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ABSTRACT: Let R be a commutative ring with identity 1. We describe two kinds of Vershik-Kerov groups for the
symplectic case: SpVK(2,∞, R) and GSpVK(2,∞, R). We also determine the commutator subgroups of these groups
over a wide class of commutative rings. For an arbitrary infinite field, we find the bounds for the commutator width of
the groups SpVK(2,∞, K) and GSpVK(2,∞, K).
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INTRODUCTION

Let R be an associative ring with identity 1. By
GLc(∞, R), GLr(∞, R), GLrc(∞, R) we denote the
groups of all infinite dimensional (indexed by N)
column-finite, row-finite, row-column-finite invert-
ible matrices over R, respectively. By GLVK(∞, R)
we denote the Vershik-Kerov group which is the
subgroup of GLc(∞, R) consisting of matrices hav-
ing only a finite number of non-zero entries below
the main diagonal. The group GLVK(∞, R) stems
from asymptotic representation theory which con-
nects functional analysis, algebra, and combinato-
rial probability theory, and is related to classical
groups of infinite dimensions1–3. In recent years,
some important subgroups of Vershik-Kerov group
have been studied. Gupta and Hołubowski deter-
mined the commutator subgroup of Vershik-Kerov
group over an infinite field4 and a wide class of
associative rings5. Parabolic subgroups of Vershik-
Kerov group are described in Refs. 6, 7. Słowik
studied the lower central series of subgroups of the
Vershik-Kerov group in Ref. 8.

Let Matn(R) be the set of all n × n matrices
over R. Mat∞(R) stands for the set of all infinite
dimensional matrices (indexed by N). Denote by
Mat2,∞(R) the set Mat2(Mat∞(R)) of 2×2 matrices
with coefficients in Mat∞(R). Denote by Matfin

2,∞(R)
the set of all the matrices below

M =
�

A B
C D

�

∈Mat2,∞(R)

where A is column-finite, D is row-finite and B,

C are row-column-finite matrices. When R is a
commutative ring with identity 1, we define

Spfin
2,∞(R) =

�

M ∈Matfin
2,∞(R)

�

�

�

�

MHM ′ = H

�

,

GSpfin
2,∞(R) =

�

M ∈Matfin
2,∞(R)

�

�

�

�

MHM ′ = λH

�

where

H =
�

O I
−I O

�

,

λ ∈ R∗. M ′ is the transpose of M , I represents
the identity matrices, and O the zero matrices.
In this paper, we are concerned about the group
SpVK(2,∞, R), which can be viewed as the symplec-
tic case of the Vershik-Kerov group.

Let R be a commutative ring with identity 1
and {v1, . . . , vn, vn+1, . . .} a basis of an infinite di-
mensional (indexed by N) linear space over R. By
T(∞, R) we denote the group of all infinite di-
mensional (indexed by N) upper triangular matrices
whose entries on the main diagonal are invertible
in R. We can find that the elements of T(∞, R)
preserve the complete flag

v1 ⊂ · · · ⊂ 〈v1, . . . vn〉 ⊂ 〈v1, . . . vn+1〉 ⊂ · · · .

For the case of a 2n-dimensional symplectic
space V with a basis {u1, v1, u2, v2 · · · , un, vn}, where
uk, vk(1 ¶ k ¶ n) is a hyperbolic pair, there is an
orthogonal direct sum decomposition V = 〈u1, v1〉 ⊥
〈u2, v2〉 ⊥ · · · ⊥ 〈un, vn〉. Let Wk = 〈u1, . . . uk〉 be

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2017.43.319
http://www.scienceasia.org/2017.html
mailto:houge19870512@126.com
www.scienceasia.org


320 ScienceAsia 43 (2017)

a k-dimensional totally isotropic subspace. Then
W⊥

k = 〈u1, . . . uk, uk+1, . . . , un, vk+1, . . . , vn〉 is a (2n−
k)-dimensional subspace. Thus we can obtain a
complete flag of V

0 ⊂W1 ⊂ · · · ⊂Wn =W⊥
n ⊂ · · · ⊂W⊥

1 ⊂ V.

The group preserving the above complete flag
should be

�

�

A B
O (A′)−1

�

∈ Sp(2n, R)

�

�

�

�

A∈ T(n, R)

�

,

which is a subgroup of Sp(2n, R). Here we de-
note it by TSp(2n, R). If we sequentially select
{u1, . . . , un, vn, . . . , v1} as the basis of V , we can
show that all the elements of TSp(2n, R) are upper
triangular invertible matrices.

When we consider the infinite case, the com-
plete flag of V should be

0 ⊂W1 ⊂ · · · ⊂Wn−1 ⊂Wn ⊂ · · · ,

· · · ⊂W⊥
n ⊂W⊥

n−1 ⊂ · · · ⊂W⊥
1 ⊂ V.

And the group preserving this complete flag should
be

�

�

A B
O (A′)−1

�

∈ Spfin
2,∞(R)

�

�

�

�

A∈ T(∞, R)

�

.

Denote it by TSp(2,∞, R). Let UT(∞, R) be the
group of all infinite dimensional (indexed by N)
upper triangular matrices whose entries on the main
diagonal are identities. We can define a subgroup of
TSp(2,∞, R)

�

�

A B
O (A′)−1

�

∈ Spfin
2,∞(R)

�

�

�

�

A∈ UT(∞, R)

�

= USp(2,∞, R).

We can also define an overgroup of TSp(2,∞, R)
�

�

A B
O λ(A′)−1

�

∈ GSpfin
2,∞(R)

�

�

�

�

A∈ T(∞, R)

�

= TGSp(2,∞, R).

For an associative ring R with identity 1, we de-
note by GL(n, R) the general linear group of n× n
invertible matrices over R. E(n, R) stands for the
subgroup of GL(n, R) generated by all elementary
transvections t i j(α) = I +αEi j , with 1 ¶ i 6= j ¶ n,
α ∈ R, where Ei j denotes the matrix with 1 at the
position (i, j) and zeros elsewhere. When R is a
field, we know that the elementary subgroup E(n, R)

coincides with the special linear group SL(n, R) over
R. By GL(∞, n, R) we denote the subgroup of
GLVK(∞, R) consisting of all matrices of the form

�

M11 M12
O M22

�

where M11 ∈ GL(n, R), M22 ∈ T(∞, R). And by
E(∞, n, R) we denote the subgroup of GL(∞, n, R)
consisting of all matrices of the same form satisfying
M11 ∈ E(n, R) and M22 ∈ UT(∞, R). It is clear that

GL(∞, n, R) ⊆ GL(∞, n+1, R),

GLVK(∞, R) =
⋃

n>1

GL(∞, n, R),

and

E(∞, n, R) ⊆ E(∞, n+1, R),

EVK(∞, R) =
⋃

n>1

E(∞, n, R).

For infinite dimensional symplectic groups, we can
define the Vershik-Kerov groups as follows:
�

�

A B
O (A′)−1

�

∈ Spfin
2,∞(R)

�

�

�

�

A∈ GLVK(∞, R)

�

= SpVK(2,∞, R),
�

�

A B
O λ(A′)−1

�

∈ GSpfin
2,∞(R)

�

�

�

�

A∈ GLVK(∞, R)

�

= GSpVK(2,∞, R),
�

�

A B
O (A′)−1

�

∈ Spfin
2,∞(R)

�

�

�

�

A∈ EVK(∞, R)

�

= USpVK(2,∞, R).

Now we give some notation which will be used
in this paper. For a group G and elements a and b of
G, we write [a, b] = a−1 b−1ab as the commutator
of a and b. [G, G] stands for the commutator
subgroup of G generated by all the commutators of
the elements in G. Suppose H is a subgroup of G,
by [H, G] we denote the subgroup of G generated
by all commutators [h, g], where h ∈ H, g ∈ G. The
lower central series of G is defined inductively as

γ0(G) = G, γn+1(G) = [γn(G), G] for n¾ 0.

Denote by c(G) the commutator width of G, which
is the least integer s such that every element of the
commutator subgroup of G is the product of at most
s commutators. If such an s does not exist, we set
c(G) =∞.

The following problem has been discussed in
Refs. 4, 5, 7, 8.
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Problem 1 Does EVK(∞, R) coincide with the com-
mutator subgroup of GLVK(∞, R)?

The above problem was posed by Sushchan-
skii at the conference, Groups and Their Actions,
Bedlewo 2010. Gupta and Hołubowski gave a posi-
tive answer for fields and a wide class of associative
rings4, 5. For the symplectic case, we can investigate
the following two problems.

Problem 2 Does USpVK(2,∞, R) coincide with the
commutator subgroup of GSpVK(2,∞, R)?

Problem 3 Does USpVK(2,∞, R) coincide with the
commutator subgroup of SpVK(2,∞, R)?

Our main results are the following.

Theorem 1 Assume that R is a commutative ring
such that 1 is a sum of two invertible elements. Then
the commutator subgroup of SpVK(2,∞, R) coincides
with the group USpVK(2,∞, R).

Theorem 2 Assume that R is a commutative ring
such that 1 is a sum of two invertible elements.
Then the commutator subgroup of GSpVK(2,∞, R)
coincides with the group USpVK(2,∞, R).

When we consider these kinds of symplectic
groups over an infinite field, we have the following
two theorems.

Theorem 3 Assume that K is an infinite field.
Then the commutator subgroup of SpVK(2,∞, K)
coincides with the group USpVK(2,∞, K) and
c(SpVK(2,∞, K))¶ 3.

Theorem 4 Assume that K is an infinite field.
Then the commutator subgroup of GSpVK(2,∞, K)
coincides with the group USpVK(2,∞, K) and
c(GSpVK(2,∞, K))¶ 3.

To prove the results above, we will use the
following important theorems.

Theorem 5 (Ref. 5) Assume that R is an associative
ring with a commutative group of invertible elements
such that 1 is a sum of two invertible elements. Then
the commutator subgroup of the group GLVK(∞, R)
coincides with the group EVK(∞, R).

Theorem 6 (Ref. 5) Assume that R is an associative
ring with commutative group of invertible elements
such that 1 is a sum of two invertible elements. Then
the commutator subgroup of the group T(∞, R) co-
incides with the group UT(∞, R) and c(T(∞, R)) ¶

2. Furthermore the lower central series of the group
T(∞, R) is

γ0(T(∞, R)) = T(∞, R),
γk(T(∞, R)) = UT(∞, R), for all k ¾ 1,

i.e., it stabilizes on the group UT(∞, R).

PROOFS OF THE MAIN RESULTS

We first define the following subgroups. Let
�

�

I B
O I

�

∈ Spfin
2,∞(R)

�

�

�

�

B = B′
�

= U,
�

�

A O
O (A′)−1

�

∈ Spfin
2,∞(R)

�

�

�

�

A∈ UT(∞, R)

�

= UT,
�

�

A O
O (A′)−1

�

∈ Spfin
2,∞(R)

�

�

�

�

A∈ T(∞, R)

�

= T,
�

�

A O
O (A′)−1

�

∈ Spfin
2,∞(R)

�

�

�

�

A∈ EVK(∞, R)

�

= EVK,
�

�

A O
O (A′)−1

�

∈ Spfin
2,∞(R)

�

�

�

�

A∈ GLVK(∞, R)

�

=GLVK.

It is clear that U and UT are two subgroups
of USp(2,∞, R) and U is a normal subgroup of
USp(2,∞, R). So it is easy to verify the following
lemma.

Lemma 1 USp(2,∞, R) = UoUT.

In the same way, we can obtain the following
conclusion.

Lemma 2 TSp(2,∞, R) = U o T. Furthermore,
USpVK(2,∞, R) = UoEVK and SpVK(2,∞, R) = Uo
GLVK.

To prove Theorem 1 and Theorem 2, we need
to use Lemma 3, Corollary 1 and Theorem 7 which
will be proved below.

Lemma 3 For any commutative ring R with 1, every
element of the group U can be written as a commuta-
tor of USp(2,∞, R).

Proof : For any element H of U we can write

H =
�

I X
O I

�

,
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where X = (x i j) is a row-column-finite matrix in
Mat∞(R) with X ′ = X . Let J be an infinite Jordan
matrix

J =





1 1
1 1

...
. . .



 .

All blank entries are equal to 0. For each H ∈ U, we
will find X = (x i j) ∈Mat∞(R) such that

�

I X
O I

�−1 �J−1 O
O J ′

�−1 � I X
O I

��

J−1 O
O J ′

�

=
�

I JX J ′− X
O I

�

=
�

I B
O I

�

.

Note that B′ = B and X ′ = X . We only need to find
x i j for all i ¶ j ∈ N. Comparing entries of two sides
of B = JX J ′− X we obtain for all i ∈ N

bii = x i+1,i + x i,i+1+ x i+1,i+1

= 2x i,i+1+ x i+1,i+1,

and for all k ∈ N

bi,i+k = x i+1,i+k + x i,i+1+k + x i+1,i+1+k,

which is equivalent to

x i+1,i+1 = bii −2x i,i+1,

x i+1,i+1+k = bi,i+k − x i+1,i+k − x i,i+1+k.

We can choose the elements in the first row of X to
be arbitrary. Then all the elements in first column
of X are obtained from X ′ = X . Next, from the
equations above, we can find x22, x23 = x32, x24 =
x42, x25 = x52, and so on. In this way, row by row
and column by column, we can find any element x i j
of X in finite number of steps. 2

Lemma 4 Assume that R is a commutative ring such
that 1 is a sum of two invertible elements. Then the
commutator subgroup of the group T coincides with
the group UT and c(T) ¶ 2. Furthermore, the lower
central series of the group T is

γ0(T) = T, γk(T) = UT, for all k ¾ 1,

i.e., it stabilizes on the group UT.

Proof : Note that there exists a group isomorphism
from UT(∞, R) to UT:

A 7→
�

A O
O (A′)−1

�

.

From Theorem 6 we can easily obtain the conclu-
sion. 2

In the same way, from Theorem 5 we have the
following result.

Corollary 1 Assume that R is a commutative ring
such that 1 is a sum of two invertible elements. Then
the commutator subgroup of the groupGLVK coincides
with the group EVK.

Theorem 7 Assume that R is a commutative ring
such that 1 is a sum of two invertible elements. Then
the commutator subgroup of TGSp(2,∞, R) coin-
cides with USp(2,∞, R) and c(TGSp(2,∞, R)) ¶ 3.
Furthermore, the lower central series of the group
TGSp(2,∞, R) is

γ0(TGSp(2,∞, R)) = TGSp(2,∞, R),
γk(TGSp(2,∞, R)) = USp(2,∞, R),

for all k ¾ 1,

i.e., it stabilizes on the group USp(2,∞, R).

Proof : For any two elements in TGSp(2,∞, R) hav-
ing the form

�

A1 B1
O λ1(A′1)

−1

�

,
�

A2 B2
O λ2(A′2)

−1

�

,

the commutator is
��

A1 B1
O λ1(A′1)

−1

�

,
�

A2 B2
O λ2(A′2)

−1

��

=
�

[A1, A2] B3
O ([A1, A2]′)−1

�

,

where λ1, λ2 ∈ R∗, A1, A2 ∈ T(∞, R) and

B3 = A−1
1 A−1

2 (A1B2+λ2B1(A
′
2)
−1)

− (λ1A−1
1 A−1

2 B2A′2+A−1
1 B1A′1A′2)

· (A′1)
−1(A′2)

−1.

From

[T(∞, R), T(∞, R)] ⊆ UT(∞, R),

we can easily obtain

[TGSp(2,∞, R), TGSp(2,∞, R)]
⊆ USp(2,∞, R).

(1)

From Lemma 1, USp(2,∞, R) = UoUT. Thus we
know that for all elements G in USp(2,∞, R), there
exists a unique H in U and K in UT such that G =
HK . For each G ∈ USp(2,∞, R), we can write

H =
�

I B
O I

�

, K =
�

A O
O (A′)−1

�

,
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G =
�

A B0
O (A′)−1

�

=
�

I B
O I

��

A O
O (A′)−1

�

= HK ,

where A∈ UT(∞, R) and B = B′ = B0A′ = A′B0, H ∈
U, and K ∈ UT. From Lemma 3 we know H is a
commutator of USp(2,∞, R). And from Lemma 4
we obtain that K can be written as a product of two
commutators ofT. So each element in USp(2,∞, R)
can be written as a product of three commutators of
USp(2,∞, R).

USp(2,∞, R)
⊆ [USp(2,∞, R),USp(2,∞, R)]
⊆ [USp(2,∞, R), TGSp(2,∞, R)]
⊆ [TGSp(2,∞, R), TGSp(2,∞, R)].

(2)

Thus from (1) we obtain

USp(2,∞, R)
= [USp(2,∞, R), USp(2,∞, R)]
= [USp(2,∞, R), TGSp(2,∞, R)]
= [TGSp(2,∞, R), TGSp(2,∞, R)].

Then the lower central series of TGSp(2,∞, R) is

γ0(TGSp(2,∞, R)) = TGSp(2,∞, R),
γ1(TGSp(2,∞, R)) = USp(2,∞, R),

γ2(TGSp(2,∞, R))
= [γ1(TGSp(2,∞, R)), TGSp(2,∞, R)]
= USp(2,∞, R)

and so on. 2
When we chose λ1 = λ2 = 1, the two elements

�

A1 B1
O λ1(A′1)

−1

�

,
�

A2 B2
O λ2(A′2)

−1

�

in TGSp(2,∞, R) are also two elements in the group
TSp(2,∞, R). Then (1) and (2) in the proof of
Theorem 7 are changed to

[TSp(2,∞, R), TSp(2,∞, R)] ⊆ USp(2,∞, R)

and

USp(2,∞, R) ⊆ [USp(2,∞, R),USp(2,∞, R)]
⊆ [USp(2,∞, R), TSp(2,∞, R)]
⊆ [TSp(2,∞, R), TSp(2,∞, R)],

respectively. So

USp(2,∞, R) = [USp(2,∞, R),USp(2,∞, R)]
= [USp(2,∞, R), TSp(2,∞, R)]
= [TSp(2,∞, R), TSp(2,∞, R)].

And the lower central series of TSp(2,∞, R) is

γ0(TSp(2,∞, R)) = TSp(2,∞, R),
γ1(TSp(2,∞, R)) = USp(2,∞, R),

γ2(TSp(2,∞, R))
= [γ1(TSp(2,∞, R)), TSp(2,∞, R)]
= USp(2,∞, R).

Thus we can obtain the following corollary.

Corollary 2 Assume that R is a commutative ring
such that 1 is a sum of two invertible elements. Then
the commutator subgroup of TSp(2,∞, R) coincides
with the group USp(2,∞, R) and c(TSp(2,∞, R))¶
3. Furthermore, the lower central series of the group
TSp(2,∞, R) is

γ0(TSp(2,∞, R)) = TSp(2,∞, R),
γk(TSp(2,∞, R)) = USp(2,∞, R), ∀k ¾ 1,

i.e., it stabilizes on the group USp(2,∞, R).

Now we finish the proof of Theorem 1 and
Theorem 2. Proof : Using the method in Theorem 7,
we can easily obtain

[GSpVK(2,∞, R),GSpVK(2,∞, R)]⊆USpVK(2,∞, R)

and

[SpVK(2,∞, R), SpVK(2,∞, R)] ⊆ USpVK(2,∞, R),

which are similar to (1). From Lemma 2 we know
that USpV K(2,∞, R) = U o EVK. So for each G ∈
USpVK(2,∞, R), there exists a decomposition

G =
�

I B
O I

��

A O
O (A′)−1

�

,

where
�

I B
O I

�

∈ U,
�

A O
O (A′)−1

�

∈ EVK.

Then from Lemma 3 and Corollary 1 we obtain

[GSpVK(2,∞, R),GSpVK(2,∞, R)]⊇USpVK(2,∞, R)

and

[SpVK(2,∞, R), SpVK(2,∞, R)] ⊇ USpVK(2,∞, R).

Thus we obtain the conclusions of Theorem 1 and
Theorem 2. 2

To prove Theorem 3 and Theorem 4, Corollary 3
of Lemma 5 will be used. Next we show Lemma 5
(which is also proved in Ref. 9 in a different way)
and two corollaries.
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Lemma 5 Assume that R is an associative ring with
an infinite field K in the centre Z(R) of R. Every
element C ∈ UT(∞, R) is a commutator of T(∞, R).

Proof : Let A = diag(a1, a2, . . . , an, . . .) be a diago-
nal matrix with pairwise distinct non-zero elements
a1, a2, . . . , an, . . . of K in its diagonal. We will find
X = (x i j) ∈ UT(∞, R) such that C = X−1A−1XA.
Since every unitriangular matrix is invertible, this
equation is equivalent to

AX C = XA.

We use induction on n= j− i (i.e., n is a number of
the superdiagonal of X above the main diagonal).
When n= 1, comparing the (i, i+1) entries of both
sides of the matrix equation we can obtain

ai(ci,i+1+ x i,i+1) = ai+1 x i,i+1,

which implies

(ai+1− ai)x i,i+1 = aici,i+1.

Now we suppose that x i j for all j − i < n has been
found. Comparing the (i, i+n) entries of both sides
of the matrix equation we obtain

ai(ci,i+n+ x i,i+1ci+1,i+n+ x i,i+2ci+2,i+n+ · · ·
+ x i,i+n−1ci+n−1,i+n+ x i,i+n) = ai+n x i,i+n

which is equivalent to

(ai+n− ai)x i,i+n

= ai(ci,i+n+ x i,i+1ci+1,i+n+ x i,i+2ci+2,i+n

+ · · ·+ x i,i+n−1ci+n−1,i+n).

Thus we can find x i,i+n for all i ∈ N. 2

Corollary 3 Assume that K is an infinite field. Then
every element C ∈ UT(∞, K) is a commutator of
T(∞, K).

Corollary 4 Assume that K is an infinite field. Then
the commutator subgroup of TSp(2,∞, R) coincides
with the group USp(2,∞, R) and c(TSp(2,∞, R))¶
2. Furthermore the lower central series of the group
TSp(2,∞, R) is

γ0(TSp(2,∞, R)) = TSp(2,∞, R),
γk(TSp(2,∞, R)) = USp(2,∞, R), ∀k ¾ 1,

i.e., it stabilizes on the group USp(2,∞, R).

Now we finish the proof of Theorem 3 and
Theorem 4. Proof : From Theorem 1 and Theo-
rem 2, we know that the commutator subgroup of
SpVK(2,∞, K) coincides with USpVK(2,∞, K). So
does the commutator subgroup of GSpVK(2,∞, K).
Next we will determine the commutator width of
SpVK(2,∞, K) and GSpVK(2,∞, K).

From Lemma 2 we know that every element of
USpV K(2,∞, K) can be written as a product of an
element of U and an element of EV K . Each element
of EVK(∞, K) has the following decomposition:

�

M11 M12
O M22

�

=
�

In M12
O M22

��

M11 O
O I

�

,

where M11 ∈ E(n, K) and M11 ∈ UT(∞, K). From
Theorems 1 and 2 of Ref. 10, we know that for
any field K except F2 and F3, every element of
SL(n, K) (coinciding with E(n, K)) is a commutator
of GL(n, K). Note that

��

A1 O
O I

�

,
�

A2 O
O I

��

=
�

[A1, A2] O
O I

�

,

and the matrix
�

M11 O
O I

�

is a commutator. From Corollary 3 it follows that
�

In M12
O M22

�

is a commutator of GL(n, K). So
�

M11 M12
O M22

�

is a product of at most 2 commutators. Note that
there is a group isomorphism from EVK(∞, R) to
EVK:

A 7→
�

A O
O (A′)−1

�

,

and any element of EVK is a product of at most 2
commutators. Finally, from Lemma 3, every element
of USpVK(2,∞, K) can be written as a product of at
most 3 commutators. 2
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