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INTRODUCTION

We consider the following absolute value equation
(AVE):

Ax − |x |= b, A∈ Cn×n, x , b ∈ Cn, (1)

where |x | denotes the componentwise absolute
value of the vector x . The system (1), which is
generally equivalent to the linear complementar-
ity problem1, 2, arises from linear programming,
quadratic programming, and other engineering
problems3, 4.

In the last decade, some numerical methods
have been developed to solve AVEs. These in-
clude the SLP method5, the semismooth Newton
method and its inexact variants6–8, the sign ac-
cord method9, the hybrid algorithm10, the Picard-
CSCS iteration method, and the nonlinear CSCS-
like iteration method11. When A ∈ Cn×n is a non-
Hermitian positive definite matrix, the Hermitian
and skew-Hermitian splitting (HSS) iteration was
first introduced by Bai et al12 and extended in
Ref. 13 for the solution of a class of non-Hermitian
linear systems Ax = b. Based on the Hermitian and
skew-Hermitian splitting, the Picard-HSS iteration
method, nonlinear HSS-like iteration method, and
the relaxed nonlinear PHSS-like iteration method
are introduced to solve AVEs14, 15.

In this paper, two kinds of GHSS-based itera-
tion methods are established to solve (1) efficiently.
These are based on the following generalization of
the hermitian and skew-hermitian splitting (GHSS):

A= G+ K + S,

where H = 1
2 (A+ AT) = G + K , G and K are Her-

mitian positive semidefinite, and S = 1
2 (A − AT).

Firstly, convergence conditions of the Picard-GHSS
iterative method will be investigated. Then the
convergence condition of the nonlinear GHSS-like
iteration method is proved by Zhang’s techniques15.

The reminder of this paper is organized as
follows. First, we introduce several preliminary
results concerning nonsmooth analysis. Then we
introduce the Picard-GHSS and the nonlinear GHSS-
like iterative methods to solve (1) and investigate its
convergence properties. Finally, numerical experi-
ments are reported to show the effectiveness of our
methods.

PRELIMINARIES

Let Ψ :Rn→Rn be a specified function, and let x be
a given point in Rn. The function Ψ is supposed to
be locally Lipschitzian near x if there exist a scalar
κ∈R and δ> 0 such that for all y , z ∈Rn, ‖y−x‖<
δ, ‖z− x‖< δ, the following inequality holds:

‖Ψ(y)−Ψ(z)‖< κ‖y − z‖.

Let Ψ : Rn → Rn be a locally Lipschitzian func-
tion. From Rademacher’s theorem15, Ψ is differ-
entiable almost everywhere. Denote the set of
points at which Ψ is differentiable by DΨ . We
write Ψ ′(x) for the usual n× n Jacobian matrix of
partial derivatives whenever x is a point at which
the necessary partial derivatives exist. Then, the
Bouligand subdifferential of Ψ at x ∈ Rn, denoted
by ∂BΨ(x), is given by

∂BΨ(x) :=
§

lim
k→∞

Ψ ′(x)(x (k)) : x (k) ∈ DΨ , x (k)→ x
ª

.
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Clarke’s generalized Jacobian16 of Ψ at x is the
convex hull of ∂BΨ(x), i.e.,

∂Ψ(x) = conv{∂BΨ(x)}.

Since Ψ is a locally Lipschitzian function, the set
∂BΨ(x) and ∂Ψ(x) are bounded. By the definition,
∂BΨ(x) is also closed. So ∂BΨ(x) and ∂Ψ(x) are
compact.

Definition 1 [Ref. 17] Ψ is called semismooth at x
if Ψ is locally Lipschitzian and for all h ∈ R. with
h 6= 0, and

lim
h′→h,t↓0

{Vh′ : V ∈ ∂Ψ(x + th′)} (2)

exists. If Ψ is semismooth at all points in a given set,
we say that Ψ is semismooth in this set.

If Ψ is semismooth at x , then Ψ must be direc-
tionally differentiable at x .

Proposition 1 (Refs. 17, 18) Suppose that Ψ is
semismooth at x. Then the classic directional deriva-
tive

Ψ ′(x; h) = lim
t↓0

Ψ(x + th)−Ψ(x)
t

exists and is equal to the limit in (2).

THE PICARD-GHSS ITERATIVE METHOD

Motivated by Ref. 13, we give the following two
numerical iteration methods to solve (1).

Algorithm 1 (Picard-GHSS iterative method) Let
A ∈ Cn×n be a sparse and positive definite matrix,
and H = 1

2 (A+AT) = G+K and S = 1
2 (A−AT) be its

Hermitian and skew-Hermitian parts, respectively.
Given an initial guess x (0) ∈ Cn, compute x (k+1) for
k = 0, 1,2, . . . using the following iteration scheme
until {x (k)} satisfies the stopping criterion:

(αI +G)x (k+1/2) = (αI − S− K)x (k)+ |x (k)|+ b,

(αI + S+ K)x (k+1) = (αI −G)x (k+1/2)+ |x (k)|+ b,

where α is a given positive constant and I is the
identity matrix.

Let M (α) = (αI + S + K)−1(αI − G)(αI +
G)−1(αI − S − K), G (α) = 2α(αI + S + K)−1(αI +
G)−1, where α is a positive constant and I is the
identity matrix of order n. The following theorem
suggests sufficient conditions for the convergence of
the Picard-GHSS iteration method for solving (1).

Theorem 1 Let A ∈ Cn×n be a sparse and positive
definite matrix, H = 1

2 (A+ AT) = G + K and S =
1
2 (A−AT) be its Hermitian and skew-Hermitian parts,
respectively. Let also η = ‖A−1‖2 < 1. Then (1)
has a unique solution x∗, and for any initial guess
x (0) ∈Cn and any sequence of positive integers `k, k=
0,1, 2, . . ., the iteration sequence {x (k)}∞k=0 produced
by the Picard-GHSS iteration method converges to x∗

provided that l = lim infk→∞ lk ¾ N, where N is a
natural number satisfying








(M (α))s









2
<

1−η
1+η

, ∀s ¾ N .

Proof : Since η < 1 and from the conclusion of
Ref. 19, AVE (1) has a unique solution x∗ ∈ Cn.
As with the proof of the sufficient condition for the
convergence of the Picard-HSS iteration method15,
for k = 0, 1,2, . . ., the (k+1)th iterate of the Picard-
GHSS iteration is

x (k+1) = (M (α))lk x (k)+
lk−1
∑

j=0

(M (α)) jG (α)(|x (k)|+b).

(3)
On the other hand, since x∗ is the solution of (1),
we can obtain

x∗ = (M (α))lk x∗+
lk−1
∑

j=0

(M (α)) jG (α)(|x∗|+ b). (4)

Subtracting (4) from (3) yields

x (k+1)− x∗ = (M (α))lk(x (k)− x∗)

+
lk−1
∑

j=0

(M (α)) jG (α)(|x (k)| − |x∗|). (5)

Furthermore, since ρ(M (α))< 1, we obtain

lk−1
∑

j=0

(M (α)) jG (α)

= (I − (M (α))lk)(I −M (α))−1G (α)

= (I − (M (α))lk)A−1.

Substituting the above identity in (5) yields

x (k+1)− x∗

= (M (α))lk(x (k)− x∗)

+ (I − (M (α))lk)A−1(|x (k)| − |x∗|)

= (M (α))lk

�

(x (k)− x∗)−A−1(|x (k)| − |x∗|)
�

+A−1(|x (k)| − |x∗|).
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Hence

‖x (k+1)−x∗‖2 ¶
�

‖(M (α))lk‖2(1+η)+η
�

‖x (k)−x∗‖2.

The above inequality is true due to the fact that for
any x , y ∈Cn. It follows that ‖|x |−|y|‖2 ¶ ‖x− y‖2.
Since ρ(M (α))< 1, we have lims→∞(M (α))s = 0.
Thus there exists a natural number N such that

‖(M (α))s‖2 <
1−η
1+η

, ∀s ¾ N .

If we suppose that l = lim infk→∞ lk ¾ N . 2

THE NONLINEAR GHSS-LIKE ITERATIVE
METHOD

Algorithm 2 (Nonlinear GHSS-like iterative
method) Let A ∈ Cn×n be a sparse and positive
definite matrix, and H = 1

2 (A+ AT) = G + K and
S = 1

2 (A−AT) be its Hermitian and skew-Hermitian
parts, respectively. Given an initial guess x (0) ∈ Cn,
compute x (k+1) for k= 0, 1,2, . . . using the following
iteration scheme until {x (k)} satisfies the stopping
criterion:

(αI +G)x (k+1/2) = (αI − S− K)x (k)+ |x (k)|+ b,

(αI + S+ K)x (k+1) = (αI −G)x (k+1/2)

+ |x (k+1/2)|+ b,

where α is a given positive constant and I is the
identity matrix.

Define

U (x) = (αI +G)−1[(αI − S− K)x + |x |+ b],

V (x) = (αI + S+ K)−1[(αI −G)x + |x |+ b],
(6)

and
Θ(x) = V ◦U (x) := V (U (x)). (7)

Then the nonlinear GHSS-like iterative scheme can
be equivalently expressed as

x (k+1) = Θ(x (k)). (8)

Using Zhang’s techniques15, we will analyse the
convergence of the nonlinear GHSS-like iteration
method.

Definition 2 [Ref. 20] Let Θ : D ⊂ Rn → Rn. Then
x∗ is a point of attraction of the iteration (8) if there
is an open neighbourhood S of the point x∗ such that
S ⊂ D and, for any x (0) ∈ S, the iterates {x (k)} all lie
in D and converge to x∗.

Proposition 2 (Ref. 15) Suppose that Θ : Rn→ Rn

has a fixed point x∗ ∈ Rn and is semismooth at x∗. If
for all V ∈ ∂BΘ(x∗), we have ρ(V ) < 1, where ρ(V )
denotes the spectral radius of V . Then x∗ is a point of
attraction of the iteration scheme (8).

From statements in Ref. 15, let x∗ satisfy Ax∗−
|x∗|= b. We compute the Bouligand subdifferential
of Θ(x∗) defined by (7)–(8) at x∗. Because of the
special form of U and V , it is easy to verify that,
x∗ =U (x∗), x∗ = V (x∗), and x∗ = Θ(x∗). Observe
the special form of Θ. We have that

∂BΘ(x
∗) =

§

lim
k→∞

Θ′(x (k)) : x (k) ∈ DΘ, x (k)→ x∗
ª

=
§

lim
k→∞

V ′(y (k))U ′(x (k)) : x (k) ∈ DU ,

y (k) = V (x (k)) ∈ DV , x (k)→ x∗
ª

⊂
§

lim
y(k)→x∗

V ′(y (k)) : y (k) ∈ DV

ª

,

and
§

lim
x (k)→x∗

U ′(x (k)) : x (k) ∈ DU

ª

⊂ ∂BV (x∗)∂BU (x∗),

where

∂BV (x∗)∂BU (x∗) := {W : W = EF,

E ∈ ∂BV (x∗), F ∈ ∂BU (x∗)}.

According to the above discussion and Proposi-
tion 2, we immediately obtain the following conclu-
sion about the convergence of the nonlinear GHSS-
like iteration method.

Theorem 2 Let the point x∗ satisfy Ax∗ = |x∗|+ b.
Let A∈ Cn×n be a sparse and positive definite matrix,
and H = 1

2 (A+ AT) = G + K and S = 1
2 (A− AT) be

its Hermitian and skew-Hermitian parts, respectively.
Furthermore, F, F̃ ∈ ∂B|x∗|. We write

M (α; F, F̃) = T1(α; F)T2(α; F̃),

where

T1(α; F) = (αI + S+ K)−1[(αI −G)+ F],

T2(α; F̃) = (αI +G)−1[(αI − S− K)+ F̃].

If for all F , F̃ ∈ ∂B|x∗|, ρ(M (α; F, F̃)) < 1, then x∗

is a point of attraction of the nonlinear GHSS-like
iteration method.
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Proof : It is clear that U and V are semismooth and
so Θ is semismooth. Let E ∈ ∂B|x∗|. Then it is not
hard to show that E is a diagonal matrix:

E = diag(E11, E22, . . . , Enn).

We have Eii = 1, if x∗i > 0; Eii = −1, if x∗i < 0,
and Eii ∈ {1,−1}, if x∗i = 0. If W ∈ ∂BF (x∗),
then W = (αI + S + K)−1[(αI − G) + F], where
F ∈ ∂B|x∗|. If W̃ ∈ ∂BU (x∗), then W̃ = (αI +
G)−1[(αI − S − H) + F̃], where F̃ ∈ ∂B|x∗|. Since
∂BΘ(x∗) ⊂ ∂BV (x∗)∂BU (x∗). If for all F, F̃ ∈ ∂B|x∗|,
ρ(M (α; F, F̃)) < 1, then for all W ∈ ∂BΘ(x∗), we
have ρ(W ) < 1. We can complete the proof using
Proposition 2. 2

Corollary 1 Let the point x∗ satisfy Ax∗ = |x∗|+ b.
Let A∈ Cn×n be a sparse and positive definite matrix,
and H = 1

2 (A+ AT) = G + K and S = 1
2 (A− AT) be

its Hermitian and skew-Hermitian parts, respectively.
Furthermore, F, F̃ ∈ ∂B|x∗|. We write

t1(α) = ‖(αI + S+ K)−1(αI −G)‖,

t2(α) = ‖(αI +G)−1(αI − S− K)‖,

and

δ =max{‖(αI +G)−1 F̃‖,‖(αI + S+ K)−1F‖}.

If t1(α)t2(α)< 1 and for all F, F̃ ∈ ∂B|x∗|,

δ <
2−2t1(α)t2(α)

p

(t1(α)− t2(α))2+4+ t1(α)+ t2(α)
, (9)

then x∗ is a point of attraction of the nonlinear GHSS-
like iterative method.

Proof : By simple calculations we obtain
M (α; F, F̃) = (αI + S + K)−1[(αI − G) + F](αI +
G)−1[(αI−S−K)+ F̃] = (αI+S+K)−1(αI−G)(αI+
G)−1(αI − S − K) + (αI + S + K)−1(αI − G)(αI +
G)−1 F̃ + (αI + S + K)−1F(αI + G)−1(αI − S − K) +
(αI + S+ K)−1F(αI +G)−1 F̃ . Hence

‖M (α; F, F̃)‖

¶ ‖(αI + S+ K)−1(αI −G)‖

· ‖(αI +G)−1(αI − S− K)‖

+ ‖(αI + S+ K)−1(αI −G)‖‖(αI +G)−1 F̃‖

+ ‖(αI + S+ K)−1F‖‖(αI +G)−1(αI − S− K)‖

+ ‖(αI + S+ K)−1F‖‖(αI +G)−1 F̃‖

¶ t1(α)t2(α)+δ(t1(α)+ t2(α))+δ
2.

With the help of (9) we obtain

t1(α)t2(α)+δ(t1(α)+ t2(α))+δ
2 < 1.

Hence we have

ρ(M (α; F, F̃))¶ ‖M (α; F, F̃)‖< 1,

which follows from Theorem 2. 2

NUMERICAL EXAMPLES

In this section we present a sample of numerical ex-
periments conducted in order to assess the effective-
ness of the Picard-GHSS and nonlinear GHSS-like
iterative methods. All experiments were performed
in MATLAB R2010a, on an Intel Core i5-3210CPU at
2.50 GHz with 4.00 GB RAM, and terminated when
the current residual satisfied

‖Ax (k)− |x (k)| − b‖2

‖b‖
< 10−6.

The stopping criterion for the inner iterations of
the Picard-GHSS and nonlinear GHSS-like iterative
methods was set to be

‖b(k)−As(k,lk)‖2

‖b(k)‖2
¶ ηk,

where b(k) = ‖x (k)‖ + b − Ax (k), s(k,lk) = x (k,lk) −
x (k,lk−1), lk is the number of the inner iteration steps
and ηk is the prescribed tolerance for controlling
the accuracy of the inner iterations at the kth outer
iteration. If ηk is fixed for all k, then it is simply
denoted by ηk. Here, we take η= 0.1.

The generated test problems are the two-
dimensional convection-diffusion equation15:

−ux x −uy y + q(ux +uy)+ pu= f (x , y), (x , y) ∈ Ω,

u(x , y) = 0, (x , y) ∈ ∂Ω,

where Ω = (0,1) × (0,1), ∂Ω is its boundary, q is
a positive constant used to measure the magnitude
of the diffusive term, and p is a real number. We
use the five-point finite difference scheme for the
diffusive terms and the central difference scheme for
the convective terms. Let h = 1/(m+ 1) and Re =
1
2 qh denote the equidistant step size and the mesh
Reynolds number, respectively. Then we obtain a
system of linear equations Ax = d, where A is a
matrix of order n= m2 of the form

A= Tx ⊗ Im+ Im⊗ Ty + pIn = A1+A2+ pIn, (10)

with

Tx =











t1 t3

t2 t1
. . .

. . .
. . . t3
t2 t1











m×m

,
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Table 1 Numerical results for test problems with different
values of m and q (p = 2).

q Method m= 10 m= 20 m= 40

0 PG IT 9 10 9
CPU 0.0119 0.2686 7.5407
RES 9.2×10−6 9.6×10−6 8.3×10−6

G IT 7 7 7
CPU 0.0079 0.1044 3.1403
RES 3.7×10−6 7.3×10−6 5.7×10−6

PH IT 13 13 13
CPU 0.0089 0.2271 9.6186
RES 7.9×10−6 8.3×10−6 4.4×10−6

H IT 10 10 10
CPU 0.0093 0.1157 3.8794
RES 5.3×10−6 9.5×10−6 9.6×10−6

1 PG IT 10 10 10
CPU 0.0051 0.1486 4.5015
RES 9.8×10−6 8.2×10−6 6.0×10−6

G IT 7 7 7
CPU 0.0050 0.1201 3.2571
RES 6.9×10−6 8.5×10−6 6.1×10−6

PH IT 13 13 13
CPU 0.0107 0.1709 5.7426
RES 7.9×10−6 7.0×10−6 7.4×10−6

H IT 10 11 11
CPU 0.0058 0.1413 4.7607
RES 9.9×10−6 8.1×10−6 5.3×10−6

10 PG IT 10 10 10
CPU 0.0083 0.1382 4.4619
RES 9.6×10−6 8.4×10−6 9.1×10−6

G IT 7 7 7
CPU 0.0081 0.1169 3.2828
RES 6.9×10−6 6.2×10−6 5.1×10−6

PH IT 13 14 13
CPU 0.0171 0.2006 5.6773
RES 9.6×10−6 4.7×10−6 4.7×10−6

H IT 11 11 11
CPU 0.0083 0.1570 4.8900
RES 8.5×10−6 8.4×10−6 5.4×10−6

PG= Picard-GHSS; G= GHSS-like; PH = Picard-HSS;
H = HSS-like

and

Ty =











0 t3

t2 0
...

. . .
. . . t3
t2 0











m×m

,

where t1 = 4, t2 = −1 − Re, t3 = −1 + Re, Im
and In are the identity matrices of order m and n,
respectively, and ⊗ means the Kronecker product.
In our numerical experiments, the matrix A in (1)
is defined by (10) with different values of q and

Table 2 Numerical results for test problems with different
values of m and q (p = 2.5).

q Method m= 10 m= 20 m= 40

0 PG IT 8 9 9
CPU 0.0049 0.2091 5.8690
RES 9.3×10−6 2.0×10−6 2.2×10−6

G IT 5 5 5
CPU 0.0032 0.1580 3.8387
RES 9.9×10−6 7.4×10−6 6.7×10−6

PH IT 11 11 12
CPU 0.0161 0.2055 7.4478
RES 9.0×10−6 9.4×10−6 4.0×10−6

H IT 9 10 10
CPU 0.0083 0.1237 6.0485
RES 9.2×10−6 8.1×10−6 5.9×10−6

1 PG IT 8 9 9
CPU 0.0096 0.2115 5.8399
RES 9.2×10−6 1.8×10−6 2.0×10−6

G IT 5 5 5
CPU 0.0040 0.1420 3.7202
RES 6.9×10−6 8.5×10−6 6.1×10−6

PH IT 11 12 12
CPU 0.0074 0.3014 7.9885
RES 9.2×10−6 4.1×10−6 4.7×10−6

H IT 10 10 10
CPU 0.0070 0.2296 6.6400
RES 9.1×10−6 6.0×10−6 4.1×10−6

10 PG IT 9 9 9
CPU 0.0112 0.2203 6.1671
RES 7.5×10−6 8.0×10−6 7.5×10−6

G IT 6 6 6
CPU 0.0068 0.1450 4.1590
RES 8.7×10−6 5.9×10−6 3.0×10−6

PH IT 12 12 12
CPU 0.0150 0.2429 8.0871
RES 7.6×10−6 5.5×10−6 5.9×10−6

H IT 10 10 11
CPU 0.0093 0.2298 6.2374
RES 8.7×10−6 5.7×10−6 5.6×10−6

G = 1
2 (A1 + AT

1). In order to make the hermitian
part of A2 + pIn positive definite, we take p = 2 (or
2.5), and we take the zero vector as the initial guess,
and the right-hand side vector b of (1) is taken in
such a way that the vector x = (x1, x2, . . . , xn) with
xk = (−1)k i (k = 1, 2, . . . , n) is the exact solution.

The optimal parameter α employed in each
method is experimentally determined such that it
results in the least number of iterations. In Table 1
and Table 2, we report the numerical results from
the Picard-HSS, the nonlinear HSS-like, the Picard-
GHSS and the nonlinear GHSS-like iterations for
different p and q. We also present the elapsed CPU
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time in seconds for the convergence (denoted by
CPU) and the number of total iteration steps for
the convergence. We find that all the methods give
approximate solutions of AVEs for all the different
matrix dimensions tried, and the nonlinear GHSS-
like method is the most efficient method.

CONCLUSIONS

In this paper, two kinds of GHSS-based iteration
methods based on the generalization of the hermi-
tian and skew-hermitian splitting (GHSS) have been
described, and the local convergence of the Picard-
GHSS and nonlinear GHSS-like iterative methods
have been given. Numerical tests show that Picard-
GHSS and nonlinear GHSS-like iterative methods
perform better than Picard-HSS and nonlinear HSS-
like methods.
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