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ABSTRACT: This paper presents a new boundary integral equation method for the solution of a class of Robin problems
in bounded and unbounded simply connected regions. We show how to reformulate the Robin problems as Riemann-
Hilbert problems which lead to systems of integral equations, related differential equations, and normalizing conditions
that give rise to unique solutions. Numerical results on several test regions are presented to illustrate the solution
technique for the Robin problems when the boundaries are sufficiently smooth.
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INTRODUCTION

There are many applications of Laplacian differen-
tial operator related to physical geodesy, electro-
magnetic, measurement1, 2, and to specific bound-
ary problems such as Dirichlet problem and Neu-
mann problem3. The applications of the mixed
boundary value problem in potential theory can be
found in Ref. 4. A mixed boundary value problem
has mixed Dirichlet and Neumann type boundary
conditions5. A Robin problem is a mixed boundary
value problem with a linear combination of Dirichlet
and Neumann conditions, commonly called a Robin
condition6. Many analytical methods for solving
the Robin boundary value problem for the Laplace
equation ∇2u = 0 in simply connected region are
limited to special regions. For general shape region,
we have to resort to numerical methods7. Alipour
and Vali8 solved Volterra optimal control problems
and applied the homotopy analysis method to solve
the problem.

Recently, the interplay of Riemann-Hilbert (RH)
problems and integral equations with the general-
ized Neumann kernel has been investigated for sim-
ply connected regions with smooth boundaries9 and
for bounded and unbounded multiply connected
regions10. Hamzah and Nasser11 and Hamzah
et al12 have reformulated the interior Robin prob-

lem as an RH problem and then utilized the results
of Refs. 9, 10, but the exterior Robin problem is
not treated. In Ref. 11 the method involves one
integral equation with unknown constants c1, c2, a
normalizing condition, and α, β limited to specific
values. In Ref. 12 the method involves two inte-
gral equations without both normalizing condition
and unknown constants c1, c2. In this paper, for
bounded case, the approach is similar to Ref. 11,
but with α, β now treated as functions. This paper
presents a unified treatment of solving both interior
and exterior Robin problems via RH problem and
integral equations with the generalized Neumann
kernel. In this paper, each Robin boundary value
problem in both bounded and unbounded simply
connected regions is reduced to an RH problem with
normalizing conditions. However, in Ref. 13 each
Robin boundary value problem in both bounded and
unbounded multiply connected regions is reduced
to two RH problems without normalizing conditions
and the proof that the two integral equations are
linearly independent is provided.

NOTATION AND AUXILIARY MATERIAL

Consider the interior and exterior Robin problems
on an arbitrary simply connected region Ω with
the boundary Γ . It consists of finding a harmonic

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2017.43S.069
http://www.scienceasia.org/2017.html
mailto:alihassan@utm.my
www.scienceasia.org


70 ScienceAsia 43S (2017)

Fig. 1 A bounded simply connected region Ω+.

function u continuous on Ω ∪ Γ and satisfies the
Robin boundary condition. We consider simply
connected region Ω in the extended complex plane
of the following two types.
(i) A bounded simply connected region Ω+ with

counter-clockwise orientation boundary Γ
which is a smooth Jordan curve (Fig. 1).

(ii) An unbounded simply connected region Ω−

with clockwise orientation boundary Γ which is
a smooth Jordan curve (Fig. 2).

The curve Γ is parameterized by a 2π-periodic twice
continuously differentiable complex function η(t)
with non-vanishing first derivative η̇(t) 6= 0.

A Robin problem is a boundary value problem
for determining a harmonic function u(x , y) in Ω
and continuous on Ω ∪ Γ that satisfies the Robin
boundary condition14

α(t)u(η(t))+β(t)
∂

∂ n
u(η(t)) = l(t), (1)

where α(t) 6= 0, β(t) 6= 0, and l(t) are continuous,
η(t) ∈ Γ , n is the exterior normal to Γ , ∂ u/∂ n is
the directional derivative of u in the direction of n.
For unbounded Ω, the function u is also required to
satisfy

u(z)→ C as |z| →∞,

with a constant C . In this paper, we focus on the
case where C = 0. The Robin problem is uniquely
solvable under certain condition as given in the
following theorem.

Theorem 1 If sgn(α) = sgn(β), then a harmonic
function satisfying the Robin boundary condition (1)
is unique15.

The function u can be regarded as a real part of an
analytic function f = u+ iv in Ω that is continuous
on Ω∪Γ . The unit tangent vector T of the boundary
Γ is obtained by T(t) = η̇(t)/|η̇(t)|. The outward
normal vector is a vector obtained by rotating the

Fig. 2 An unbounded simply connected region Ω−.

unit tangent vector by π/2 in a clockwise direction,
i.e., n= −iT, which gives

n(η(t)) = eiθ (η(t)) = −iT(η(t)),

where θ (η(t)) is the angle between the exterior
normal vector n and and positive real axis (see
Figs. 1 and 2).

Let A(t) be a continuous differentiable 2π-
periodic function with A(t) 6= 0. Define two real
kernels9 by

M(s, t) =
1
π

Re
�

A(s)
A(t)

η̇(t)
η(t)−η(s)

�

, s 6= t, (2)

N(s, t) =
1
π

Im
�

A(s)
A(t)

η̇(t)
η(t)−η(s)

�

, s 6= t. (3)

The kernel N(s, t) is called the generalized Neu-
mann kernel formed with A(t) and η(t). When
A(t) = 1, it reduces to the classical Neumann kernel,

N(s, t) =
1
π

Im
�

η̇(t)
η(t)−η(s)

�

, s 6= t. (4)

The generalized Neumann kernel is continuous at
t = s with

N(t, t) =
1
π

Im
�

1
2
η̈(t)
η̇(t)

−
Ȧ(t)
A(t)

�

, t = s. (5)

The kernel M(s, t) has the representation

M(s, t) = −
1

2π
cot

s− t
2
+M1(s, t), s 6= t, (6)

with the continuous kernel M1 having the diagonal
the values

M1(t, t) =
1
π

Re
�

1
2
η̈(t)
η̇(t)

−
Ȧ(t)
A(t)

�

. (7)

www.scienceasia.org

http://www.scienceasia.org/2017.html
www.scienceasia.org


ScienceAsia 43S (2017) 71

Let N and M1 be the Fredholm integral operators
associated with the continuous kernels N and M1,
respectively,

(Nµ)(s) =

∫ 2π

0

N(s, t)µ(t)dt, (8)

(M1µ)(s) =

∫ 2π

0

M1(s, t)µ(t)dt. (9)

The adjoint of the operator N is defined by

(N∗µ)(s) =

∫ 2π

0

N ∗(s, t)µ(t)dt, (10)

where N ∗(s, t) = N(t, s). Let M and K be the
singular integral operators

(Mµ)(s) =

∫ 2π

0

M(s, t)µ(t)dt, (11)

(Kµ)(s) =
1

2π

∫ 2π

0

cot
s− t

2
dt. (12)

The integrals (11) and (12) are principal value in-
tegrals. The operator K is known as the conjugation
operator. It is also known as the Hilbert transform9.
It follows from (6) that M=M1−K.

Let γ(t) be a real Hölder continuously periodic
function with period 2π. The RH problem consists
of finding an analytic function f inΩ that is continu-
ous in its closure Ω̄ and has boundary values f (η(t))
satisfying

Re
�

A(t) f (η(t))
�

= γ(t). (13)

For unbounded Ω, due to u(z) → 0 as |z| → ∞,
the function f is also required to satisfy f (∞) =
0. If Re[A(t) f (η(t))] = 0 we have a homogeneous
boundary condition.

Theorem 2 If g is a solution of the RH problem (13)
with boundary values9

Ag = γ+ iµ, (14)

then the imaginary part µ satisfies the integral equa-
tion

µ−Nµ= −Mγ. (15)

The solvability of boundary integral equations with
the generalized Neumann kernel is determined by
the index9 of the function A(t), defined as the
winding number of A(t) with respected to 0. The
index of A(t) is denoted by κA, which is5, 9

κA =
1

2π
∆arg A(t)

�

�

�

2π

0
, (16)

or, if A(t) is differentiable,

κA =
1

2πi

∫ 2π

0

Ȧ(t)
A(t)

dt. (17)

Since Γ is closed and A(t) is a non-vanishing con-
tinuous function on Γ , the index κA is an integer. If
κA > 0, then it can be shown that (15) has a unique
solution9, 16. Define the integral operator17 J by

Jµ=
1

2π

∫ 2π

0

µ(t)dt,

which is a constant.

Theorem 3 Let h be a real constant function such
that

Af = γ+h+ iµ

are the boundary values of the analytic function f (z)
in Ω. Then the function h is given by

h= (γ,φ), (18)

whereφ is the unique solution of the integral equation

(I+N∗+ J)φ = ±1, (19)

where + sign for bounded region and − sign for
unbounded region17.

Theorem 4 (Cauchy Integral Formula)5 Let f be
analytic function everywhere in Ω and on a simple
closed contour Γ . The Cauchy integral formulae for
Ω+ and Ω−, respectively, are given by

1
2πi

∫

Γ

f (η)
η− z

dη=

¨

f (z), z ∈ Ω+,

0, z ∈ Ω−,
(20)

1
2πi

∫

Γ

f (η)
η− z

dη=

¨

f (z)− f (∞), z ∈ Ω−,

− f (∞), z ∈ Ω+.
(21)

REDUCTION OF ROBIN BOUNDARY VALUE
PROBLEM TO RH-PROBLEM

We consider the Robin problem (1) either interior or
exterior. The unit exterior normal vector is given by

n(η(t)) = −iT(η(t)) = −i
η̇

|η̇|
= eiθ (η(t))

= cosθ (η(t))+ i sinθ (η(t)).

Then

∂ u
∂ n
= cosθ (η(t))

∂ u
∂ x
+ sinθ (η(t))

∂ u
∂ y

= Re
�

eiθ (η(t))
�

∂ u
∂ x
− i
∂ u
∂ y

��

. (22)
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Since f (z) = u + iv, then by the Cauchy-Riemann
equations we have, f ′(z) = ux − iuy . Thus

∂ u(η(t))
∂ n

= Re
�

−i
η̇(t)
|η̇(t)|

f ′(η(t))
�

. (23)

Substituting into the Robin condition (1), we obtain

α(t)Re[ f (η(t))]−β(t)Re
�

iη̇(t) f ′(η(t))
|η̇(t)|

�

= l(t).

(24)
It is sometimes assumed that η(t) is the arc length
parameterization of the boundary Γ , which implies
|η̇(t)| = 1. This assumption, although convenient
for theoretical work, but in numerical aspect, it
introduces an additional sources of error. If Ω is a
unit disc, (24) yields the same result as in Petrila14.
Multiply both sides by |η̇(t)| we obtain

Re[α(t)|η̇(t)| f (η(t))− iβ(t)η̇(t) f ′(η(t))]
= l(t)|η̇(t)|, (25)

or, equivalently,

Re
�

−iβ(t)
§

d
dt
( f (η(t)))+ ic(t) f (η(t))

ª�

= l(t)|η̇(t)|, (26)

where c(t) = (α(t)/β(t))|η̇(t)|. Eq. (26) may also
be written as

− iβ(t)
�

d
dt
( f (η(t)))+ ic(t) f (η(t))

�

= l(t)|η̇(t)|+ iµ(t), (27)

where µ(t) is an unknown function. By means of
integrating factor, we obtain

− iβ(t)A(t)
�

d
dt
( f (η(t)))+ ic(t) f (η(t))

�

= l(t)|η̇(t)|eiκ(t)+ iµ(t)eiκ(t), (28)

where A(t) = eiκ(t) when κ(t) =
∫ t

0 c(τ)dτ. Then
(28) becomes

d
dt
[−iA(t) f (η(t))] =

eiκ(t)

β(t)
(l(t)|η̇(t)|+ iµ(t)).

(29)
Letting g = −i f , which is analytic on Ω, we obtain

A(t)g(η(t)) =

∫ t

0

l(τ)|η̇(τ)| cosκ(τ)
β(τ)

dτ

+ i

∫ t

0

l(τ)|η̇(τ)| sinκ(τ)
β(τ)

dτ

+ i

∫ t

0

µ(τ) cosκ(τ)
β(τ)

dτ

−
∫ t

0

µ(τ) sinκ(τ)
β(τ)

dτ+ c1+ ic2

= γ1(t)+ iγ2(t)+ iµ1(t)−µ2(t)+ c1+ ic2, (30)

where c1 and c2 are unknown real constants, and

γ1(t) =

∫ t

0

l(τ)|η̇(τ)| cosκ(τ)
β(τ)

dτ, (31)

γ2(t) =

∫ t

0

l(τ)|η̇(τ)| sinκ(τ)
β(τ)

dτ (32)

are known functions, and

µ1(t) =

∫ t

0

µ(τ) cosκ(τ)
β(τ)

dτ, (33)

µ2(t) =

∫ t

0

µ(τ) sinκ(τ)
β(τ)

dτ (34)

are unknown functions. Note that (30) is an RH
problem in the form of (14). The function A(t) =
eiκ(t) in general is not periodic. A(t) must be
periodic so we can calculate the index and apply
Theorem 2. The function A(t) is periodic if we
assume κ(2π)−κ(0) = 2π such that the index κA =
1. With this restriction, we are solving a special case
of the Robin problem for which α(t) and β(t) satisfy
the condition κ(2π)−κ(0) = 2π. Thus Theorem 2
implies that (30) can be reformulated as

(I−N)(γ2(s)+µ1(s)+ c2) = −M(γ1(s)−µ2(s)+ c1),
(35)

or in another form

(I−N)µ1(s)−Mµ2(s)+ c1M+ c2(I−N)
= −(I−N)γ2(s)−Mγ1(s), (36)

which is equivalent to

µ1(s)−
∫ 2π

0

N(s, t)µ1(t)dt −
∫ 2π

0

M(s, t)µ2(t)dt

+

∫ 2π

0

K(s, t)µ2(t)dt + c1

∫ 2π

0

M1(s, t)dt

− c1

∫ 2π

0

K(s, t)dt + c2− c2

∫ 2π

0

N(s, t)dt

= −γ2(s)+

∫ 2π

0

N(s, t)γ2(t)dt
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−
∫ 2π

0

M(s, t)γ1(t)dt +

∫ 2π

0

K(s, t)γ1(t)dt. (37)

This is an integral equation in two unknown real
functions µ1 and µ2 and two unknown constants c1
and c2. The integral equation (37) has an infinite
number of solutions. To obtain a unique solution,
sufficient conditions need to be determined. By the
definitions of the function µ1 and µ2, we have a
condition in the form of a differential equation

sin(κ(t))µ′1(t)− cos(κ(t))µ′2(t) = 0, (38)

with conditions

µ1(0) = µ2(0) = 0. (39)

The above constructions for interior Robin prob-
lem11, is also valid for the exterior Robin problem.
For the interior Robin problem9 we have Im[ f (0)] =
0, which implies that Re[g(0)] = 0. Let

ψ= γ1(t)−µ2(t)+ c1,

ϕ = γ2(t)+µ1(t)+ c2.

The Cauchy integral formula Theorem 4 yields

g(0) =
1

2πi

∫ 2π

0

(ψ+ iϕ)η̇(t)
A(t)η(t)

dt, (40)

which gives

∫ 2π

0

�

ψ Im
�

η̇(t)
A(t)η(t)

�

+ϕRe
�

η̇(t)
A(t)η(t)

��

dt = 0.

(41)
Hence, we obtain another condition in the form

∫ 2π

0

Re[w(t)]µ1(t)dt −
∫ 2π

0

Im[w(t)]µ2(t)dt

+ c1

∫ 2π

0

Im[w(t)]dt + c2

∫ 2π

0

Re[w(t)]dt

= −
∫ 2π

0

Re[w(t)]γ2(t)dt −
∫ 2π

0

Im[w(t)]γ1(t)dt,

(42)

where w(t) = η̇(t)/A(t)η(t). From (30), we have

A(t)g(η(t)) = γ1(t)−µ2(t)+c1+i(γ2(t)+µ1(t)+c2).

Hence, the following RH problems are solvable,

Re[A(t)g(η(t))] = γ1(t)−µ2(t)+ c1

and

Im[A(t)g(η(t))] = γ2(t)+µ1(t)+ c2.

Thus the functions γ1(t) − µ2(t) + c1 and γ2(t) +
µ1(t) + c2 are orthogonal with the eigenfunction
φ of the adjoint operator N∗ corresponding to the
eigenvalue λ= −1. Using the normalization9 Jφ =
1, and since we have17 (I+N∗)φ = 0, (19) becomes

(I+N∗+ J)φ = 1.

Thus for the interior Robin problem, the function µ1
and constant c2 satisfy

1
2π

∫ 2π

0

(γ2(t)+µ1(t)+ c2)φ(t)dt = 0, (43)

1
2π

∫ 2π

0

φ(t)µ1(t)dt + c2 =
−1
2π

∫ 2π

0

φ(t)γ2 dt,

(44)

while the function µ2, and constant c1 satisfy

1
2π

∫ 2π

0

(γ1(t)−µ2(t)+ c1)φ(t)dt = 0, (45)

−1
2π

∫ 2π

0

φ(t)µ2(t)dt + c1 =
−1
2π

∫ 2π

0

φ(t)γ1 dt.

(46)

The conditions (42), (44) and (46) are also given
in Ref. 11 for the interior Robin problem. But a dif-
ferent set of conditions are required for the exterior
Robin problem. For the exterior Robin problem, we
have f (∞) = 0, which implies g(∞) = 0. By using
the Cauchy integral formula for unbounded region
Ω Theorem 4, we have

1
2πi

∫

Γ

g(η)
η− z

dη=

¨

g(z)− g(∞), z ∈ Ω−,

−g(∞), z ∈ Ω+.
(47)

Choosing z = 0 outside Ω− gives

1
2πi

∫

Γ

g(η)
η

dη= −g(∞) = 0. (48)

Applying (30), we obtain

1
2πi

∫

Γ

ψ+ iϕ
A(t)

dη(t)
η(t)

= 0, (49)

which implies
∫ 2π

0

�

ψ Im
η̇(t)

A(t)η(t)
+ϕRe

η̇(t)
A(t)η(t)

�

dt

− i

∫ 2π

0

�

ψRe
η̇(t)

A(t)η(t)
−ϕ Im

η̇(t)
A(t)η(t)

�

dt = 0.

(50)
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The real and imaginary parts of (50), yield

∫ 2π

0

�

ψ Im
η̇(t)

A(t)η(t)
+ϕRe

η̇(t)
A(t)η(t)

�

dt = 0,

(51)
∫ 2π

0

�

ψRe
η̇(t)

A(t)η(t)
−ϕ Im

η̇(t)
A(t)η(t)

�

dt = 0,

(52)
which gives rise to the conditions

∫ 2π

0

Re[w(t)]µ1(t)dt −
∫ 2π

0

Im[w(t)]µ2(t)dt

+ c1

∫ 2π

0

Im[w(t)]dt + c2

∫ 2π

0

Re[w(t)]dt

= −
∫ 2π

0

Re[w(t)]γ2(t)dt −
∫ 2π

0

Im[w(t)]γ1(t)dt,

(53)

and

−
∫ 2π

0

Im[w(t)]µ1(t)dt −
∫ 2π

0

Re[w(t)]µ2(t)dt

+ c1

∫ 2π

0

Re[w(t)]dt − c2

∫ 2π

0

Im[w(t)]dt

=

∫ 2π

0

Im[w(t)]γ2(t)dt −
∫ 2π

0

Re[w(t)]γ1(t)dt,

(54)

where w(t) = η̇(t)/A(t)η(t).
The functions γ1(t) − µ2(t) + c1 and γ2(t) +

µ1(t) + c2 are orthogonal with the eigenfunction
φ of the adjoint operator N∗ corresponding to the
eigenvalue λ= −1. Using the normalization9 Jφ =
−1 and condition17 (I+N∗)φ = 0, (19) becomes

(I+N∗+ J)φ = −1.

Then for the exterior Robin problem, the function
µ1 and constant c2 satisfy

1
2π

∫ 2π

0

(γ2(t)+µ1(t)+ c2)φ(t)dt = 0, (55)

1
2π

∫ 2π

0

φ(t)µ1(t)dt − c2 =
−1
2π

∫ 2π

0

φ(t)γ2 dt,

(56)

while the function µ2 and constant c1 satisfy

1
2π

∫ 2π

0

(γ1(t)−µ2(t)+ c1)φ(t)dt = 0, (57)

−1
2π

∫ 2π

0

φ(t)µ2(t)dt − c1 =
−1
2π

∫ 2π

0

φ(t)γ1 dt.

(58)

NUMERICAL IMPLEMENTATION

Since the functions A(t) and η(t) are 2π-periodic,
the integral equation (36) can be best discretized
on an equidistant grid by the Nyström method with
trapezoidal rule using n equidistant nodes18. The
integral involving the singular kernel K(s, t) is dis-
cretized using the Wittich method19. Define the n
equidistant collocation points t i by t i = 2π(i−1)/n,
for i = 1,2, 3, . . . , n.

Discretizing the integral equation (37), we ob-
tain the linear system

µ1(t i)−
2π
n

n
∑

j=1

N(t i , t j)µ1(t j)

−
2π
n

n
∑

j=1

M(t i , t j)µ2(t j)+
n
∑

j=1

K(t i , t j)µ2(t j)

+ c1
2π
n

n
∑

j=1

M(t i , t j)− c1

∑

j=1

n K(t i , t j)

+ c2− c2
2π
n

n
∑

j=1

N(t i , t j)

= −γ2(t i)+
2π
n

n
∑

j=1

N(t i , t j)γ2(t j)

−
2π
n

n
∑

j=1

M(t i , t j)γ1(t j)+
n
∑

j=1

K(t i , t j)γ1(t j),

(59)

where

K(t i , t j) =

¨

0, j− i is even,
2
n cot (i− j)π

n , j− i is odd,

N(t i , t j) =

(

1
π Im

�

A(t i)
A(t j)

η̇(t j)
η(t j)−η(t i)

�

, t i 6= t j ,
1
π Im

�

1
2
η̈(t)
η̇(t) −

Ȧ(t)
A(t)

�

, t i = t j ,

M1(t i , t j) =











1
π Re

�

A(t i)
A(t j)

η̇(t j)
η(t j)−η(t i)

�

,

+ 1
2π cot

t i−t j

2 , t i 6= t j ,
1
π Re

�

1
2
η̈(t)
η̇(t) −

Ȧ(t)
A(t)

�

, t i = t j .

Hence we obtain n equations in 2n+2 variables

µ1(t1), . . . ,µ1(tn),µ2(t1), . . . ,µ2(tn), c1, c2. (60)

The condition (38) will be discretized using a five-
point central difference method to obtain n equa-
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tions20. For i = 1, we obtain

u′1(t1)≈ u′11 = −25µ1(t1)+48µ1(t2)−36µ1(t3)
+16µ1(t4)−3µ1(t5).

u′2(t1)≈ u′21 = −25µ2(t1)+48µ2(t2)−36µ2(t3)
+16µ2(t4)−3µ2(t5).

For i = 2, we have

u′1(t2)≈ u′12 = −3µ1(t1)−10µ1(t2)+18µ1(t3)
−6µ1(t4)+µ1(t5).

u′2(t2)≈ u′22 = −3µ2(t1)−10µ2(t2)+18µ2(t3)
−6µ2(t4)+µ2(t5).

For i = 3, . . . , n−2, we have

u′1(t i)≈ u′1i = µ1(t i−2)−8µ1(t i−1)+8µ1(t i+1)
−µ1(t i+2).

u′2(t i)≈ u′2i = µ2(t i−2)−8µ2(t i−1)+8µ2(t i+1)
−µ2(t i+2).

For i = n−1, we have

u′1(tn−1)≈ u′1(n−1) = −µ1(tn−4)+6µ1(tn−3)

−18µ1(tn−2)+10µ1(tn−1)+3µ1(tn).
u′2(tn−1)≈ u′2(n−1) = −µ2(tn−4)+6µ2(tn−3)

−18µ2(tn−2)+10µ2(tn−1)+3µ2(tn).

For i = n, we have

u′1(tn)≈ u′1n = 3µ1(tn−4)−16µ1(tn−3)
+36µ1(tn−2)−48µ1(tn−1)+25µ1(tn).

u′2(tn)≈ u′2n = 3µ2(tn−4)−16µ2(tn−3)
+36µ2(tn−2)−48µ2(tn−1)+25µ2(tn).

We now have 2n equations in 2n + 2 variables in
(60). Combining with the two conditions (39) gives
a (2n+2)× (2n+2) linear system. Discretizing the
condition (42) gives

n
∑

j=1

Re[w(t j)]µ1(t j)−
n
∑

j=1

Im[w(t j)]µ2(t j)

+ c1

n
∑

j=1

Im[w(t j)]+ c2

n
∑

j=1

Re[w(t j)]

= −
n
∑

j=1

Re[w(t j)]γ2(t j)−
n
∑

j=1

Im[w(t j)]γ1(t j),

(61)

where w(t) = η̇(t)/A(t)η(t). Discretizing the con-
ditions (44) and (46) gives

1
n

n
∑

j=1

φ(t j)µ1(t j)+ c2 =
−1
n

n
∑

j=1

φ(t j)γ2(t j),

(62)

−1
n

n
∑

j=1

φ(t j)µ2(t j)+ c1 =
−1
n

n
∑

j=1

φ(t j)γ1(t j).

(63)

Hence, for the Robin problem in bounded simply
connected region we obtain 2n × (2n + 2) linear
system, including the two conditions (39) gives a
(2n+2)×(2n+2) linear system. Adding the equation
obtained from (61) makes a (2n+3)×(2n+2) linear
system. Finally, the two more equations from (62)
and (63) are added to give a (2n + 5) × (2n + 2)
linear system. For the unbounded Robin problem
with conditions (53) and (54), we obtain

n
∑

j=1

Re[w(t j)]µ1(t j)−
n
∑

j=1

Im[w(t j)]µ2(t j)

+ c1

n
∑

j=1

Im[w(t j)]+ c2

n
∑

j=1

Re[w(t j)]

= −
n
∑

j=1

Re[w(t j)]γ2(t j)−
n
∑

j=1

Im[w(t j)]γ1(t j)

(64)

and

−
n
∑

j=1

Im[w(t j)]µ1(t j)−
n
∑

j=1

Re[w(t j)]µ2(t j)

+ c1

n
∑

j=1

Re[w(t j)]− c2

n
∑

j=1

Im[w(t j)]

=
n
∑

j=1

Im[w(t j)]γ2(t j)−
n
∑

j=1

Re[w(t j)]γ1(t j). (65)

Discretizing the conditions (56) and (58), we obtain

1
n

n
∑

j=1

φ(t j)µ1(t j)− c2 =
−1
n

n
∑

j=1

φ(t j)γ2(t j),

(66)

−1
n

n
∑

j=1

φ(t j)µ2(t j)− c1 =
−1
n

n
∑

j=1

φ(t j)γ1(t j).

(67)

Hence, the Robin problem in an unbounded simply
connected region we obtain a 2n× (2n+ 2) linear
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system, including the two conditions (39) gives a
(2n+ 2)× (2n+ 2) linear system. Adding the two
equations obtained from (64) and (65) makes a
(2n+ 4)× (2n+ 2) linear system. Finally, the two
more equations from (66) and (67) are added to
give a (2n+6)× (2n+2) linear system.

The solution from the system can be used to cal-
culate the boundary values of the analytic function
fn(η(t)) by using the following formula

fn(η(t)) = (−ϕ+ iψ)e−iκ(t). (68)

The approximate interior values of the function f (z)
are calculated by the Cauchy integral formula

f (z) =



























1
2πi

∫ 2π

0
f (η)
η−z dη

1
2πi

∫ 2π

0
1
η−z dη

, z ∈ Ω+,

f (∞)+ 1
2πi

∫ 2π

0
f (η)
η−z dη

1+ 1
2πi

∫ 2π

0
1
η−z dη

, z ∈ Ω−.

(69)

Here, f (∞) = 0 for unbounded region Ω−. Numer-
ically, (69) has the advantage that the denominator
compensates for the error in the numerator21. The
integrals (69) are approximated by the trapezoidal
rule. The respective discretization formula for inte-
rior and exterior regions are

fn(z) =



























∑n
i=1

fn(η(t i))η̇(t i)
η(t i)−z

∑n
i=1

η̇(t i)
η(t i)−z

, z ∈ Ω+,

∑n
i=1

fn(η(t i))η̇(t i)
η(t i)−z

in+
∑n

i=1
η̇(t i)
η(t i)−z

, z ∈ Ω−.

(70)

NUMERICAL EXAMPLES

We consider some examples in the interior and
exterior simply connected regions for Robin problem
with the boundary condition l(t) as (24).

Example 1 We consider the Laplace equation
∆u(z) = 0, where z ∈ Ω+ bounded by a circle Γ
defined by η(t) = eit , 0 ¶ t ¶ 2π. In condition (1)
we choose α(t) = 1−0.2 sin t, β(t) = 1, and

l(t) = (1−0.2 sin t)(cosh(sin t) sin(cos t)−2)
+ cos t cos(cos t) cosh(sin t)

+ sin t sin(cos t) sinh(sin t)

with an exact solution

u(η(t)) = Re[ f (η(t))] = cosh(sin t) sin(cos t)−2,

Table 1 The errors ‖u(η(t))−un(η(t))‖∞ on boundary Γ
for Example 1.

n ‖u(η(t))−un(η(t))‖∞
32 2.20×10−3

64 1.31×10−4

128 7.92×10−6

256 4.79×10−7

512 2.96×10−8

1024 1.84×10−9

Table 2 Absolute error | f (z)− fn(z)| at selected points on
Ω for Example 1.

n 0+0i 0.3−0.5i −0.1+0.2i −0.3+0.6

32 3.2×10−4 8.6×10−4 3.2×10−4 4.8×10−4

64 9.4×10−6 4.0×10−5 1.1×10−5 2.7×10−5

128 2.7×10−7 2.2×10−6 4.5×10−7 1.6×10−6

256 7.9×10−9 1.3×10−7 2.0×10−8 9.5×10−8

512 3.6×10−10 7.6×10−9 1.1×10−9 5.8×10−9

1024 2.7×10−11 4.7×10−10 6.0×10−11 3.6×10−10

where f (z) = sin z−2.
This yields the exact values c1 = 0 and c2 =

1.1585. For this example, A(t) = ei(t+0.2cos t−0.2),
t ∈ [0, 2π]. The integrals (31), (32), (33), and
(34) are calculated by the Gauss-Legendre rule with
256 nodes.

Table 1 lists the maximum error norms
‖u(η(t)) − un(η(t))‖∞, where n is the number of
nodes and un(η(t)) is the numerical approximation
of u(η(t)) based on our method. The errors
‖ f (z) − fn(z)‖ at some selected points are listed
in Table 2. The absolute errors |u(z) − un(z)| for
selected points in the entire domain are plotted in
Fig. 3. Fig. 4 shows the surface plot of un(z) with
n= 1024.

Example 2 We consider the Laplace equation
∆u(z) = 0, where z ∈ Ω−, an unbounded domain
with boundary Γ defined by η(t) = e−it , 0¶ t ¶ 2π.
For condition (1), we choose α(t) = 1+0.5 cos t and
β(t) = 1. The function l(t) = 2 cos t + 0.5 cos2 t is
obtained by choosing an exact solution

u(η(t)) = Re[ f (η(t))] = cos t,

where f (z) = 1/z. This yields the exact values, c1 =
0 and c2 = −1. For this example, A(t) = ei(t+0.5 sin t),
t ∈ [0,2π]. The integrals (31), (32), (33), and
(34) are calculated by the Gauss-Legendre rule with
256 nodes.

Table 3 lists the maximum error norms
‖u(η(t)) − un(η(t))‖∞, where n is the number of
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Fig. 3 The absolute error |u(z) − un(z)| for the entire
domain with n= 1024 for Example 1.

Fig. 4 The surface plot of un(z) for Example 1 (n= 1024).

nodes and un(η(t)) is the numerical approximation
of u(η(t)) based on our method. The absolute
errors | f (z) − fn(z)| at some selected points are
listed in Table 4. The absolute errors |u(z)− un(z)|
on the entire domain are plotted in Fig. 5. Fig. 6
shows the surface plot of un(z) with n= 512.

Table 3 The errors ‖u(η(t))−un(η(t))‖∞ on boundary Γ
for Example 2.

n ‖u(η(t))−un(η(t))‖∞
32 9.54×10−4

64 4.29×10−5

128 1.84×10−6

256 1.32×10−7

512 1.00×10−8

Fig. 5 The absolute error |u(z) − un(z)| for the entire
domain with n= 512 for Example 2.

Fig. 6 The surface plot of un(z) for Example 2 (n= 512).

CONCLUSIONS

In this paper, we have developed a method for
solving some interior and exterior Robin problems
in simply connected regions with smooth bound-
aries using a combination of integral equations,
differential equations, normalizing conditions, and
unknown constants c1, c2. The method works for

Table 4 Absolute errors | f (z)− fn(z)| at selected points
on Ω for Example 2.

n z = −1.3+1.1i z = −1.2+1.2i z = −1−1.5i

32 5.49×10−5 7.36×10−5 7.85×10−5

64 6.15×10−6 7.29×10−6 8.34×10−6

128 4.75×10−7 5.53×10−7 6.16×10−7

256 3.16×10−8 3.66×10−8 4.06×10−8

512 2.02×10−9 2.33×10−9 2.59×10−9
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a special case of Robin problem for which α(t) and
β(t) satisfy the condition κ(2π)− κ(0) = 2π. The
integral equations are discretized by the Nyström
method with trapezoidal rule and Wittich’s method,
while the differential equation is discretized by
the five-point central difference method. The pre-
sented numerical results illustrate that the proposed
method can be used to produce approximations of
high accuracy. More work is required to extend the
presented method to multiply connected regions.
For an extension of the method in Ref. 12 to mul-
tiply connected regions, see Ref. 13.
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