw`,∀` ∈ I}.

Proof : By (xk,εk) ∈ L(Pσk
) with finite fσk

(xk,εk),

εk 6= 0, then
∂ fσk
∂ ε (xk,εk) = 0, we have

∂ fσk
(xk,εk)

∂ ε
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= −αεα−1
k ln
�

1−
∆(xk,εk)
ε2δ

k

�

+
εα−2δ−1

k

1− ε−2δ
k ∆(xk,εk)

×
�

2(γ−δ)∆(xk,εk)

−2γ
�∑

j∈E

(F j(xk)− ε
γ

k w j)F j(xk)

+
∑

`∈I+(xk ,εk)

(g`(xk)− ε
γ

k w`)g`(xk)
��

+βεβ−1
k σk

= 0

If (xk,εk) ∈ Sεk
, then the left hand side of the above

is equal to βσkε
β−1
k 6= 0. This is a contradiction.

Thus, (xk,εk) 6∈ Sεk
. 2

Remark 1 In fact, the following result is true: if
∇(x ,ε) fσk

(xk,εk) = 0 with finite fσk
(xk,εk) and εk 6=

0, then (xk,εk) 6∈ Sεk
.

Lemma 2 If (xk,εk) ∈ L(Pσk
) with finite fσk

(xk,εk),
εk 6= 0, (xk,εk) → (x∗,ε∗), ∇F j(x∗) for all j ∈ E,
∇g`(x∗) for all ` ∈ I+(x∗, ε∗) are linearly indepen-
dent, and 2δ−α > 0, then ε∗ = 0, x∗ ∈ S.

Proof : We first show that ε∗ = 0. From (xk,εk) ∈
L(Pσk

), one has

∇x fσk
(xk,εk) = 0 (10)

and

∂ fσk
(xk,εk)

∂ ε

= −αεα−1
k ln
�

1−
∆(xk,εk)
ε2δ

k

�

+
εα−2δ−1

k

1− ε−2δ
k ∆(xk,εk)

×
�

2(γ−δ)∆(xk,εk)

−2γ
�∑

j∈E

(F j(xk)− ε
γ

k w j)F j(xk)

+
∑

`∈I+(xk ,εk)

(g`(xk)− ε
γ

k w`)g`(xk)
��

+βεβ−1
k σk

= 0. (11)

Rearranging (11), we have

−αε2δ
k ln
�

1−
∆(xk,εk)
ε2δ

k

��

1−
∆(xk,εk)
ε−2δ

k

�

+
�

2(γ−δ)∆(xk,εk)

−2γ
�∑

j∈E

(F j(xk)− ε
γ

k w j)F j(xk)

+
∑

`∈I+(xk ,εk)

(g`(xk)− ε
γ

k w`)g`(xk)
��

+βεβ−α+2δ
k σk

�

1−
∆(xk,εk)
ε2δ

k

�

= 0. (12) 

Taking σk → +∞, the first term and the second
term of (12) tend to finite. From the construction
of the penalty function fσ(x ,ε), one has

lim
k→+∞

�

1− ε−2δ
k ∆(xk,εk)
�

6= 0.

It holds that limk→+∞ εk = ε∗ = 0.
We proceed to prove that x∗ ∈ S. Together with

(9), we can obtain

ε2δ−α
k (1− ε−2δ

k ∆(xk,εk))∇ f (xk)

+2
�∑

j∈E

(F j(xk)− ε
γ

k w j)∇F j(xk)

+
∑

`∈I+(xk ,εk)

(g`(xk)− ε
γ

k w`)∇g`(xk)
�

= 0.

Taking the limit in both sides, we have
∑

j∈E

(F j(x
∗)− (ε∗)γw j)∇F j(x

∗)

+
∑

`∈I+(x∗,ε∗)

(g`(x
∗)− (ε∗)γw`)∇g`(x

∗) = 0.

Since ∇F j(x∗) ( j ∈ E), ∇g`(x∗) (` ∈ I+(x∗,ε∗)) are
linearly independent, we have

F j(x
∗)− ε∗

γ

w j = 0, g`(x
∗)− ε∗

γ

w` = 0,

for ∀ j ∈ E and ` ∈ I+(x∗,ε∗). It implies that

∆(x∗,ε∗)

=
∑

j∈E

(F j(x
∗)− (ε∗)γw j)

2

+
∑

`∈I+(x∗,ε∗)

(g`(x
∗)− (ε∗)γw`)2 = 0.

Therefore,

F j(x
∗)− (ε∗)γw j = F j(x

∗) = 0 ∀ j ∈ E;

g`(x
∗)− (ε∗)γw` = g`(x

∗) = 0 ∀` ∈ I+(x∗,ε∗).

We have F j(x∗) = 0,∀ j ∈ E, g`(x∗) ¶ 0,∀` ∈ I , i.e.,
x∗ ∈ S. The proof is completed. 2

Based on above, we construct the following
global convergence theorem.

Theorem 1 Suppose that (xk,εk) ∈ L(Pσk
) gener-

ated by the Algorithm 1 with finite fσk
(xk,εk).

For any accumulation point (x∗,ε∗), ∇F j(x∗),∀ j ∈
E,∇g`(x∗),∀` ∈ I+(x∗,ε∗) are linearly independent,
then x∗ is a local optimal solution of (P).
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Proof : From the conditions, we know there exists a
subsequence (xk,εk)ℵ such that (xk,εk)→ (x∗,ε∗),
It then follows from Lemma 3 that ε∗ = 0 and x∗ is
feasible point of the problem (P). Therefore, there
exists a neighbor o(x∗, 0) and consider an arbitrary
point (x , 0) ∈ o(x∗, 0)∩ (S × {0}), by the definition
of (xk,εk), one has

f (x∗) = fσ(x
∗, 0)¶ fσ(x , 0) = f (x).

Therefore, x∗ is a local optimal solution of (P). The
proof is completed. 2

Corollary 1 Suppose that every local minimizer
(x∗,ε∗) of the penalty problem (Pσ) with fi-
nite fσ(x∗,ε∗) and ∇F j(x∗),∀ j ∈ E,∇g`(x∗),∀` ∈
I+(x∗,ε∗) are linearly independent, then x∗ is local
minimizer of the primal problem (P) if and only if
ε∗ = 0.

Proof : If x∗ is local minimizer of the primal problem
(P), then F j(x∗) = 0 for all j ∈ E and g`(x∗) ¶ 0
for all ` ∈ I . Using a proof by contradiction, from
Lemma 3, we have ε∗ = 0. Alternatively, if ε∗ = 0,
in view of the construction of fσ(x ,ε), x∗ is feasible
point of (P). From the hypothesis that (x∗, 0) is
optimal solution of (Pσ), x∗ is local minimizer of
the primal problem (P). 2

Remark 2 Corollary 1 demonstrates another ad-
vantage of this penalty function is that ε can be
regarded as an indicator variable of local (global)
minimizer. In another words, under fairly general
conditions, ε∗ = 0 is equivalent to x∗ is optimal
solution of (P).

The next theorem explores that the finite termi-
nation property of the penalty function fσ(x ,ε).
Through this conclusion, the optimal solutions of
primal problem (P) can be achieved within finite
steps.

Theorem 2 If (xk,εk) ∈ L(Pσk
) generated by Algo-

rithm 1 with finite fσk
(xk,εk), (xk,εk) → (x∗,ε∗)

and ∇F j(x∗),∀ j ∈ E,∇g`(x∗),∀` ∈ I+(x∗,ε∗) are
linearly independent, α,β ,γ,δ satisfy

α−β ¾ 0 (13)

then there exists k0 > 0, when k ¾ k0, we have εk =
0, xk ∈ L(P).

Proof : We prove this theorem by contradiction.
Assume the theorem is not true, then there exists a
subsequence {(xnk

,εnk
)}ℵ ⊆ {(xk,εk)} such that for

any k0 > 0, when nk ¾ k0, (xnk
,εnk
) ∈ L(Pnk

) with
finite fσnk

(xnk
,εnk
) and εnk

6= 0 and the conditions
of Theorem 2 hold for such subsequence. From the
statement of Lemma 1, (xnk

,εnk
) 6∈ Sεnk

holds. From
(8), we know that

∂ fσnk
(xnk

,εnk
)

∂ ε

= −αεα−1
nk

ln
�

1− ε−2δ
nk
∆(xnk

,εnk
)
�

+
εα−1

nk

1− ε−2δ
nk
∆(xnk

,εnk
)

�

2(γ−δ)
∆(xnk

,εnk
)

ε2δ
nk

−2γε−2δ
nk

�∑

j∈E

(F j(xnk
)− εγnk

w j)F j(xnk
)

+
∑

`∈I+(xnk
,εnk
)

(g`(xnk
)− εγnk

w`)g`(xnk
)
��

+βεβ−1
nk
σnk

= 0 (14) 

From (14), we obtain

−αεα−βnk
ln
�

1−
∆(xnk

,εnk
)

ε2δ
nk

�

+
εα−βnk

1− ε−2δ
nk
∆(xnk

,εnk
)

×
�

2(γ−δ)∆(xnk
,εnk
)

−2γ
�∑

j∈E

(F j(xnk
)− εγnk

w j)F j(xnk
)

+
∑

`∈I+(xnk
,εnk
)

(g`(xnk
)− εγnk

w`)g`(xnk
)
��

+βσnk

= 0. (15) 

From Lemma 2, we derive εnk
→ ε∗ = 0, xnk

→
x∗ ∈ S. Combining with that εnk

6= 0,0 < 1 −
2ε−δnk

∆(xnk
,εnk
)< 1, we have

lim
εnk
→ε∗=0

xnk
→x∗∈S

�

1− ε−2δ
nk
∆(xnk

,εnk
)
�

= c∗ ∈ [
1
2

, 1].

Let α−β ¾ 0, then the first term and the second
one of (15) tend to finite, and the third term tends
to infinite, which is impossible. It implies that such
subsequence cannot exist. Therefore, there exists
k0 > 0, when k ¾ k0, εk = 0, (xk, 0) ∈ L(Pσk

). Thus,
by (xk, 0) ∈ L(Pσk

), there exists a neighbor o(xk, 0)
at (xk, 0),σk > 0, for all (x , 0) ∈ o((xk, 0),σk)∩(S×
{0}), it holds

f (xk) = fσk
(xk, 0)¶ fσk

(x , 0) = f (x).

Thus, xk ∈ L(P). The proof is completed. 2
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LOCAL EXACTNESS PROPERTY

In this section, we shall show that, under fairly 
general conditions and some additional hypothesis,
(x∗, 0) is a local optimal solution of penalty problem 
(Pσ) if x∗ is a local minimizer of the original prob-
lem (P) for sufficiently large penalty parameter σ.

We now consider the nonsmooth case. Assume
f (x) and F j(x) ( j ∈ E), and g`(x) (` ∈ I) are
nonsmooth functions. In order to regularize f and
g, we embed f (x), F j(x), j ∈ E and g`(x),` ∈ I into
the smoothing function f (x ,ε), F j(x ,ε),∀ j ∈ E and
g`(x ,ε),∀` ∈ I by introducing the above variable
ε. Therefore, the introduced additional variable ε
play critical roles in solving the problem (P). The
variable ε has active actions not only in pertur-
bation for constraint system no matter how many
constrained functions, but also in regularization
of the nonsmooth case. After regularization, the
regularized functions f (x ,ε), F j(x ,ε) and g`(x ,ε)
are continuously differentiable in (x ,ε), when ε 6= 0
and satisfy

f (x) = f (x , 0) = lim
ε→0

f (x ,ε)

F j(x) = F j(x , 0) = lim
ε→0

F j(x ,ε),∀ j ∈ E

g`(x) = g`(x , 0) = lim
ε→0

g`(x ,ε),∀` ∈ I .

We consider the following system






min
(x ,ε)∈Rn+1

f (x ,ε)

s.t. F j(x ,ε) = 0, ∀ j ∈ E,
g`(x ,ε)¶ 0, ∀` ∈ I .

(Pε)

Now we introduce the definition of error bound9.

Definition 1 We denote x ∈ Rn satisfies the follow-
ing system

¨

F(x) = 0,

g(x)¶ 0,

as a set S. This system is said to satisfy a local error
bound at x∗, if there exist positive constants k > 0
and δ > 0 such that

dist(x |S)¶ k(‖F(x)‖+ ‖g(x)+‖)

holds, for all x ∈ x∗+δB, where B is the closed unit
ball in Rn.

In the following part, the conditions that the
error bound for (P) exist are considered. We make
some assumptions:

(A1) f (·, 0) is Lipschitz continuous with Lipschitz
constant L.

(A2) The Mangasarian-Fromovitz constraint quali-
fication holds at (x∗, 0).

We know the assumption (A2) guarantees9 the error
bound condition holds. Furthermore, combining
with Corollaries 2.3.1 and 2.4.19 or Theorem 3.110,
we obtain the following conclusion.

Lemma 3 If (A1) and (A2) hold, there exist a neigh-
borhood N0 of x∗, and a constant τ > 0 such that

f (x , 0)¾ f (x∗, 0)

−τ
�∑

j∈E

‖F j(x , 0)‖+
∑

`∈I

‖g`(x , 0)+‖
�

holds.

Now we present an important theoretical result
of the local exactness proof. Before proving this
result, some more assumptions are first given as
follows.

(H1) δ,β ,γ are positive even integers and satisfy
δ ¾ β and γ¾ β;

(H2) For sufficiently small 0< ε′<<1,

‖g`(x ,ε)− g`(x , 0)‖¶ Kεβ ,

‖F j(x ,ε)− F j(x , 0)‖¶ Kεβ ,

for all ` ∈ I , j ∈ E, and ε ∈ [−ε′, 0)∪ (0,ε′]

(H3) | f (x ,ε)− f (x , 0)| ¶ Kεβ , the domain of ε as
(H2);

Based on the above hypothesis, we will present the
main results in this section.

Theorem 3 Suppose the assumptions (H1)–(H3)
hold, for sufficiently largeσ, there are a neighborhood
N ⊆ N0 of x∗ and sufficiently small 0 < ε′<<1 such
that

fσ(x ,ε)> fσ(x
∗, 0) = f (x∗)

for all (x ,ε) ∈ N × [−ε′, 0) ∪ (0,ε′]. In particular,
(x∗, 0) is a local minimizer of fσ(x ,ε).

Proof : Let the neighborhood N ⊆ N0 of x∗ be
sufficiently small such that

sup
x∈N
{ f (x∗, 0)− f (x , 0)}¶ 1,

and assume that the penalty parameter

σ ¾ K +τ(K +2)(|E|+ |I |).

We divide into two cases for further analysis.
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Case 1. ∆(x ,ε)¾ ε2δ;
Case 2. ∆(x ,ε) < ε2δ, for x ∈ N ,ε ∈ [−ε′, 0)∪

(0,ε′].
Case 1. By the construction of penalty function,

fσ(x ,ε) = +∞. Therefore, fσ(x ,ε)> fσ(x∗, 0).
Case 2. We have ∆(x ,ε)< ε2δ, i.e.,
∑

j∈E

(F j(x)− εγw j)
2+
∑

`∈I+(x ,ε)

(g`(x)− εγw`)2 < ε2δ,

this yields that

‖F j(x ,ε)‖¶ εγ|w j |+ ‖F j(x ,ε)− εγw j‖

< εγ|w j |+ εδ,

‖g`(x ,ε)‖¶ εγ|w`|+ ‖g`(x ,ε)− εγw`‖

< εγ|w`|+ εδ.

Furthermore, together with Lemma 3 and assump-
tions (H1)–(H3)

f (x∗, 0)

¶ f (x , 0)+τ
�∑

j∈E

‖F j(x , 0)‖+
∑

`∈I+(x ,0)

‖g`(x , 0)‖
�

¶ f (x ,ε)+ Kεβ +τ
�∑

j∈E

‖F j(x ,ε)‖+
∑

j∈E

Kεβ

+
∑

`∈I+(x ,0)

‖g`(x ,ε)‖+
∑

`∈I+(x ,0)

Kεβ
�

< f (x ,ε)+ Kεβ +τ
�∑

j∈E

εγ|w j |+ εδ|E|

+ Kεδ|E|+
∑

`∈I

εγ|w`|+ εδ|I |+ Kεδ|I |
�

¶ f (x ,ε)+ Kεβ +τ(K +2)(|E|+ |I |)εβ

¶ f (x ,ε)+σεβ .

where |E|, |I | denote the dimension of equality con-
straint and inequality constraint respectively. The
second inequality follows from (H2) and (H3). The
fourth inequality follows immediately from the as-
sumption (H1). Therefore, f (x∗, 0) < f (x ,ε) +
σεβ ¶ fσ(x ,ε). This yields the inequality as de-
sired. 2

NUMERICAL EXAMPLES

To give some insight into the behavior of the
algorithm presented in this paper. We use
‖∇(x ,ε) fσ(x ,ε)‖ ¶ 10−6 as stopping criteria. Tables
Table 1–5 show the computational results for the
corresponding problem with the following items:
the penalty parameter σk, xk,εk of the final iterate
and f (xk) the function value of f at the final xk,
and the constraint violation measure ∆(xk,εk). In

this section, the parameters used in this algorithm
are set as α= 5,β = 1.9,γ= 4 and δ = 3.

Example 1

min 5x1 x2 x3−
1
2 x2

1 +10(x1−1)2−2x2 x3

−x3−
3
2 x2

2 − x2
3 ,

s.t. −x2
1 − x2

3 − x1−2x2− x3+2= 0,
x1+

3
4 ¾ 0,

(x1− x3)2+ x3
2 −0.1x1+0.05x2

1 +1.05¾ 0.

We choose x0 = (0,0, 0),ε0 = 20 as initial point.
ρ = 5. The optimal solution and optimal value are
x∗ = (1,−1,1) and f (x∗) = −7.0000 of the above
example.

Table 1 Numerical results of Example 1

σk xk εk f (xk) ∆(xk,εk)

10 (1.065, -1.128, 0.405) 0.071 -4.456 0
15 (1.000, -0.839, 0.888) -0.000 -5.467 0
20 (1.150, -1.003, 0.835) 0.037 -6.585 2.5619e-009
25 (0.991, -0.994, 1.005) 0.011 -6.932 1.8309e-012
30 (1.012, -1.000, 0.986) 0.000 -6.991 0

Example 2

min x2
1 + x1 x2+2x2

2 −6x1−14x2−12x3
s.t. x1+ x2+ x3 = 20;

x1+2x2 ¶ 30;
x1, x2, x3 ¾ 0.

Here, we choose x0 = (7,7, 7),ε0 = 2 as initial point.
ρ = 5. The optimal solution and optimal value are
x∗ = (0,0.5, 19.5) and f (x∗) = −240.5.

Table 2 Numerical results of Example 2

σk xk εk f (xk) ∆(xk,εk)

10 (-0.033, -0.021, 20.041) 0.28 -239.22 0.002
15 (-0.009, 0.498, 19.508) 0.16 -240.14 9.827e-005
20 (-0.006, 0.480, 19.527) 0.13 -240.20 3.704e-005

Example 3










min x3
1 +2x2

2 x3+2x3,
s.t. x2

1 + x2+ x2
3 = 4,

x2
1 − x2+2x3 ¶ 2,

x1, x2, x3 ¾ 0.

Here, we choose x0 = (−2,−2,1),ε0 = 2 and x0 =
(−1, 2,−1),ε0 = 2 as initial points, respectively. ρ=
5. The optimal solution and optimal value are x∗ =
(0,4, 0) and f (x∗) = 0 of the above example.
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Table 3 Numerical result of Example 3

σk xk εk f (xk) ∆(xk,εk)

25 (0.000, 4.013, -0.627) 0.866 -3.846 0.396
30 (0.000, 3.992, -0.416) 0.739 -1.240 0.157
35 (0.008, 4.000, -0.002) 0.114 0.001 2.159e-006

Example 4






min cos x1 sin x2−
x1

x2
2+1

s.t. −1¶ x1 ¶ 2,
−1¶ x2 ¶ 1.

Initial point is x0 = (4, 0),ε0 = 2. ρ = 2.The optimal
solution and optimal value are x∗ = (2,0.1058) and
f (x∗) = −2.02181 of the above example.

Table 4 Numerical result of Example 4

σk xk εk f (xk) ∆(xk,εk)

2 (2.000, 0.109) 0.009 -2.021 6.055e-013
4 (2.000, 0.052) 0.013 -2.015 5.745e-012
6 (0.696, -0.889) -0.000 -0.985 0
8 (1.997, 0.104) -0.000 -2.019 0
10 (2.000, 0.107) -0.000 -2.021 0

Example 5






































































min x2
1 + x2

2 +(x3−10)2+4(x4−5)2

+(x5−3)2+2(x6−1)2+5x2
7 +7x2

8 +2x2
9

+(x10−7)2+ x1 x2−14x1−16x2+45
s.t. 3(x1−2)2+4(x2−3)2+2x2

3 −7x4 ¶ 120,
5x2

1 +4(x3−6)2+8x2−2x4 ¶ 40,
1
2 (x1−8)2+2(x2−4)2+3x2

5 − x6 ¶ 30,
x2

1 +2(x2−2)2−2x1 x2+14x5−6x6 ¶ 0,
4x1+5x2−3x7+9x8 ¶ 105,
10x1−8x2−17x7+2x8 ¶ 0,
12(x9−8)2−3x1+6x2−7x10 ¶ 0,
−8x1+2x2+5x9−2x10 ¶ 12,
x1, x2, · · · , x10 ¾ 0.

The optimal solution and optimal value are x∗ =
(1.8388, 3.3026,7.3159,5.1275, 0.9962,1.4294, 0, 0,
6.0187, 8.7721) and f (x∗) = 74.0196 of the above
example. We choose x0 = (1,0, 0,0, 0,0, 0, 0, 0.6,
1.1), ε0 = 5.1 as initial point. ρ = 2.

Acknowledgements: Cheng Ma’s work is supported
by the National Natural Science Foundation
(11401331,11671220), China Postdoctoral Science
Foundation (2016M592148), the Postdoctoral Science
Foundation of Shandong Province (201603063), the

Table 5 Numerical result of Example 5

σk xk εk f (xk) ∆(xk ,εk)

2 (3.72,5.91,9.69,5.01,3.00,1.00,0,0,1.77,7.17) 4.8 22.4 0.11
4 (2.99,5.61,8.86,5.03,2.69,1.07,0,0,3.10,7.37) 4.3 63.6 0.59
6 (1.92,3.18,7.26,5.11,1.16,1.76,0,0,6.00,9.08) 0.1 74.6 1.46e-006
8 (1.72,3.70,7.18,5.11,1.00,1.69,0,0,6.09,8.68) 0.0 74.7 7.84e-010

Postdoctoral Science Foundation of Qingdao city
(2016032) and the humanities and social sciences project
of Shandong provincial university (J17RA107).

REFERENCES

1. Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlin-
ear Programming: Theory and Algorithms (3rd edi-
tion). John Wiley & Sons.

2. Wachter A, Biegler LT (2006) On the implementa-
tion of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Math Pro-
gram 106, 25–57.

3. Chen L, Goldfarb D (2006) Interior-point l2-penalty
methods for nonlinear programming with strong
global convergence properties. Math Program 108,
1–36.

4. Han SP, Mangasarian OL (1979) Exact penalty func-
tions in nonlinear programming. Math Program 17,
251–69.

5. Lian SJ, Duan YQ (2016) Smoothing of the lower-
order exact penalty function for inequality con-
strained optimization. J Inequal Appl 185, 1–12.

6. Lian SJ, Zhang LS (2012) A simple smooth exact
penalty function for smooth optimization problem.
J Syst Sci Complex 25(5), 521–8.

7. Huyer W, Neumair A (2003) A new exact penalty
function. SIAM J Control Optim 13, 1141–59.

8. Wang CY, Ma C, Zhou JC (2014) A New Class
of Exact Penalty Functions and Penalty Algorithms.
J Global Optim 58(1), 58–73.

9. Burke JV (1991) An exact penalization viewpoint of
constrained optimization. SIAM J Control Optim 29,
968–98.

10. Pang JS (1997) Error bound in Mathematical Pro-
gramming. Math Program 79, 299–332.

www.scienceasia.org

ScienceAsia 44 (2018)276

http://www.scienceasia.org/20??.html
http://dx.doi.org/10.1002/0471787779
http://dx.doi.org/10.1002/0471787779
http://dx.doi.org/10.1002/0471787779
http://dx.doi.org/10.1002/0471787779
http://dx.doi.org/10.1002/0471787779
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-005-0701-5
http://dx.doi.org/10.1007/s10107-005-0701-5
http://dx.doi.org/10.1007/s10107-005-0701-5
http://dx.doi.org/10.1007/s10107-005-0701-5
http://dx.doi.org/10.1007/s10107-005-0701-5
http://dx.doi.org/10.1007/s10107-005-0701-5
http://dx.doi.org/10.1007/s10107-005-0701-5
http://dx.doi.org/10.1007/BF01588250
http://dx.doi.org/10.1007/BF01588250
http://dx.doi.org/10.1007/BF01588250
http://dx.doi.org/10.1007/BF01588250
http://dx.doi.org/10.1007/BF01588250
http://dx.doi.org/10.1186/s13660-016-1126-9
http://dx.doi.org/10.1186/s13660-016-1126-9
http://dx.doi.org/10.1186/s13660-016-1126-9
http://dx.doi.org/10.1186/s13660-016-1126-9
http://dx.doi.org/10.1186/s13660-016-1126-9
http://dx.doi.org/10.1007/s11424-012-9226-1
http://dx.doi.org/10.1007/s11424-012-9226-1
http://dx.doi.org/10.1007/s11424-012-9226-1
http://dx.doi.org/10.1007/s11424-012-9226-1
http://dx.doi.org/10.1007/s11424-012-9226-1
http://dx.doi.org/10.1137/S1052623401390537
http://dx.doi.org/10.1137/S1052623401390537
http://dx.doi.org/10.1137/S1052623401390537
http://dx.doi.org/10.1007/s10898-013-0111-9
http://dx.doi.org/10.1007/s10898-013-0111-9
http://dx.doi.org/10.1007/s10898-013-0111-9
http://dx.doi.org/10.1007/s10898-013-0111-9
http://dx.doi.org/10.1007/s10898-013-0111-9
http://dx.doi.org/10.1137/0329054
http://dx.doi.org/10.1137/0329054
http://dx.doi.org/10.1137/0329054
http://dx.doi.org/10.1137/0329054
http://dx.doi.org/10.1137/0329054
http://dx.doi.org/10.1007/BF02614322
http://dx.doi.org/10.1007/BF02614322
http://dx.doi.org/10.1007/BF02614322
www.scienceasia.org



