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ABSTRACT: A total dominating set for a graph G = (V (G), E(G)) is a subset D of V (G) such that every vertex in V (G)
is adjacent to some vertex in D. The total domination number of G, denoted by γt(G), is the minimum cardinality of
a total dominating set of G. A total dominating set of cardinality γt(G) is called a γ-total dominating set. Let T Dγ be
the set of all γ-total dominating sets in G. We define the γ-total dominating graph of G, denoted by T Dγ(G), to be
the graph whose vertex set is T Dγ, and two γ-total dominating sets D1 and D2 from T Dγ are adjacent in T Dγ(G) if
D1 = D2\{u}∪{v} for some u ∈ D2 and v /∈ D2. In this paper, we present γ-total dominating graphs of paths and cycles.
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INTRODUCTION

Let G = (V (G), E(G)) be a graph where V (G) and
E(G) are the set of vertices and the set of edges of G,
respectively. A set D ⊆ V (G) is called a dominating
set if every vertex in V (G)\D is adjacent to some
vertex in D. The domination number of G, denoted
by γ(G), is the minimum cardinality of a dominating
set of G. A dominating set of cardinality γ(G)
is called a γ-dominating set (or γ-set). For basic
concepts and notation in domination, see Refs. 1, 2.

Let G be a graph and Dγ the set of all γ-
dominating sets. Lakshmanan and Vijayakumar3

introduced a gamma graph γ.G of G. The vertex set
of γ.G is Dγ, and two γ-dominating sets D1 and D2
from Dγ are adjacent in γ(G) if D1 = D2\{u}∪{v} for
some u, v ∈ V (G). They provided the relationship
between the clique number and independence of
a graph and its gamma graph. Fricke et al4 also
defined a gamma graph G(γ) with a different mean-
ing. The only difference is that two γ-dominating
sets D1 and D2 from Dγ are adjacent in G(γ) if
D1 = D2\{u} ∪ {v} for some adjacent vertices u and
v. Note that G(γ) is a subgraph of γ.G with the same
vertex set.

In Ref. 5, Haas and Seyffarth defined a k-
dominating graph of a graph G, denoted by Dk(G).
Its vertex set contains all dominating sets D such
that |D| ¶ k, and two such dominating sets are
adjacent in Dk(G) if one can be obtained from the

other by either adding or deleting a single vertex.
The authors gave some conditions for connectivity
of Dk(G).

Kulli and Janakiram6 introduced a minimal
dominating graph of a graph G, denoted by M D(G),
which is the graph whose vertices are minimal dom-
inating sets, and two minimal dominating sets are
adjacent in M D(G) if they have at least one vertex
in common. They characterized connected minimal
dominating graphs.

In Ref. 7, Kulli and Janakiram introduced a
common minimal dominating graph of a graph G,
denoted by C D(G). It has the same vertex set as
G, and two vertices are adjacent in C D(G) if there
is a minimal dominating set in G which contains
them. The authors characterized connected com-
mon minimal dominating graphs. They also gave
characterization of a graph G for which C D(G) is
isomorphic to the complement of G.

A common minimal total dominating graph of a
graph G, denoted by C Dt(G), is the graph with the
same vertex set as G, and two vertices are adjacent
in C Dt(G) if there is a minimal total dominating
set in G which contains them. This concept was
introduced in Ref. 8.

A set D of vertices in a graph G is called a
total dominating set if every vertex of G is adjacent
to some vertex in D. Total dominating sets were
introduced by Cockayne et al9. The total domination
number of G, denoted by γt(G), is the minimum
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Fig. 1 The γ-total dominating graph of a path with 6
vertices. In this and later figures we write abcd instead
of {va, vb, vc , vd}.

cardinality of a total dominating set of G. A total
dominating set of cardinality γt(G) is called a γ-
total dominating set. Let T Dγ be the set of all γ-
total dominating sets in G. The γ-total dominating
graph of G, denoted by T Dγ(G), is the graph whose
vertex set is T Dγ, and two γ-total dominating sets
D1 and D2 from T Dγ are adjacent in T Dγ(G) if
D1 = D2\{u} ∪ {v} for some u ∈ D2 and v /∈ D2. For
instance, the γ-total dominating graph of the path
v1v2v3v4v5v6 is shown in Fig. 1.

PRELIMINARY RESULTS

Let D be a total dominating set of a graph G, S
a subset of D, V ′ the set of vertices in G which
are dominated by the vertices in S, and G′ the
subgraph of G induced by V ′. Then S is called a total
dominating subset of D if S is a total dominating set
of G′.

We first consider the relation between the num-
ber of vertices in S and the number of vertices in G
dominated by the vertices in S when G is a path or a
cycle. We have that any 2 consecutive vertices in G
can dominate at most 4 vertices, and 3 consecutive
vertices in G can dominate at most 5 vertices, so we
easily obtain the following lemma.

Lemma 1 Let G be a path or cycle with n vertices, D
a total dominating set of G, and S a total dominating
subset of D of size k. If k is even, then S can dominate
at most 2k vertices of G; otherwise, S can dominate
at most 2k−1 vertices of G.

Lemma 2 Let G be a graph. If v is a support vertex
(the vertex adjacent to a vertex of degree one) of G,
then v has to be in every total dominating set of G.

The γ-total domination numbers of paths and
cycles were established by Henning10, as shown in
the following theorem.

Theorem 1 For n ¾ 3, γt(Pn) = γt(Cn) = b
1
2 nc +

d 1
4 ne− b 1

4 nc.

TOTAL DOMINATING GRAPH OF PATHS

In this section, we consider γ-total dominating
graphs of paths. We always let Pn = v1v2 . . . vn be
a path with n vertices. If n = 1, we have that
T Dγ(P1) is the empty graph since P1 has no γ-total
dominating sets. For n¾ 2, we obtain the following
theorems.

Theorem 2 Let k ¾ 1 be an integer. Then
T Dγ(P4k)∼= K1.

Proof : We first show that each γ-total dominating
set of P4k cannot contain three or more consecutive
vertices of P4k. Suppose for a contradiction that
there is a γ-total dominating set D containing three
or more consecutive vertices of P4k. Let l be the
largest number of these consecutive vertices, so l ¾
3. Let S be the set obtained from D by removing
these l vertices. Then S is a total dominating subset
of D. Note that |D|= 2k by Theorem 1. Since these
l vertices dominate at most l +2 vertices of P4k, the
other 2k − l vertices in D must dominate at least
4k−(l+2) = 4k− l−2 vertices of P4k. By Lemma 1,
the 2k− l vertices in S can dominate at most 4k−2l
vertices of P4k, which is less than 4k−l−2 since l ¾ 3.
This is a contradiction. Thus every γ-total dominat-
ing set must contain k groups of two consecutive
vertices. Hence there is only one γ-total dominating
set, which is {v2, v3, v6, v7, . . . , v4k−2, v4k−1}. 2

Theorem 3 Let k ¾ 1 be an integer. Then
T Dγ(P4k+1)∼= Pk.

Proof : We prove by induction on k.
Base step. There is only one γ-total dom-

inating sets of P5, which is {v2, v3, v4}. Hence
T Dγ(P5) ∼= P1. Furthermore, there are two γ-total
dominating sets of P9, which are {v2, v3, v4, v7, v8}
and {v2, v3, v6, v7, v8}. Hence T Dγ(P9)∼= P2.

Induction step. Let k ¾ 2. Suppose that
T Dγ(P4k+1)∼= Pk. Without loss of generality, we may
assume that T Dγ(P4k+1) = D1D2 . . . Dk, where D1 =
{v2, v3, v4, v7, v8, . . . , v4k−5, v4k−4, v4k−1, v4k} and for
each l = 2, 3, . . . , k, Dl = D1\{v4i | i = 1,2, . . . , l −
1} ∪ {v4i+2 | i = 1,2, . . . , l − 1}. We next show
that T Dγ(P4k+3) ∼= Pk+1. For each l = 1,2, . . . , k,
let D′l = Dl ∪ {v4k+3, v4k+4} and D′k+1 = Dk\{v4k} ∪
{v4k+2, v4k+3, v4k+4}. Hence D′l is a γ-total domi-
nating set of P4k+5 for all l = 1, 2, . . . , k + 1. Fur-
thermore, D′1D′2 . . . D′k+1 forms a path with k + 1
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vertices in T Dγ(P4k+5). We claim that there is no
other γ-total dominating set of P4k+5 apart from
D′1, D′2, . . . , D′k+1. Suppose for a contradiction that
there is another γ-total dominating set D′ of P4k+5,
which is different from these total dominating sets.
By Theorem 1, γt(P4k) = 2k, γt(P4k+1) = 2k+1 and
γt(P4k+5) = 2k + 3, so |D′| = 2k + 3. Furthermore,
|D′ ∩ {v4k+2, v4k+3, v4k+4, v4k+5}| ¾ 2 and v4k+4 ∈ D′

by Lemma 2. We consider the following 3 cases.
Case 1: |D′ ∩{v4k+2, v4k+3, v4k+4, v4k+5}|= 2.
Subcase 1.1: v4k+3, v4k+4 ∈ D′, but v4k+2, v4k+5 /∈

D′. Hence D′\{v4k+3, v4k+4} is a γ-total dominating
set of P4k+1. Thus D′\{v4k+3, v4k+4} = Dl for some
l = 1, 2, . . . k. Hence D′ = Dl ∪{v4k+3, v4k+4}= D′l , a
contradiction.

Subcase 1.2: v4k+4, v4k+5 ∈ D′, but v4k+2, v4k+3 /∈
D′. Thus D′\{v4k+4, v4k+5} is a total dominating sub-
set of D′. Since v4k+4 and v4k+5 dominate 3 vertices,
the other 2k+1 vertices in D′ must dominate at least
4k+ 2 vertices. By Lemma 1, these 2k+ 1 vertices
in D′ can dominate at most 4k+1 vertices. This is a
contradiction.

Case 2: |D′ ∩{v4k+2, v4k+3, v4k+4, v4k+5}|= 3.
Subcase 2.1: v4k+2, v4k+3, v4k+4 ∈ D′, but

v4k+5 /∈ D′. Suppose for a contradiction that
v4k+1 ∈ D′. Then v4k /∈ D′ (otherwise, D′ is not
minimal). Thus D′\{v4k+1, v4k+2, v4k+3, v4k+4} is a
total dominating subset of D′. Since v4k+1, v4k+2,
v4k+3 and v4k+4 dominate 6 vertices, the other 2k−1
vertices in D′ must dominate at least 4k−1 vertices.
This contradicts Lemma 1. Hence v4k+1 /∈ D′.
Since D′ is a γ-total dominating set of P4k+5,
D′\{v4k+2, v4k+3, v4k+4} is a γ-total dominating set
of P4k. By Theorem 2, {v2, v3, v6, v7, . . . , v4k−2, v4k−1}
is the only γ-total dominating set of
P4k. Thus D′\{v4k+2, v4k+3, v4k+4} =
{v2, v3, v6, v7, . . . , v4k−2, v4k−1} = Dk\{v4k}. Hence
D′ = Dk\{v4k} ∪ {v4k+2, v4k+3, v4k+4} = D′k+1, a
contradiction.

Subcase 2.2: v4k+2, v4k+4, v4k+5 ∈ D′, but v4k+3 /∈
D′. Then v4k+1 ∈ D′. We next have that
v4k /∈ D′ (otherwise, D′ is not minimal). Thus
D′\{v4k+1, v4k+2, v4k+4, v4k+5} is a total dominating
subset of D′. Similarly, we then obtain a contradic-
tion to Lemma 1, so this case is impossible.

Subcase 2.3: v4k+3, v4k+4, v4k+5 ∈ D′, but v4k+2 /∈
D′. This case is impossible since D′ is not minimal.

Case 3: |D′ ∩ {v4k+2, v4k+3, v4k+4, v4k+5}| = 4.
This case is impossible since D′ is not minimal. 2

Theorem 4 Let k ¾ 0 be an integer. Then
T Dγ(P4k+2)∼= Pk+12Pk+1.

Proof : We prove by induction on k. For k = 0,

. 
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Fig. 2 The γ-total dominating graph of a path with 4k+2
vertices.
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Fig. 3 The γ-total dominating graph of a path with 4k+6
vertices.

there is only one γ-total dominating set of P2, so
T Dγ(P2) ∼= K1

∼= P12P1. For k = 1, the graph
T Dγ(P6) is shown in Fig. 1.

Let k ¾ 1. Suppose that T Dγ(P4k+2) ∼=
Pk+12Pk+1. Without loss of generality, we may
assume that T Dγ(P4k+2) is the graph shown in Fig. 2,
whose vertices are Di, j = Oi ∪ E j for all integers
1 ¶ i, j ¶ k+ 1, where O1 = {v4i+1 | i = 0,1, . . . , k},
E1 = {v2} ∪ {v4i | i = 1, 2, . . . , k}, and for each l =
1, 2, . . . , k, Ol+1 = {v4i+3 | i = 0,1, . . . , l−1}∪{v4i+1 |
i = l, l+1, . . . , k} and El+1 = {v4i+2 | i = 0, 1, . . . , l}∪
{v4i | i = l, l + 1, . . . , k}. It is easy to check that
v4k−1 ∈ Oi if and only if i = k + 1, and v4k+2 ∈ E j
if and only if j = k+1.

We next show that T Dγ(P4k+6) ∼= Pk+22Pk+2.
For each i, j = 1,2, . . . , k + 1, let D′i, j = Di, j ∪
{v4k+4, v4k+5}. For each i = 1, 2, . . . , k+1, let D′i,k+2 =

www.scienceasia.org

http://www.scienceasia.org/2017.html
www.scienceasia.org


ScienceAsia 43 (2017) 329

Di,k+1 ∪ {v4k+5, v4k+6}. For each j = 1, 2, . . . , k + 1,
let D′k+2, j = Dk+1, j\{v4k+1}∪{v4k+3, v4k+4, v4k+5}, and
D′k+2,k+2 = Dk+1,k+1\{v4k+1} ∪ {v4k+3, v4k+5, v4k+6}.
Then D′i, j is a γ-total dominating set of P4k+6 for
all i, j = 1, 2, . . . , k + 2. Furthermore, these D′i, j ’s
form the graph Pk+22Pk+2 in T Dγ(P4k+6) (Fig. 3).
Suppose for a contradiction that there is another γ-
total dominating set D′ of P4k+6, which is different
from these γ-total dominating sets. Note that |D′|=
2k + 4, |D′ ∩ {v4k+3, v4k+4, v4k+5, v4k+6}| ¾ 2, and
v4k+5 ∈ D′. We consider the following 3 cases.

Case 1: |D′ ∩{v4k+3, v4k+4, v4k+5, v4k+6}|= 2.
Subcase 1.1: v4k+4, v4k+5 ∈ D′, but v4k+3, v4k+6 /∈

D′. Hence D′\{v4k+4, v4k+5} is a γ-total dominat-
ing set of P4k+2. Thus D′\{v4k+4, v4k+5} = Di, j for
some integers 1 ¶ i, j ¶ k + 1. Hence D′ = Di, j ∪
{v4k+4, v4k+5}= D′i, j , a contradiction.

Subcase 1.2: v4k+5, v4k+6 ∈ D′, but v4k+3, v4k+4 /∈
D′. Then v4k+2 ∈ D′. Thus D′\{v4k+5, v4k+6} is a
γ-total dominating set of P4k+2 containing v4k+2.
Since v4k+2 is in only Ek+1, D′\{v4k+5, v4k+6}= Di,k+1
for some i ∈ {1,2, . . . , k + 1}. Hence D′ = Di,k+1 ∪
{v4k+5, v4k+6}= D′i,k+2, a contradiction.

Case 2: |D′ ∩{v4k+3, v4k+4, v4k+5, v4k+6}|= 3.
Subcase 2.1: v4k+3, v4k+4, v4k+5 ∈ D′, but v4k+6 /∈

D′.
Subcase 2.1.1: v4k+2 ∈ D′. Clearly, v4k+1 /∈ D′.

No matter whether v4k is in D′ or not, v4k−1 must
be in D′. Then D′\{v4k+3, v4k+4, v4k+5} ∪ {v4k+1} is
a γ-total dominating set of P4k+2 containing v4k−1.
Since v4k−1 is only in Ok+1, D′\{v4k+3, v4k+4, v4k+5}∪
{v4k+1} = Dk+1, j for some j ∈ {1, 2, . . . , k+ 1}. Thus
D′ = Dk+1, j\{v4k+1}∪{v4k+3, v4k+4, v4k+5}= D′k+2, j , a
contradiction.

Subcase 2.1.2: v4k+2 /∈ D′. If v4k+1 ∈ D′, D′ is
not minimal. Thus v4k+1 /∈ D′, so v4k−1, v4k ∈ D′.
Hence D′\{v4k+3, v4k+4, v4k+5} ∪ {v4k+1} is a γ-total
dominating set of P4k+2 containing v4k−1. Thus
D′\{v4k+3, v4k+4, v4k+5} ∪ {v4k+1} = Dk+1, j for some
j ∈ {1, 2, . . . , k + 1}. Hence D′ = Dk+1, j\{v4k+1} ∪
{v4k+3, v4k+4, v4k+5}= D′k+2, j , a contradiction.

Subcase 2.2: v4k+3, v4k+5, v4k+6 ∈ D′, but v4k+4 /∈
D′. Then v4k+2 ∈ D′. If v4k+1 ∈ D′, D′ is not
minimal. Thus v4k+1 /∈ D′. No matter whether
v4k is in D′ or not, v4k−1 must be in D′. Thus
D′\{v4k+3, v4k+5, v4k+6} ∪ {v4k+1} is a γ-total dom-
inating set of P4k+2, containing v4k−1 and v4k+2.
Thus D′\{v4k+3, v4k+5, v4k+6} ∪ {v4k+1} = Dk+1,k+1.
Thus D′ = Dk+1,k+1\{v4k+1} ∪ {v4k+3, v4k+5, v4k+6} =
D′k+2,k+2, a contradiction.

Subcase 2.3: v4k+4, v4k+5, v4k+6 ∈ D′, but v4k+3 /∈
D′. This case is impossible since D′ is not minimal.

Case 3: |D′ ∩ {v4k+3, v4k+4, v4k+5, v4k+6}| = 4.
This case is impossible since D′ is not minimal. 2

Theorem 5 Let k ¾ 0 be an integer. Then
T Dγ(P4k+3)∼= Pk+2.

Proof : We prove by induction on k. It is easy to
obtain T Dγ(P3)∼= P2 and T Dγ(P7)∼= P3.

Let k ¾ 1. Suppose that T Dγ(P4k+3) ∼=
Pk+2. Without loss of generality, we may as-
sume that T Dγ(P4k+3) = D1D2 . . . Dk+2, where D1 =
{v1, v2, v5, v6, . . . , v4k−3, v4k−2, v4k+1, v4k+2} and Dl =
D1\{v4i+1 | i = 0,1, . . . , l−2}∪{v4i+3 | i = 0,1, . . . , l−
2} for each l = 2,3, . . . , k+2. It is easy to check that
v4k+3 ∈ Dl if and only if l = k+2.

We show that T Dγ(P4k+7) ∼= Pk+3. For each
l = 1,2, . . . , k + 2, let D′l = Dl ∪ {v4k+5, v4k+6} and
D′k+3 = Dk+2 ∪ {v4k+6, v4k+7}. Hence D′l is a γ-
total dominating set of P4k+7 for all l = 1,2, . . . , k+
3. Clearly, D′1D′2 . . . D′k+3 forms a path with k + 3
vertices in T Dγ(P4k+7). Suppose for a contradic-
tion that there is another γ-total dominating set
D′ of P4k+7, which is different from these γ-total
dominating sets. Note that γt(P4k+3) = 2k + 2 and
γt(P4k+7) = 2k + 4, so |D′| = 2k + 4. Furthermore,
|D′ ∩ {v4k+4, v4k+5, v4k+6, v4k+7}| ¾ 2 and v4k+6 ∈ D′.
We consider the following 3 cases.

Case 1: |D′ ∩{v4k+4, v4k+5, v4k+6, v4k+7}|= 2.
Subcase 1.1: v4k+5, v4k+6 ∈ D′, but v4k+4, v4k+7 /∈

D′. Hence D′\{v4k+5, v4k+6} is a γ-total dominating
set of P4k+3. Thus D′\{v4k+5, v4k+6} = Dl for some
l ∈ {1, 2, . . . , k+2}. Hence D′ = Dl∪{v4k+5, v4k+6}=
D′l , a contradiction.

Subcase 1.2: v4k+6, v4k+7 ∈ D′, but v4k+4, v4k+5 /∈
D′. Then v4k+3 ∈ D′. Thus D′\{v4k+6, v4k+7} is a γ-
total dominating set of P4k+3, which contains v4k+3.
Hence D′\{v4k+6, v4k+7} = Dk+2 since v4k+3 is only
in Dk+2. Hence D′ = Dk+2 ∪ {v4k+6, v4k+7} = D′k+3, a
contradiction.

Case 2: |D′ ∩{v4k+4, v4k+5, v4k+6, v4k+7}|= 3.
Subcase 2.1: v4k+4, v4k+5, v4k+6 ∈ D′, but v4k+7 /∈

D′.
Subcase 2.1.1: v4k+3 ∈ D′. Thus v4k+2 /∈ D′.

Hence D′\{v4k+3, v4k+4, v4k+5, v4k+6} is a total dom-
inating subset of D′. Since v4k+3, v4k+4, v4k+5, and
v4k+6 dominate 6 vertices, the other 2k vertices in
D′ must dominate at least 4k + 1 vertices. This
contradicts Lemma 1.

Subcase 2.1.2: v4k+3 /∈ D′. Hence
D′\{v4k+4, v4k+5, v4k+6} is a total dominating
subset of D′. As with Subcase 2.1.1, there is a
contradiction.

Subcase 2.2: v4k+4, v4k+6, v4k+7 ∈ D′, but v4k+5 /∈
D′. Then v4k+3 ∈ D′. If v4k+2 ∈ D′, then
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D′ is not minimal. Hence v4k+2 /∈ D′. Hence
D′\{v4k+3, v4k+4, v4k+6, v4k+7} is a total dominating
subset of D′. Similarly, we then obtain a contradic-
tion to Lemma 1.

Subcase 2.3: v4k+5, v4k+6, v4k+7 ∈ D′, but v4k+4 /∈
D′. This case is impossible since D′ is not minimal.

Case 3: |D′ ∩ {v4k+4, v4k+5, v4k+6, v4k+7}| = 4.
This case is impossible since D′ is not minimal. 2

TOTAL DOMINATING GRAPH OF CYCLES

In this section, we always let Cn = v0v1 . . . vn−1v0
be a cycle with n ¾ 3 vertices. It easy to see that
T Dγ(C3) ∼= C3 and T Dγ(C4) ∼= C4. For n ¾ 5, we
obtain the following theorems.

Theorem 6 Let k ¾ 2 be an integer. Then
T Dγ(C4k)∼= 4K1.

Proof : We claim that each γ-total dominating set
of C4k cannot contain three or more consecutive
vertices of C4k. Suppose for a contradiction that
there is a γ-total dominating set D of C4k, which
contains three or more consecutive vertices of C4k.
Let l be the largest number of these consecutive
vertices, so l ¾ 3. Let S be the set obtained from
D by removing these l vertices. Then S is a total
dominating subset of D. By Theorem 1, |D| = 2k.
Since these l vertices dominate l + 2 vertices of
C4k, the other 2k − l vertices in D must dominate
at least 4k− (l + 2) = 4k− l − 2 vertices of C4k. By
Lemma 1, the 2k − l vertices in S can dominate
at most 4k − 2l vertices of C4k, which is less than
4k − l − 2 since l ¾ 3. This is a contradiction.
Thus every γ-total dominating set must contain k
groups of two consecutive vertices of C4k. It is easy
to see that there are only four γ-total dominating
sets, which are {v0, v1, v4, v5, . . . , v4k−4, v4k−3},
{v1, v2, v5, v6, . . . , v4k−3, v4k−2},
{v2, v3, v6, v7, . . . , v4k−2, v4k−1}, and
{v0, v3, v4, . . . , v4k−5, v4k−4, v4k−1}. 2

Theorem 7 Let k ¾ 1 be an integer. Then
T Dγ(C4k+1)∼= C4k+1.

Proof : For k = 1, it is easy to obtain T Dγ(C5) ∼= C5.
Let k ¾ 2.

Claim 1: each γ-total dominating set of C4k+1
cannot contain four or more consecutive vertices of
C4k+1. Suppose for a contradiction that there is a
γ-total dominating set D of C4k+1, which contains
four or more consecutive vertices of C4k+1. Let l be
the largest number of these consecutive vertices, so
l ¾ 4. The set obtained from D by removing these

l vertices forms a total dominating subset of D. We
then obtain a contradiction to Lemma 1.

Claim 2: Each γ-total dominating set of C4k+1
contains only one group of three consecutive ver-
tices of C4k+1. Since γt(C4k+1) = 2k + 1 is an odd
integer, each γ-total dominating set of C4k+1 con-
tains at least one group of three consecutive vertices.
Suppose for a contradiction that there is a γ-total
dominating set D of C4k+1, which contains l groups
of three consecutive vertices of C4k+1, where l ¾ 2.
These 3l vertices dominate at most 5l vertices. Thus
the other 2k + 1− 3l vertices in D must dominate
at least 4k+ 1− 5l vertices of C4k+1. By Lemma 1,
these 2k+1−3l vertices in D can dominate at most
4k + 2 − 6l vertices of C4k+1, which is less than
4k+1−5l since l ¾ 3. This is a contradiction.

Let D be any γ-total dominating set, so D con-
tains one group of 3 consecutive vertices, which
dominates 5 vertices of C4k+1. We may consider
the other 4k − 4 vertices in C4k+1 which are not
dominated as a path. Apart from the 3 consecutive
vertices in D, the other 2k−2 vertices must dominate
all 4k − 4 vertices on this path. By Theorem 2,
there is only one γ-total dominating set of this
path. Hence there is only one γ-total dominating
set of C4k−4 containing these 3 consecutive ver-
tices. To find all γ-total dominating sets of C4k+1,
it suffices to find 3 consecutive vertices on the
cycle. Clearly, there are 4k + 1 γ-total dominating
sets. Recall that C4k+1 = v0v1 . . . v4k v0. Let D0 =
{v0, v1, v2, v5, v6, v9, v10, . . . , v4k−3, v4k−2} and Dl =
Dl−1\{v(4l−2) (mod 4k+1)} ∪ {v(4l) (mod 4k+1)} for each
l = 1,2, . . . , 4k. Then D0D1 . . . D4k D0 forms a cycle
with 4k+1 vertices. 2

Theorem 8 Let k ¾ 1 be an integer. Then
T Dγ(C4k+2)∼= C2k+12C2k+1.

Proof :
We prove by induction on k. For k= 1 and k= 2,

the graph T Dγ(C6) and T Dγ(C10) are shown in Fig. 4
and Fig. 5, respectively.

Let k ¾ 2. Suppose that T Dγ(C4k+2) ∼=
C2k+12C2k+1. Without loss of generality, we may
assume that T Dγ(C4k+2) is the graph shown in
Fig. 6, whose vertices are Di, j = Oi ∪ E j for all
integers 1 ¶ i, j ¶ 2k + 1, where O1 = {v1} ∪
{v4i−1 | i = 1, 2, . . . , k}, E1 = {v0} ∪ {v4i+2 | i =
0,1, . . . , k − 1}, and for each l = 2, 3, . . . , 2k + 1,
Ol =Ol−1\{v(4l−5) (mod 4k+2)}∪{v(4l−3) (mod 4k+2)} and
El = El−1\{v(4l−6) (mod 4k+2)}∪ {v(4l−4) (mod 4k+2)}.

Recall that C4k+6 = v0v1 . . . v4k+5v0. We prove
that T Dγ(C4k+6) ∼= C2k+32C2k+3. For each i, j =
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Fig. 4 The γ-total dominating graph of a cycle with 6
vertices.

012367 

012567 

012569 014569 014589 124589 125689 

034569 034589 234589 235689 

023679 034679 034789 234789 236789 

013467 013478 123478 123678 

014567 014578 124578 125678 

023569 

Fig. 5 The γ-total dominating graph of a cycle with 10
vertices.

1,2, . . . , k + 1, let D′i, j = Di, j ∪ {v4k+2, v4k+3}. For
each i = 1, 2, . . . , k+ 1, let D′i,k+2 = D′i,k+1\{v4k+2} ∪
{v4k+4}. For each i = 1, 2, . . . , k+1 and j = k+3, k+
4, . . . , 2k + 2, let D′i, j = Di, j−1 ∪ {v4k+3, v4k+4}. For
each i = 1,2, . . . , k+ 1, let D′i,2k+3 = D′i,2k+2\{v4k} ∪
{v4k+2}. For each j = 1, 2, . . . , 2k + 3, let D′k+2, j =
D′k+1, j\{v4k+3} ∪ {v4k+5}. For each i = k + 3, k +
4, . . . , 2k+2 and j = 1, 2, . . . , k+1, let D′i, j = Di−1, j∪
{v4k+2, v4k+5}. For each i = k+3, k+4, . . . , 2k+2, let
D′i,k+2 = D′i,k+1\{v4k+2}∪ {v4k+4}. For each i, j = k+
3, k+4, . . . , 2k+2, let D′i, j = Di−1, j−1∪{v4k+4, v4k+5}.
For each i = k + 3, k + 4, . . . , 2k + 2, let D′i,2k+3 =
D′i,2k+2\{v4k}∪{v4k+2}. For each j = 1,2, . . . , 2k+3,
let D′2k+3, j = D′2k+2, j\{v4k+1} ∪ {v4k+3}. Note that
γt(C4k+6) = 2k + 4 = (2k + 2) + 2 = γt(C4k+2) + 2.
It is easy to check that D′i, j is a γ-total dominating

.   .   . 

. 

. 

. 

𝑫𝟏,𝟏 

𝑫𝟐,𝟏 

𝑫𝟐𝒌+𝟏,𝟏 

𝑫𝟏,𝟐 𝑫𝟏,𝟐𝒌+𝟏 

𝑫𝟐,𝟐 

𝑫𝟐𝒌+𝟏,𝟐 

𝑫𝟐,𝟐𝒌+𝟏 

𝑫𝟐𝒌+𝟏,𝟐𝒌+𝟏 

Fig. 6 The γ-total dominating graph of a cycle with 4k+2
vertices.

set of C4k+6 for all i, j = 1,2, . . . , 2k + 3. Further-
more, these D′i, j ’s form the graph C2k+32C2k+3 in
T Dγ(C4k+6).

Claim 1. For each i = 1,2, . . . , 2k+3, D′i,1\{v0}∪
{v4k+4} = D′i,2k+3. Let i ∈ {1,2, . . . , 2k + 3}. Then
we have D′i,1 and D′i,2k+3 are adjacent in T Dγ(C4k+6).
Furthermore, v0 ∈ D′i,1, v0 /∈ D′i,2k+3, v4k+4 ∈ D′i,2k+3,
and v4k+4 /∈ D′i,1. Thus D′i,1\{v0}∪ {v4k+4}= D′i,2k+3.

Claim 2. For each j = 1, 2, . . . , 2k+3, D′1, j\{v1}∪
{v4k+5} = D′2k+3, j . Let j ∈ {1,2, . . . , 2k + 3}. Then
we have D′1, j and D′2k+3, j are adjacent in T Dγ(C4k+6).
Furthermore, v1 ∈ D′1, j , v1 /∈ D′2k+3, j , v4k+5 ∈ D′2k+3, j ,
and v4k+5 /∈ D′1, j . Thus D′1, j\{v1}∪ {v4k+5}= D′2k+3, j .

Next, we prove that there are no other ver-
tices in T Dγ(C4k+6). Suppose for a contradiction
that there is another γ-total dominating set D′ of
C4k+6, which is different from these γ-total dom-
inating sets. Note that |D′| = 2k + 4 and |D′ ∩
{v4k+2, v4k+3, v4k+4, v4k+5}| ¾ 2. We consider the
following 3 cases.

Case 1: |D′ ∩ {v4k+2, v4k+3, v4k+4, v4k+5}| = 4.
If v0 ∈ D′, D′ is not minimal. Hence v0 /∈ D′.
Similarly, v4k+1 /∈ D′. Since v4k+2, v4k+3, v4k+4 and
v4k+5 dominate 6 vertices, the other 2k vertices in
D′ must dominate the vertices v1, v2, v3, . . . , v4k.
We now consider these 4k vertices as a path.
By Theorem 2, D′\{v4k+2, v4k+3, v4k+4, v4k+5}
is the only γ-total dominating set of this
path which is {v2, v3, v6, v7, . . . , v4k−2, v4k−1}.
Thus D′\{v4k+2, v4k+3, v4k+4, v4k+5} ∪
{v4k, v4k+1} = {v2, v3, v6, v7, . . . , v4k−2, v4k−1} ∪
{v4k, v4k+1} = D2k+1,2k+1 (Fig. 6). Hence D′ =
D2k+1,2k+1\{v4k, v4k+1}∪{v4k+2, v4k+3, v4k+4, v4k+5}=
[(D2k+1,2k+1 ∪ {v4k+4, v4k+5})\{v4k} ∪
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{v4k+2}]\{v4k+1} ∪ {v4k+3} = [D′2k+2,2k+2\{v4k} ∪
{v4k+2}]\{v4k+1} ∪ {v4k+3} = D′2k+2,2k+3\{v4k+1} ∪
{v4k+3}= D′2k+3,2k+3, a contradiction.

Case 2: |D′ ∩{v4k+2, v4k+3, v4k+4, v4k+5}|= 3.
Subcase 2.1: v4k+2, v4k+3, v4k+4 ∈ D′, but v4k+5 /∈

D′.
Subcase 2.1.1: v4k+1 ∈ D′. Since D′ contains

four consecutive vertices of the cycle, by repeating
the process in Case 1, D′ must be equal to D′i, j for
some i, j, a contradiction.

Subcase 2.1.2: v4k+1 /∈ D′. Thus v0 /∈ D′

(otherwise, D′ is not minimal). Then v1, v2 ∈ D′.
Similarly, v4k /∈ D′, so v4k−1, v4k−2 ∈ D′.
Hence D′\{v4k+2, v4k+3, v4k+4} ∪ {v4k} is a
γ-total dominating set of C4k+2. Thus
D′\{v4k+2, v4k+3, v4k+4} ∪ {v4k} = Di, j = Oi ∪ E j
for some 1 ¶ i, j ¶ 2k + 1. Since v1 ∈ Oi ,
1 ¶ i ¶ k + 1. Since v4k−2, v4k ∈ E j , j = 2k + 1.
Hence D′\{v4k+2, v4k+3, v4k+4} ∪ {v4k} = Di,2k+1
for some i ∈ {1,2, . . . , k + 1}. Hence
D′ = Di,2k+1\{v4k} ∪ {v4k+2, v4k+3, v4k+4} =
(Di,2k+1 ∪ {v4k+3, v4k+4})\{v4k} ∪ {v4k+2} =
D′i,2k+2\{v4k}∪ {v4k+2}= D′i,2k+3, a contradiction.

Subcase 2.2: v4k+2, v4k+3, v4k+5 ∈ D′, but v4k+4 /∈
D′. Hence v0 ∈ D′. If v4k+1 ∈ D′, D′ is not
minimal. Hence v4k+1 /∈ D′. No matter whether
v4k is in D′ or not, v4k−1 must be in D′. Thus
D′\{v4k+2, v4k+3, v4k+5} ∪ {v4k+1} is a γ-total domi-
nating set of C4k+2. Thus D′\{v4k+2, v4k+3, v4k+5} ∪
{v4k+1} = Di, j = Oi ∪ E j for some 1 ¶ i, j ¶ 2k + 1.
Since v4k−1, v4k+1 ∈Oi , i = 2k+1. Since v0 ∈ E j , 1¶
j ¶ k+ 1. Thus D′\{v4k+2, v4k+3, v4k+5} ∪ {v4k+1} =
D2k+1, j for some j ∈ {1, 2, . . . , k + 1}. Hence D′ =
D2k+1, j\{v4k+1} ∪ {v4k+2, v4k+3, v4k+5} = (D2k+1, j ∪
{v4k+2, v4k+5})\{v4k+1}∪{v4k+3}= D′2k+2, j\{v4k+1}∪
{v4k+3}= D′2k+3, j , a contradiction.

Subcase 2.3: v4k+2, v4k+4, v4k+5 ∈ D′, but
v4k+3 /∈ D′. It is easy to obtain v0, v4k /∈ D′ but
v2, v4k−2, v4k+1 ∈ D′. Thus D′\{v4k+2, v4k+4, v4k+5} ∪
{v0} is a γ-total dominating set of C4k+2. Thus
D′\{v4k+2, v4k+4, v4k+5} ∪ {v0}} = Di, j = Oi ∪ E j for
some 1 ¶ i, j ¶ 2k + 1. Since v4k+1 ∈ Oi , k +
1 ¶ i ¶ 2k + 1. Since v0, v2 ∈ E j , j = 1. Thus
D′\{v4k+2, v4k+4, v4k+5} ∪ {v0} = Di,1 for some i ∈
{k+1, k+2, . . . , 2k+1}.

Subcase 2.3.1: i = k + 1. Then
D′ = Dk+1,1 ∪ {v4k+2, v4k+5}\{v0} ∪ {v4k+4} =
[(Dk+1,1 ∪ {v4k+2, v4k+3})\{v4k+3} ∪ {v4k+5}]\{v0} ∪
{v4k+4}= [D′k+1,1\{v4k+3}∪{v4k+5}]\{v0}∪{v4k+4}=
D′k+2,1\{v0}∪ {v4k+4}= D′k+2,2k+3 by Claim 1.

Subcase 2.3.2: i ∈ {k + 2, k + 3, . . . , 2k + 1}.
Then D′ = Di,1 ∪ {v4k+2, v4k+5}\{v0} ∪ {v4k+4} =

D′i+1,1\{v0}∪ {v4k+4}= D′i+1,2k+3.
Subcase 2.4: v4k+3, v4k+4, v4k+5 ∈ D′, but v4k+2 /∈

D′.
Subcase 2.4.1: v0 ∈ D′. Then D′ contains four

consecutive vertices of the cycle. Again, we repeat
the process in case 1, so we are done.

Subcase 2.4.2: v0 /∈ D′. It is easy to obtain
v2, v3, v4k ∈ D′, but v1, v4k+1, v4k+2 /∈ D′. Hence
D′\{v4k+3, v4k+4, v4k+5}∪{v1} is a γ-total dominating
set of C4k+2. Thus D′\{v4k+3, v4k+4, v4k+5} ∪ {v1} =
Di, j = Oi ∪ E j for some 1 ¶ i, j ¶ 2k + 1. Since
v1, v3 ∈ Oi and v2, v4k ∈ E j , i = 1 and j ∈ {k +
2, k+3, . . . , 2k+1}. Hence D′\{v4k+3, v4k+4, v4k+5}∪
{v1} = D1, j for some j ∈ {k + 2, k + 3, . . . , 2k +
1}. Hence D′ = D1, j\{v1} ∪ {v4k+3, v4k+4, v4k+5} =
(D1, j ∪{v4k+3, v4k+4})\{v1}∪{v4k+5}= D′1, j+1\{v1}∪
{v4k+5}= D′2k+3, j+1 by Claim 2.

Case 3: |D′ ∩{v4k+2, v4k+3, v4k+4, v4k+5}|= 2.
Subcase 3.1: v4k+3, v4k+4 ∈ D′, but v4k+2, v4k+5 /∈

D′. It is easy to obtain v1, v4k ∈ D′. Since
D′\{v4k+3, v4k+4} is a γ-total dominating set of C4k+2,
D′\{v4k+3, v4k+4} = Di, j = Oi ∪ E j for some integers
1 ¶ i, j ¶ 2k+ 1. Since v1 ∈ D′\{v4k+3, v4k+4}, v1 ∈
Oi . Thus i ∈ {1, 2, . . . , k+1}.

Subcase 3.1.1: v0 ∈ D′. Since v0, v4k ∈ E j , j =
k+ 1. Hence D′ = Di,k+1 ∪ {v4k+3, v4k+4} = (Di,k+1 ∪
{v4k+2, v4k+3})\{v4k+2} ∪ {v4k+4} = D′i,k+1\{v4k+2} ∪
{v4k+4}= D′i,k+2.

Subcase 3.1.2: v0 /∈ D′. Hence v2 ∈ D′. Since
v2, v4k ∈ E j , j ∈ {k+2, k+3, . . . , 2k+1}. Hence D′ =
Di, j ∪{v4k+3, v4k+4}= D′i, j+1.

Subcase 3.2: v4k+2, v4k+3 ∈ D′, but v4k+4, v4k+5 /∈
D′. If v4k+1 ∈ D′, we repeat the process in Sub-
case 2.1; otherwise, we repeat the process in Sub-
case 3.1.

Subcase 3.3: v4k+4, v4k+5 ∈ D′, but v4k+2, v4k+3 /∈
D′. If v0 ∈ D′, we repeat the process in Subcase 2.4;
otherwise, we repeat the process in Subcase 3.1.

Subcase 3.4: v4k+2, v4k+5 ∈ D′, but v4k+3, v4k+4 /∈
D′. Then v0 ∈ D′. If v1 ∈ D′, we repeat the process
in Subcase 2.4; otherwise, we repeat the process in
Subcase 3.1. 2

Theorem 9 Let k ¾ 1 be an integer. Then
T Dγ(C4k+3)∼= C4k+3.

Proof : First, we show that each γ-total dominating
set of C4k+3 cannot contain three or more consecu-
tive vertices of C4k+3. Suppose for a contradiction
that there is a γ-total dominating set D of C4k+3,
which contains three or more consecutive vertices
of C4k+3. Let l be the largest number of these
consecutive vertices, so l ¾ 3. By Theorem 1, |D| =
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2k+2. Since these l vertices dominate l+2 vertices
of C4k+3, the other 2k + 2 − l vertices in D must
dominate at least 4k+3−(l+2) = 4k−l+1 vertices of
C4k+3. By Lemma 1, if l = 3, these 2k+2− l vertices
can dominate at most 2(2k+2− l)−1= 4k+3−2l
vertices of C4k+3, which is less than 4k − l + 1.
Suppose l ¾ 4. Then these 2k + 2− l vertices can
dominate at most 4k+4−2l vertices of C4k+3, which
is less than 4k− l+1. This is a contradiction. Hence
every γ-total dominating set must contain k + 1
groups of two consecutive vertices of C4k+3. This
means there is only one vertex in C4k+3, which is
dominated by 2 vertices in such a γ-total dominating
set. To find all γ-total dominating sets, it suffices to
find such a vertex on the cycle dominated by two
vertices. Clearly, there are exactly 4k + 3 γ-total
dominating sets. Recall that C4k+3 = v0v1 . . . v4k+2v0.
Let D0 = {v0, v1, v3, v4, v7, v8, v11, v12, . . . , v4k−1, v4k}
and Dl = Dl−1\{v(4l−1) (mod 4k+3)}∪{v(4l+1) (mod 4k+3)}
for each l = 1,2, . . . , 4k+ 2. Then D0D1 . . . D4k+2D0
forms a cycle with 4k+3 vertices. 2
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