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ABSTRACT: We present a boundary integral equation method for the numerical conformal mappings and their inverses
of bounded multiply connected regions onto circular and parallel slits regions. The method is based on two uniquely
solvable boundary integral equations with Neumann-type and generalized Neumann kernels. These boundary integral
equations are constructed from a boundary relationship satisfied by a function analytic on a multiply connected region.
A method to calculate the inverse mapping functions from circular and parallel slits regions onto the original region is
presented. Some numerical examples and numerical results with the graphical user interface are presented to illustrate
the efficiency of the presented method.
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INTRODUCTION

There are several types of canonical slit regions of
conformal mapping1, 2. Reformulations of confor-
mal mappings from bounded and unbounded mul-
tiply connected regions onto the five canonical slit
regions as Riemann-Hilbert (RH) problems are dis-
cussed in Refs. 3–5. An integral equation with the
generalized Neumann kernel is then used to solve
the RH problem as developed in Ref. 6. Amano7

and DeLillo et al8 have constructed charge simula-
tion method and least squares method, respectively,
for approximate conformal mapping onto circular
and radial slits regions.

A different integral equation approach for con-
formal mapping of bounded multiply connected re-
gions onto canonical slits regions have been dis-
cussed in Refs. 9, 10. Two papers are concerned
with disc11 and annulus12 with slits which improve
the work of Murid and Hu13, 14.

This paper presents a new integral equation
method with the adjoint generalized Neumann
and Neumann-type kernel for conformal mappings
and their inverses of bounded multiply connected
regions onto a circular slits region and parallel
slits region which extends the work presented
in Refs. 9, 10. Unlike the methods presented in
Refs. 9, 10 that require solving three integral equa-
tions, this paper involves two integral equations
only.

We derive integral equations related to f ′ for
circular slits region Ω1 and parallel slits region Ω2,
where f is a conformal mapping of bounded multi-
ply connected regions onto Ω1 and Ω2. Methods to
compute the interior and inverse mapping functions
for Ω1 and Ω2 are also given. We give some ex-
amples to illustrate our boundary integral equation
method. We also give some descriptions about
graphical user interface for circular and parallel slits
maps.
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Fig. 1 Mapping of a bounded multiply connected region
Ω onto the canonical slits regions Ω1 and Ω2.

NOTATION AND AUXILIARY MATERIALS

Let Ω be a bounded multiply connected region of
connectivity M + 1 with 0 ∈ Ω. The boundary Γ
consists of M + 1 smooth Jordan curves Γ j , j =
0,1, . . . , M (Fig. 1).

The curves Γ j are parameterized by 2π-periodic
twice continuously differentiable complex functions
z j(t) with non-vanishing first derivatives

z′j(t) = dz j(t)/d t 6= 0,

where t ∈ J j = [0,2π] for each j = 0,1, . . . , M . The
total parameter domain J is the disjoint union of
M + 1 intervals J0, . . . , JM . We define a parameteri-
zation z(t) of the whole boundary Γ on J by

z(t) = z j(t) (t ∈ J j). (1)

Let H∗ be the space of all real Hölder continuous
2π-periodic functions ω(t) of the parameter t on J j
for j = 0, 1, . . . , M , i.e.,

ω(t) =ω j(t) (t ∈ J j).

Suppose that c(z), Q(z), H(z), T (z) are
complex-valued functions defined on Γ such that
c(z) 6= 0, H(z) 6= 0, Q(z) 6= 0, T (z(t)) = z′(t)/|z′(t)|

and H(z)/(T (z)Q(z)) satisfies the Hölder condition
on Γ . Then the interior relationship is defined as
follows.

A complex-valued function P(z) is said to satisfy
the interior relationship if P(z) is analytic in Ω and
satisfies the non-homogeneous boundary relation-
ship

P(z) = c(z)
T (z)Q(z)

G(z)
P(z)+H(z) (z ∈ Γ ), (2)

where G(z) is analytic inΩ, Hölder continuous on Γ ,
and G(z) 6= 0 on Γ . The boundary relationship (2)
also has the following equivalent form:

G(z) = c(z)T (z)Q(z)
P(z)2

|P(z)|2
+

G(z)H(z)

P(z)
. (3)

The following theorem from Ref. 9 gives an
integral equation for an analytic function satisfying
the interior non-homogeneous boundary relation-
ship (2) or (3).

Theorem 1 If the function P(z) satisfies the interior
non-homogeneous boundary relationship (2) or (3),
then

P(z)+−
∫

Γ

K(z, w)P(w)|dw|

+ c(z)T (z)Q(z)
∑

a j∈Ω
Res
w=a j

P(w)
(w− z)G(w)

= −T (z)Q(z)L−R (z) (z ∈ Γ ),

(4)

where

K(z, w) =
1

2πi

�

c(z)T (z)Q(z)

c(w)(w− z)Q(w)
−

T (w)
w− z

�

,

when z 6= w and

L−R (z) =
−1
2

H(z)
Q(z)T (z)

+
1

2πi
−
∫

Γ

c(z)H(w)

c(w)(w− z)Q(w)T (w)
dw.

For every fixed points z, w ∈ Γ , the limit K(z, w) exists
as w→ z and

lim
w→z

K(z, w) = −
1

2πi|z′(t)|

�

�

q′(t)
q(t)

�

+
ρ′(t)
ρ(t)

�

,

where q(t) =Q(z(t)), ρ(t) = c(z(t)), and the minus
sign in the superscript denotes the limit from the
exterior.
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Let Â(t) be a complex continuously differen-
tiable 2π-periodic function for all t ∈ J . The gen-
eralized Neumann kernel formed with Â is defined
by6, 9

N̂(t, s) =
1
π

Im

�

Â(t)
Â(s)

z′(s)
z(s)− z(t)

�

.

This kernel is continuous with

N̂(t, t) =
1
π

�

1
2 Im

z′′(t)
z′(t)

− Im
Â′(t)
Â(t)

�

.

The adjoint function to the function Â is given by

Ã(t) =
z′(t)
Â(t)

.

The generalized Neumann kernel Ñ(s, t) formed
with Ã is given by

Ñ(t, s) =
1
π

Im

�

Ã(t)
Ã(s)

z′(s)
z(s)− z(t)

�

.

Then
Ñ(s, t) = −N̂ ∗(s, t),

where N̂ ∗(s, t) = N̂(t, s) is the adjoint kernel of the
generalized Neumann kernel N̂(s, t) 6. Define the
Fredholm integral operator N̂∗ by

N̂∗ψ(t) =

∫

J

N̂ ∗(t, s)ψ(s)ds (t ∈ J).

In this paper Â(t) = z(t). It is known that λ= 1
is an eigenvalue of the kernel N̂ with multiplicity 1
and λ = −1 is an eigenvalue of N̂ with multiplicity
M̂ 15. The eigenfunctions of N̂ corresponding to
the eigenvalue λ = −1 are {χ[0],χ[1], . . . ,χ[M]},
where15

χ[ j](ξ) =

¨

1 ξ ∈ Γ j ,

0 otherwise,
j = 0, 1, . . . , M .

Define the space Ŝ by

Ŝ = span{χ[0],χ[1], . . . ,χ[M]} (5)

and define an integral operator Ĵ by9

Ĵυ=

∫

J

1
2π

M
∑

j=0

χ[ j](s)χ[ j](t)υ(s)ds. (6)

The following theorem will be useful in the
following sections for calculating the piecewise real
function h(t) in canonical slit representation9.

Theorem 2 Suppose the functions γ ∈ H∗, h,µ ∈ Ŝ
are such that

Âg̃ = γ+h+ iµ (7)

are boundary values of an analytic function g̃(z) in
Ω. Then the function h= (h0, h1, . . . , hM ) is given by

h j = (γ,φ[ j]) =
1

2π

∫

Γ

γ(t)φ[ j](t)dt, (8)

where φ[ j] are solutions of the following integral
equations

(I+ N̂∗+ J)φ[ j] = −χ[ j] ( j = 0,1, . . . , M). (9)

CIRCULAR SLITS MAP

Assume that an analytic function w= f (z)maps the
boundaries Γ j , for j = 0,1, . . . , M , of Ω onto the cir-
cular slits of Ω1 (Fig. 1). The mapping function f (z)
is uniquely determined by assuming that f (a) = 0
and f (0) =∞, where 0 ∈ Ω and a 6= 0 is a fixed
point in Ω such that the residue of the function f at
0 is equal to 12. Hence f can be written in the form

f (z) =
�

1
z
−

1
a

�

ezg(z), (10)

where g is an analytic function on Ω3, 4.
Note that the boundary values of f can be

represented in the form

f (z j(t)) = µ j eiθ j(t), Γ j : z = z j(t), (11)

for j = 0, 1, . . . , M , where 0 ¶ t ¶ β j , θ j are the
boundary correspondence functions of Γ j , and µ j are
the radii of the circular slits. From (10) and (11) we
obtain the following equation

z(t)g(z(t)) = ln | f (z(t))| − ln

�

�

�

�

1
z(t)

−
1
a

�

�

�

�

−i ln
�

1
z(t)

−
1
a

�

+ iθ (t).

This equation can be written as

Â(t)g(z(t)) = γ(t)+h(t)+ iυ(t),

where

Â(t) = z(t),

γ(t) = − ln

�

�

�

�

1
z(t)

−
1
a

�

�

�

�

,

h(t) = lnµ(t) = (lnµ0, lnµ1, . . . , lnµM ),

γ(t) = − ln
�

1
z(t)

−
1
a

�

+θ (t).
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By obtaining h0, h1, . . . , hM from (8), we obtain

µ j = eh j for j = 0, 1, . . . , M . (12)

The unit tangent to Γ at z(t) is denoted by
T (z(t)) = z′(t)/|z′(t)|. It can be shown that9

f (z) =
| f (z)|

i
T (z)

|θ ′(t)|
θ ′(t)

f ′(z)
| f ′(z)|

,

and squaring both sides gives

f (z)2 = −T (z)2 | f (z)|2
f ′(z)2

| f ′(z)|2
(z ∈ Γ ). (13)

Then the function D(z) defined by

D(z) = z3 f ′(z)

= z3 f (z)[zg ′(z)+ g(z)]− z ezg(z) (14)

is analytic in Ω.
Combining (14), (13) and (10) we obtain the

following boundary relationship

z2 e2zg(z)

a2
= −

�

z |z|
a− z

| f (z)| T (z)
D(z)
|D(z)|

�2

, (15)

for z ∈ Γ . Comparing (15) and (3) leads us to
the choice of P(z) = D(z), Q(z) = T (z), c(z) =
−(z|z|| f (z)|/(a− z))2, G(z) = z2 e2zg(z)/a2, and
H(z) = 0. Theorem 1 yields

T (z)D(z)+
1

2πi
−
∫

Γ

K(z, w)T (w)D(w)|dw|

=
a2z3 | f (z)|2

(a− z)2
T (z),

for z ∈ Γ , where

K(z, w) =
(z |z| | f (z)|)2(a−w)2T (z)

(w |w| | f (w)|)2(a− z)2(w− z)
−

T (z)
w− z

.

Write the preceding integral equation as

F(z)+

∫

Γ

NT (z, w)F(w)|dw|=
a2z3 | f (z)|2

(a− z)2
T (z),

(16)
where

F(z) = T (z)D(z),

D(z) = z3 f ′(z),

NT (z, w) =
1

2πi

�

T (z)
z−w

−
z |z|2 | f (z)|2 (a−w)2T (z)

w |w|2 | f (w)|2 (a− z)2(z−w)

�

,

are such that

NT (z(t), z(t))

=
1

2π |z′(t)|
Im

z′′(t)
z′(t)

−
1

πi |z′(t)|

�

z′(t)
a− z(t)

�

−
1

2πi |z′(t)|

�

z′(t)
z(t)

�

−
3

2πi |z′(t)|
z′(t)
z(t)

.

Using the single-valuedness of f leads to the follow-
ing conditions

1
2π

∫

−Γ j

F(w)
w3
|dw|= 0 for j = 0,1, . . . , M .

Applying Cauchy’s integral formula we obtain the
following conditions

1
2π

∫

Γ

F(w)
w2
|dw|= −i,

and
1

2π

∫

Γ

F(w)
w
|dw|= 0.

Thus the integral equation (16) should give a
unique solution provided the parameters µ j , j =
0,1, . . . , M , that appear in NT (z, w) are known. By
solving the integral equation (9) we obtain, for j =
0,1, . . . , M , φ[ j], which then gives h j through (8),
which in turn gives µ j through (12). By solving
(16) with the known values of µ j we obtain F(z).
Substituting (10) into (13) to get

�

1
z
−

1
a

�2

e2zg(z) = −T (z)2 | f (z)|2
f ′(z)2

| f ′(z)|2
.

Then taking the complex logarithm gives

g(z) =
1
2z

log

�

−(azT (z) | f (z)|)2

(a− z)2
f ′(z)2

| f ′(z)|2

�

,

where z ∈ Γ , and the complex logarithm is defined
by

Log(z) = ln|z|+ i Arg(z),

such that 0¶ Arg(z)¶ 2π. Finally, the approximate
boundary values of f (z) are obtained from (10), i.e.

f (z) =
a− z
az

ezg(z) (z ∈ Γ ). (17)

The approach presented here is an improvement
over Sangawi et al9 such that no integral equation
for θ ′(t) is required here for the computation of
f (z).
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PARALLEL SLITS MAP

Assume a parallel slit region Ω2 in the w-plane
subtending a given angle θ with the positive real
axis. Assume that an analytic function w = f̂ (z)
maps Ω in the z-plane onto Ω2. It is uniquely
determined by assuming that f̂ (0) =∞ so that the
Laurent expansion of f̂ near z = 0 has the form2

f̂ (z) =
1
z
+ a1z+ a2z2+ · · · .

Hence the function f̂ can be written in the form

f̂ (z) =
1
z
+ ei(θ−π/2)z ĝ(z), (18)

where ĝ is analytic in Ω3, 4. Note that the boundary
values of f̂ can be represented in the form

f̂ (zp(t)) = ei(θ−π/2)[rp + iSp(t)], Γp : z = zp(t),
(19)

where 0 ¶ t ¶ βp, for p = 0, 1, . . . .M . Let F(z) =

eAf̂ (z) = erp+iSp(t) with A= e−i(π/2−θ ).
From (18) and (19) we obtain the following

equation

z(t) ĝ(z(t)) = rp −Re

�

A
z(t)

�

+i

�

Sp(t)− Im

�

A
z(t)

��

.

(20)

This equation can be written as

Â(t) ĝ(z(t)) = γ(t)+h(t)+ iυ(t), (21)

where

Â(t) = z(t),

γ(t) = −Re(A/z(t)),
h(t) = rp,

υ(t) = Sp(t)− Im(A/z(t)).

By using h0, h1, . . . , hM from (8), we obtain

r j = h j for j = 0,1, . . . , M . (22)

Using the unit tangent to Γ at z(t): T (z(t)) =
z′(t)/|z′(t)|, it can be shown that10

F(z) =
|F(z)|

i

�

�

�S′p(t)
�

�

�

S′p(t)
T (z)

F ′(z)
|F ′(z)|

(z ∈ Γ ). (23)

Define the function E(z) by

E(z) = z3 e−(A/z)F ′(z)

= z3 ez ĝ(z)[z ĝ ′(z)+ ĝ(z)]− zAez ĝ(z),
(24)

which is analytic in Ω.
Combining (24) and squaring both sides of (23)

we obtain the following boundary relationship

z2 e2z ĝ(z) = −
z3 |F(z)|2 T (z)2

z e2Re(A/z)

E(z)2

|E(z)|2
. (25)

By comparing (25) and (3), we are led to the
choice of P(z) = E(z), Q(z) = T (z), c(z) =
−(z3|F(z)|2)/(z e2Re(A/z)), G(z) = z2 e2z ĝ(z), and
H(z) = 0. Theorem 1 yields

T (z)E(z)+
1

2πi
−
∫

Γ

K(z, w)T (w)E(w)|dw|

=
z3 |F(z)|2 A

z2 e2Re(A/z)
T (z) (z ∈ Γ ),

(26)

where K(z, w) is equal to

wz2 |F(z)|2 e2Re(A/w)T (z)

zw2 |F(w)|2 e2Re(A/z)(w− z)
−

T (z)
w− z

.

Write the integral equation (26) as

F1(z)+

∫

Γ

NT (z, w)F1(w)|dw|=
z3 |F(z)|2 A

z2 e2Re(A/z)
T (z),

(27)
where z ∈ Γ and

F1(z) = T (z)E(z),

NT (z, w) =
1

2πi

�

T (z)
z−w

−
wz3 |F(z)|2 e2Re(A/w)T (z)

zw3 |F(w)|2 e2Re(A/z)(z−w)

�

,

so that Nt(z(t), z(t)) is equal to

1
2π |z′(t)|

�

Im
z′′(t)
z′(t)

+
z′(t)

iz(t)

�

−
3

2πi |z′(t)|
z′(t)
z(t)

−
1

πi |z′(t)|
Re

�

Az′(t)
z(t)2

�

.

Using the single-valuedness of the mapping function
f̂ , we are led to the following conditions

1
2πi

∫

−Γ j

e(A/w)F1(w)
w3

|dw|= 0, (28)

for j = 1, 2, . . . , M . By Cauchy’s integral formula, we
obtain the following conditions

1
2πi

∫

Γ

F1(w)
w2
|dw|= −A, (29)
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and
1

2πi

∫

Γ

F1(w)
w
|dw|= 0. (30)

Thus the integral equation (27) should give a unique
solution provided the parameters |F(z(t))| = er j(t),
j = 0, 1, . . . , M , that appear in NT (z, w) are known.

By solving the integral equation (9) we obtain
φ[ j], j = 0, 1, . . . , M , which gives h j through (8)
which in turn gives r j through (22). By solving
integral equation (27) with the known values of r j
we obtain F1(z). From the definition of F1(z), we
obtain

F ′(z) = F1(z)e
(A/z)/z3T (z). (31)

Taking the complex logarithm on both sides of (25)
gives the explicit form of ĝ(z) as

ĝ(z) =
1
2z

log

�

−e(−2A)/z
�

|F(z)|T (z)
F ′(z)
|F ′(z)|

�2�

,

where the complex logarithm is explained in the
previous section. Finally, from the preceding explicit
form of ĝ(z) and (18), the approximate boundary
values of f̂ (z) and f̂ ′(z) are given by

f̂ (z) =
1
z
+Az ĝ(z), z ∈ Γ , (32)

f̂ ′(z(t))z′(t) =
AF ′(z(t))z′(t)

e(A/z(t))+z(t) ĝ(z(t))
(z(t) ∈ Γ ). (33)

The approach presented here is an improvement
over Sangawi et al10 so that no integral equation for
S′(t) is required here for the computation of f (z).

INTERIOR AND INVERSE MAPPING FUNCTIONS

The approximate interior values of the functions
f (z) and f̂ (z) are calculated by Cauchy’s integral
formula9, 10

f (z) =

a− z
az

∫

Γ

awf (w)
a−w

1
w− z

dw

∫

Γ

1
w− z

dw

, (34)

f̂ (z) =

1
z
+

1
2πi

∫

Γ

f̂ (w)− 1
w

w− z
dw

1
2πi

∫

Γ

1
w− z

dw

, (35)

where z ∈ Ω. Numerically, the formulas (34) and
(35) have the advantage that the denominators
compensate for the error in the numerators16. The
integrals in (34) and (35) are approximated by the
trapezoidal rule.

The inverse mapping function f̃ −1(w) = z are
computed by Cauchy’s integral formula together
with the fact that f̃ −1(∞) = 0, i.e.,

z = f̃ −1(w) =
1

2πi

∫

J

f̃ −1(ζ)
ζ−w

dζ.

By introducing ζ(t) = f̃ (z(t)), we obtain z ∈ Ω by

z =
1

2πi

∫

J

z(t)

f̃ (z(t))−w
f̃ ′(z(t))z′(t)dt, (36)

where f̃ = f for circular slit region Ω1 and f̃ = f̂ for
parallel slit region Ω2.

NUMERICAL EXAMPLES

The trapezoidal rule is the most accurate method
for integrating periodic functions numerically17.
Nyström’s method with the trapezoidal rule18 is
used for solving the above integral equations.
The computational details are similar to those in
Refs. 3, 4, 13, 14.

For numerical experiments, we have used some
test regions of connectivity one, four, eight and
fifteen. All the computations were done using MAT-
LAB 7.12.0.635(R2011a). The number of points
used in the discretization of each boundary compo-
nent Γ j is n. The test regions and their correspond-
ing images are shown in Figs. 2–9.

Example 1 Consider the region Ω bounded by the
unit circle Γ : {z(t) = eit},

a = −0.2+0.2i, b = 0.1−0.6i, θ = π/5.

Then the exact mapping functions for circular slit
and parallel slit, respectively, are given by2

f (z) =
(a− z)

az(1− az)
, µ=

1
|a|

, f̂ (z) =
1
z
+ e2iθ z,

and r = 0. Fig. 2 and Fig. 3 show the numerical
results based on our method. See Table 1 and
Table 2 for the results.

Example 2 Let Ω be the region bounded by3

Γ0 : {z(t) = (10+3cos 3t)eit},
Γ1 : {z(t) = −3.5+6i+0.5 e−iπ/4(eit +4e−it)},
Γ2 : {z(t) = 5+0.5 eiπ/4(eit +4e−it)},
Γ3 : {z(t) = −3.5−6i+0.5 eiπ/4(eit +4e−it)},

where 0 ¶ t ¶ 2π. We chose a = 8.5 + 0.1i and
θ =π/2 in circular and parallel slits regions, respec-
tively. Fig. 4 and Fig. 5 show the numerical results
based on our method. See Table 3 and Table 4 for
the comparison between our computed values of µi ,
ri , i = 0, . . . , 3, with those computed in Nasser3.
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Fig. 2 Mappings a region bounded by unit circle onto canonical regions for Example 1.

Fig. 3 Inverse images (Ω1 and Ω2 to Ω) for Example 1.

Example 3 Consider a region Ω with complicated
boundaries,

Γ0 : {z(t) = −0.1−0.4i+(6+0.8cos 18t)eit},
Γ1 : {z(t) = 2.6−2.6i+(1.0+0.6cos 4t)e−it},
Γ2,3 : {z(t) = ξ2,3+(1.0+0.4cos 6t)e−it},
Γ4,5 : {z(t) = ξ4,5+(1.2+0.4cos 8t)e−it},

Γ6 : {z(t) = 0.1− i+(0.8+0.6cos 2t)e−it},
Γ7 : {z(t) = 2.9+1.4i+(1.0+0.6 cos4t)e−it},

where 0¶ t ¶ 2π and the values of the complex con-
stants are ξ2,...,5 = (−3.5− 1.8i,−3.3+ 1.3i,−0.3+
2.7i,−0.8 − 3.5i). We chose a = 0.4 + 1.2i and
θ =π/4 in circular and parallel slits regions, respec-

Fig. 4 Mappings of a bounded region of connectivity four onto canonical regions for Example 2.
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Fig. 5 Inverse images (Ω1 and Ω2 to Ω) for Example 2.
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Fig. 6 Mappings of a bounded region of connectivity four onto canonical regions for Example 3.

Fig. 7 Inverse images (Ω1 and Ω2 to Ω) for Example 3.

Table 1 Error norm for Example 1.

n ‖µ−µn‖∞ ‖ f − fn(t)‖∞
8 1.8×10−5 3.5×10−2

16 3.7×10−10 8.1×10−6

32 8.8×10−16 5.0×10−14

Table 2 Error norm for Example 1 (unit circle).

n ‖r − rn‖∞ ‖ f̂ − f̂n(t)‖∞
8 1.0×10−17 2.3×10−2

16 −−− 6.2×10−10

32 −−− 1.9×10−14

tively. Mapping function from the original region
onto the circular and parallel slits regions and the
inverse mapping functions from the circular and
parallel slits regions onto the original region. The
numerical results are presented in Fig. 6 and Fig. 7.
See Table 5 for our computed values of µi and ri ,
i = 0, 1, . . . , 7.

Example 4 Consider the region of connectivity fif-
teen with boundaries

z j(t) = ξ j + eiσ j (a j cos t + ib j sin t) ( j = 0, . . . , 14).

We chose a = −2 + 1.2i and θ = π/2 in circular
and parallel slits regions, respectively. The values

Table 3 Error norm of ‖µ j −µ jn‖∞ for Example 2.

n j = 0 j = 1 j = 2 j = 3

64 6.8×10−13 1.0×10−12 9.8×10−13 9.7×10−13

128 1.9×10−16 1.0×10−15 2.7×10−16 4.9×10−16

Table 4 Error norm of ‖r j − r jn‖∞ for Example 2.

n j = 0 j = 1 j = 2 j = 3

64 2.7×10−12 2.0×10−12 3.8×10−12 2.0×10−12

128 3.5×10−16 2.0×10−16 5.5×10−16 4.6×10−16

of the complex constants ξ j and the real constants
a j , b j , and σ j are as in Table 6. The numerical
results are presented in Figs. 8–9. See Table 7 for
our computed values of µi and ri , i = 0,1, . . . , 14.

Table 5 The numerical values of µi , ri , and θi , i = 0, . . . , 7
for Example 3. (n= 128.)

i µi ri θi

0 0.994440701200 −0.284029138730 3.129809929215
1 1.110985767458 −0.353863261497 2.292945228462
2 1.063686515027 −0.331000782992 2.930879259314
3 0.973612244749 −0.275287566318 3.171420702460
4 0.753837456220 −0.139417069130 3.636139048989
5 1.148572821992 −0.382534199792 2.650117907058
6 1.546876218974 −0.590383326758 1.978126115467
7 0.938039072007 −0.208599570836 4.573498974480
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Fig. 8 Mappings of a bounded region of connectivity fifteen onto a canonical regions for Example 4.
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Fig. 9 Inverse images (Ω1 and Ω2 to Ω) for Example 4.

Table 6 The values of constants a j , b j , ξ j , and σ j in
Example 4.

j a j b j ξ j σ j

0 8.0000 7.0000 −0.5000− i 0.5000 1.0000
1 0.2976 −0.6132 3.1670− i 3.1650 5.7197
2 0.5061 −0.6053 4.2941+ i 0.3423 0.5778
3 0.6051 −0.7078 4.3577+ i 3.0154 4.1087
4 0.7928 −0.3182 −5.0000+ i 1.2668 2.6138
5 0.3923 −0.4491 2.0694− i 5.5663 4.4057
6 0.3626 −0.1881 −2.8379+i 3.2940 3.3108
7 0.2126 −0.1281 2.1621−i 0.1940 1.3108
8 0.1026 −1.0881 1.7379+ i 4.3960 0.3108
9 0.4026 −0.1481 −1.7621+ i 5.2940 0.8108
10 0.4323 −0.3091 −4.9306− i 3.0663 4.4057
11 0.5626 −0.1881 −2.8162− i 5.7060 3.3108
12 0.7126 −0.3281 0.1621− i 2.6940 1.3108
13 0.1343 −0.6088 −2.6262− i 2.6040 0.3108
14 0.9826 −0.1481 −0.0621+ i 1.9294 1.5108

GRAPHICAL USER INTERFACE

In this section, we presented a graphical user in-
terface (GUI) to illustrate our finding. The graph-
ical user interface was created by using MATLAB.
More numerical results including graphical and im-
age transformation can be computed by using GUI.
There are two modes in the GUI which is graph
mode or image mode. To have a graphical result,
we choose the graph mode and set the input values
for the numbers of nodes and the parameters for

Table 7 The numerical values of µi , ri , and θi , i =
0, . . . , 14 for Example 4. (n= 128)

i µi ri θi

0 0.5023222796 0.0008589109 0.3587111366
1 0.6086785849 0.0799766244 0.4382073558
2 0.6055849127 0.1247855487 0.2768221012
3 0.5474464053 0.0547912084 0.2466426059
4 0.3734163069 −0.0912331525 0.5310740652
5 0.5491862962 0.0172876271 0.4385971607
6 0.3324241335 −0.0907118361 0.1035010586
7 0.8438900618 0.3832088812 0.2438605063
8 0.5410588262 0.0332667860 0.0627077746
9 0.4591054253 −0.0237558527 0.1653659457

10 0.4873520274 −0.0656146300 0.5919062426
11 0.5249755441 −0.0287033882 0.5158620847
12 0.7420010973 0.0175966334 0.7842061900
13 0.5267875577 −0.1397473330 0.8848907532
14 0.6102168256 −0.0481344748 −0.8175689388

the boundaries. There are three kinds of boundary
available in the GUI which are circles, ellipses and
star shape. The interior points are then selected
after the boundaries had been selected. There are
two modes of mapping available, which include
circular slits and parallel slits. The transformations
are computed based on clicking a point a inside
the region. For image transformation, we choose
the image mode and load the image with selected
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Fig. 10 GUI graphical presentation based circular slits
map and parallel slits map.

size. The image can be cropped based on the
boundaries selected on the image or the growcut
algorithm19. The parameterization of the cropped
image by growcut algorithm is based on parametric
cubic spline, which approximate two real functions
x(t) and y(t) using periodic cubic spline and the
parameterization z(t) is defined as20, 21

z(t) = x(t)+ iy(t) (0¶ t ¶ 2π).

The computation of the transformation is similar as
the graph mode. The quality of the transformed
image improves with increasing number of nodes.

Fig. 10 presents a GUI about slits mapping. The
boundary options in GUI are circle, ellipse and star
shapes. Fig. 11 presents image transformation re-
sults from GUI for image cropped based on selected
boundaries. Fig. 12 presents image transformation
results from GUI for image cropped based on grow-
cut algorithm.

CONCLUSIONS

In this paper, we have constructed new bound-
ary integral equations for conformal mapping of
bounded multiply connected regions onto a circular
slit region and parallel slit region. The advantage of
our method is that our boundary integral equations
are all linear and continuous. Several mappings of

Fig. 11 GUI image processing presentation based circular
slits map and parallel slits map.

Fig. 12 GUI image processing with cropped face based
circular slits map and parallel slits map.

the test regions of connectivity one, four and fif-
teen were computed numerically using the proposed
method. After the boundary values of the mapping
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function are computed, the interior values of the
mapping function and its inverse are calculated by
means of Cauchy integral formula. The numerical
examples presented for the three canonical regions
have illustrated that our boundary integral equation
method has high accuracy.

Acknowledgements: This work was supported in part
by the Malaysian Ministry of Education through the
Research Management Centre, Universiti Teknologi
Malaysia, UTM-CIAM (Vote: R.J130000.7809.4F637) and
the Kurdistan Ministry of Higher Education through De-
partment of Mathematics, School of Science, University of
Sulaimani. These supports are gratefully acknowledged.
The authors would like to thank all the referees for
valuable comments and suggestions.

REFERENCES

1. Wen GC (1992) Conformal Mapping and Boundary
Value Problems, English translation of Chinese edition
1984, American Mathematical Society.

2. Nehari Z (1952) Conformal Mapping, Dover, New
York.

3. Nasser MMS (2009) A boundary integral equation for
conformal mapping of bounded multiply connected
regions. Comput Meth Funct Theor 9, 127–43.

4. Nasser MMS (2009) Numerical conformal mapping
via boundary integral equation with the generalized
Neumann kernel. SIAM J Sci Comput 31, 1695–715.

5. Nasser MMS (2011) Numerical conformal mapping
of multiply connected regions onto the second, third
and fourth categories of Koebe’s canonical slit do-
mains. J Math Anal Appl 382, 47–56.

6. Wegmann R, Nasser MMS (2008) The Riemann-
Hilbert problem and the generalized Neumann ker-
nel on multiply connected regions. J Comput Appl
Math 214, 36–57.

7. Amano K (1994) A charge simulation method for the
numerical conformal mapping of interior, exterior
and doubly connected domains. J Comput Appl Math
53, 350–70.

8. DeLillo TK, Driscoll TA, Elcrat AR, Pfaltzgraff JA
(2008) Radial and circular slit maps of unbounded
multiply connected circle domains. Proc Roy Soc A
464, 1719–37.

9. Sangawi AWK, Murid AHM, Nasser MMS (2012)
Circular slits map of bounded multiply connected
regions. Abstr Appl Anal 389, 1–26.

10. Sangawi AWK, Murid AHM, Nasser MMS (2012)
Parallel slits map of bounded multiply connected
regions. J Math Anal Appl 389, 1280–90.

11. Sangawi AWK, Murid AHM, Nasser MMS (2011)
Linear integral equations for conformal mapping of
bounded multiply connected regions onto a disk with
circular slits. Appl Math Comput 218, 2055–68.

12. Sangawi AWK, Murid AHM, Nasser MMS (2012)
Annulus with circular slit map of bounded multiply
connected regions via integral equation method. Bull
Malays Math Sci Soc 35, 945–59.

13. Murid AHM, Hu LN (2009) Numerical experiment
on conformal mapping of doubly connected regions
onto a disk with a slit. Int J Pure Appl Math 51,
589–608.

14. Murid AHM, Hu LN (2009) Numerical conformal
mapping of bounded multiply connected regions by
an integral equation method. Int J Contemp Math Sci
4, 1121–47.

15. Nasser MMS, Murid AHM, Ismail M, Alejaily EMA
(2011) Boundary integral equation with the gen-
eralized Neumann kernel for Laplace’s equation in
multiply connected regions. Appl Math Comput 217,
4710–27.

16. Halsing J, Ojala R (2008) On the evaluation of layer
potentials close to their sources. J Comput Phys 227,
2899–921.

17. Davis PJ, Rabinowitz P (1984) Methods of Numerical
Integration, 2nd edn, Academic Press, Orlando.

18. Atkinson KE (1997) The Numerical Solution of Inte-
gral Equations of the Second Kind, Cambridge Univ
Press, Cambridge.

19. Vezhnevets V, Konouchine V (2005) GrowCut—
Interactive multi-label N-D image segmentation by
cellular automata. In: Proceedings of the 15th Inter-
national Conference on Computer Graphics and Appli-
cations GraphicCon’2005, pp 150–6.

20. Graham NY (1983) Smoothing with periodic cubic
splines. Bell Syst Tech J 62, 101–10.

21. Faires JD, Burden R (2003) Numerical Methods, 3rd
edn, Thomson-Brooks/Cole, Pacific Grove, CA.

www.scienceasia.org

http://www.scienceasia.org/2017.html
http://dx.doi.org/10.1007/BF03321718
http://dx.doi.org/10.1007/BF03321718
http://dx.doi.org/10.1007/BF03321718
http://dx.doi.org/10.1137/070711438
http://dx.doi.org/10.1137/070711438
http://dx.doi.org/10.1137/070711438
http://dx.doi.org/10.1016/j.jmaa.2011.04.030
http://dx.doi.org/10.1016/j.jmaa.2011.04.030
http://dx.doi.org/10.1016/j.jmaa.2011.04.030
http://dx.doi.org/10.1016/j.jmaa.2011.04.030
http://dx.doi.org/10.1016/j.cam.2007.01.021
http://dx.doi.org/10.1016/j.cam.2007.01.021
http://dx.doi.org/10.1016/j.cam.2007.01.021
http://dx.doi.org/10.1016/j.cam.2007.01.021
http://dx.doi.org/10.1016/0377-0427(94)90063-9
http://dx.doi.org/10.1016/0377-0427(94)90063-9
http://dx.doi.org/10.1016/0377-0427(94)90063-9
http://dx.doi.org/10.1016/0377-0427(94)90063-9
http://dx.doi.org/10.1098/rspa.2008.0006
http://dx.doi.org/10.1098/rspa.2008.0006
http://dx.doi.org/10.1098/rspa.2008.0006
http://dx.doi.org/10.1098/rspa.2008.0006
http://dx.doi.org/10.1155/2012/970928
http://dx.doi.org/10.1155/2012/970928
http://dx.doi.org/10.1155/2012/970928
http://dx.doi.org/10.1016/j.jmaa.2012.01.008
http://dx.doi.org/10.1016/j.jmaa.2012.01.008
http://dx.doi.org/10.1016/j.jmaa.2012.01.008
http://dx.doi.org/10.1016/j.amc.2011.07.018
http://dx.doi.org/10.1016/j.amc.2011.07.018
http://dx.doi.org/10.1016/j.amc.2011.07.018
http://dx.doi.org/10.1016/j.amc.2011.07.018
http://dx.doi.org/10.1016/j.amc.2010.11.027
http://dx.doi.org/10.1016/j.amc.2010.11.027
http://dx.doi.org/10.1016/j.amc.2010.11.027
http://dx.doi.org/10.1016/j.amc.2010.11.027
http://dx.doi.org/10.1016/j.amc.2010.11.027
http://dx.doi.org/10.1016/j.jcp.2007.11.024
http://dx.doi.org/10.1016/j.jcp.2007.11.024
http://dx.doi.org/10.1016/j.jcp.2007.11.024
http://dx.doi.org/10.1017/CBO9780511626340
http://dx.doi.org/10.1017/CBO9780511626340
http://dx.doi.org/10.1017/CBO9780511626340
http://dx.doi.org/10.1002/j.1538-7305.1983.tb04381.x
http://dx.doi.org/10.1002/j.1538-7305.1983.tb04381.x
www.scienceasia.org

