Commutator subgroups of Vershik-Kerov groups for infinite symplectic groups

Xin Hou*, Shangzhi Li, Yucheng Yang

LMIB and School of Mathematics and Systems Science, Beihang University, Beijing, 100191, China

*Corresponding author, e-mail: houge19870512@126.com

Received 9 Jun 2017 Accepted 24 Aug 2017

ABSTRACT: Let *R* be a commutative ring with identity 1. We describe two kinds of Vershik-Kerov groups for the symplectic case: $Sp_{VK}(2, \infty, R)$ and $GSp_{VK}(2, \infty, R)$. We also determine the commutator subgroups of these groups over a wide class of commutative rings. For an arbitrary infinite field, we find the bounds for the commutator width of the groups $Sp_{VK}(2, \infty, K)$ and $GSp_{VK}(2, \infty, K)$.

KEYWORDS: infinite triangular matrices, infinite unitriangular matrices, commutator width, lower central series

MSC2010: 20F12 20F14

INTRODUCTION

Let *R* be an associative ring with identity 1. By $\operatorname{GL}_{\operatorname{c}}(\infty, R)$, $\operatorname{GL}_{\operatorname{r}}(\infty, R)$, $\operatorname{GL}_{\operatorname{rc}}(\infty, R)$ we denote the groups of all infinite dimensional (indexed by \mathbb{N}) column-finite, row-finite, row-column-finite invertible matrices over R, respectively. By $GL_{VK}(\infty, R)$ we denote the Vershik-Kerov group which is the subgroup of $GL_c(\infty, R)$ consisting of matrices having only a finite number of non-zero entries below the main diagonal. The group $GL_{VK}(\infty, R)$ stems from asymptotic representation theory which connects functional analysis, algebra, and combinatorial probability theory, and is related to classical groups of infinite dimensions^{1–3}. In recent years, some important subgroups of Vershik-Kerov group have been studied. Gupta and Hołubowski determined the commutator subgroup of Vershik-Kerov group over an infinite field⁴ and a wide class of associative rings⁵. Parabolic subgroups of Vershik-Kerov group are described in Refs. 6, 7. Słowik studied the lower central series of subgroups of the Vershik-Kerov group in Ref. 8.

Let $\operatorname{Mat}_n(R)$ be the set of all $n \times n$ matrices over R. $\operatorname{Mat}_{\infty}(R)$ stands for the set of all infinite dimensional matrices (indexed by \mathbb{N}). Denote by $\operatorname{Mat}_{2,\infty}(R)$ the set $\operatorname{Mat}_2(\operatorname{Mat}_{\infty}(R))$ of 2×2 matrices with coefficients in $\operatorname{Mat}_{\infty}(R)$. Denote by $\operatorname{Mat}_{2,\infty}^{\operatorname{fin}}(R)$ the set of all the matrices below

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Mat}_{2,\infty}(R)$$

where A is column-finite, D is row-finite and B,

C are row-column-finite matrices. When *R* is a commutative ring with identity 1, we define

$$\operatorname{Sp}_{2,\infty}^{\operatorname{fin}}(R) = \left\{ M \in \operatorname{Mat}_{2,\infty}^{\operatorname{fin}}(R) \mid MHM' = H \right\},$$
$$\operatorname{GSp}_{2,\infty}^{\operatorname{fin}}(R) = \left\{ M \in \operatorname{Mat}_{2,\infty}^{\operatorname{fin}}(R) \mid MHM' = \lambda H \right\}$$

where

$$H = \begin{pmatrix} O & I \\ -I & O \end{pmatrix},$$

 $\lambda \in R^*$. M' is the transpose of M, I represents the identity matrices, and O the zero matrices. In this paper, we are concerned about the group $\operatorname{Sp}_{VK}(2, \infty, R)$, which can be viewed as the symplectic case of the Vershik-Kerov group.

Let *R* be a commutative ring with identity 1 and $\{v_1, \ldots, v_n, v_{n+1}, \ldots\}$ a basis of an infinite dimensional (indexed by N) linear space over *R*. By $T(\infty, R)$ we denote the group of all infinite dimensional (indexed by N) upper triangular matrices whose entries on the main diagonal are invertible in *R*. We can find that the elements of $T(\infty, R)$ preserve the complete flag

$$v_1 \subset \cdots \subset \langle v_1, \ldots v_n \rangle \subset \langle v_1, \ldots v_{n+1} \rangle \subset \cdots$$

For the case of a 2*n*-dimensional symplectic space *V* with a basis $\{u_1, v_1, u_2, v_2 \cdots, u_n, v_n\}$, where u_k , $v_k(1 \le k \le n)$ is a hyperbolic pair, there is an orthogonal direct sum decomposition $V = \langle u_1, v_1 \rangle \perp$ $\langle u_2, v_2 \rangle \perp \cdots \perp \langle u_n, v_n \rangle$. Let $W_k = \langle u_1, \dots, u_k \rangle$ be a *k*-dimensional totally isotropic subspace. Then $W_k^{\perp} = \langle u_1, \ldots, u_k, u_{k+1}, \ldots, u_n, v_{k+1}, \ldots, v_n \rangle$ is a (2n - k)-dimensional subspace. Thus we can obtain a complete flag of *V*

$$0 \subset W_1 \subset \cdots \subset W_n = W_n^{\perp} \subset \cdots \subset W_1^{\perp} \subset V.$$

The group preserving the above complete flag should be

$$\left\{ \begin{pmatrix} A & B \\ O & (A')^{-1} \end{pmatrix} \in \operatorname{Sp}(2n, R) \middle| A \in \operatorname{T}(n, R) \right\},\$$

which is a subgroup of Sp(2n,R). Here we denote it by TSp(2n,R). If we sequentially select $\{u_1, \ldots, u_n, v_n, \ldots, v_1\}$ as the basis of *V*, we can show that all the elements of TSp(2n,R) are upper triangular invertible matrices.

When we consider the infinite case, the complete flag of V should be

$$0 \subset W_1 \subset \cdots \subset W_{n-1} \subset W_n \subset \cdots,$$

$$\cdots \subset W_n^{\perp} \subset W_{n-1}^{\perp} \subset \cdots \subset W_1^{\perp} \subset V.$$

And the group preserving this complete flag should be

$$\left\{ \begin{pmatrix} A & B \\ O & (A')^{-1} \end{pmatrix} \in \operatorname{Sp}_{2,\infty}^{\operatorname{fin}}(R) \mid A \in \operatorname{T}(\infty, R) \right\}.$$

Denote it by $TSp(2, \infty, R)$. Let $UT(\infty, R)$ be the group of all infinite dimensional (indexed by \mathbb{N}) upper triangular matrices whose entries on the main diagonal are identities. We can define a subgroup of $TSp(2, \infty, R)$

$$\begin{cases} \begin{pmatrix} A & B \\ O & (A')^{-1} \end{pmatrix} \in \operatorname{Sp}_{2,\infty}^{\operatorname{fin}}(R) \mid A \in \operatorname{UT}(\infty, R) \\ = \operatorname{USp}(2, \infty, R). \end{cases}$$

We can also define an overgroup of $TSp(2, \infty, R)$

$$\begin{cases} \begin{pmatrix} A & B \\ O & \lambda(A')^{-1} \end{pmatrix} \in \operatorname{GSp}_{2,\infty}^{\operatorname{fin}}(R) \mid A \in \operatorname{T}(\infty, R) \end{cases}$$
$$= \operatorname{TGSp}(2, \infty, R).$$

For an associative ring *R* with identity 1, we denote by GL(n, R) the general linear group of $n \times n$ invertible matrices over *R*. E(n, R) stands for the subgroup of GL(n, R) generated by all elementary transvections $t_{ij}(\alpha) = I + \alpha E_{ij}$, with $1 \le i \ne j \le n$, $\alpha \in R$, where E_{ij} denotes the matrix with 1 at the position (i, j) and zeros elsewhere. When *R* is a field, we know that the elementary subgroup E(n, R)

coincides with the special linear group SL(n,R) over R. By $GL(\infty, n, R)$ we denote the subgroup of $GL_{VK}(\infty, R)$ consisting of all matrices of the form

$$\begin{pmatrix} M_{11} & M_{12} \\ O & M_{22} \end{pmatrix}$$

where $M_{11} \in GL(n,R)$, $M_{22} \in T(\infty,R)$. And by $E(\infty,n,R)$ we denote the subgroup of $GL(\infty,n,R)$ consisting of all matrices of the same form satisfying $M_{11} \in E(n,R)$ and $M_{22} \in UT(\infty,R)$. It is clear that

$$GL(\infty, n, R) \subseteq GL(\infty, n+1, R),$$
$$GL_{VK}(\infty, R) = \bigcup_{n>1} GL(\infty, n, R),$$

and

$$E(\infty, n, R) \subseteq E(\infty, n+1, R),$$

$$E_{VK}(\infty, R) = \bigcup_{n>1} E(\infty, n, R).$$

For infinite dimensional symplectic groups, we can define the Vershik-Kerov groups as follows:

$$\begin{cases} \begin{pmatrix} A & B \\ O & (A')^{-1} \end{pmatrix} \in \operatorname{Sp}_{2,\infty}^{\operatorname{fin}}(R) \ \middle| A \in \operatorname{GL}_{VK}(\infty, R) \end{cases} \\ = \operatorname{Sp}_{VK}(2, \infty, R), \\ \begin{cases} \begin{pmatrix} A & B \\ O & \lambda(A')^{-1} \end{pmatrix} \in \operatorname{GSp}_{2,\infty}^{\operatorname{fin}}(R) \ \middle| A \in \operatorname{GL}_{VK}(\infty, R) \end{cases} \\ = \operatorname{GSp}_{VK}(2, \infty, R), \\ \begin{cases} \begin{pmatrix} A & B \\ O & (A')^{-1} \end{pmatrix} \in \operatorname{Sp}_{2,\infty}^{\operatorname{fin}}(R) \ \middle| A \in \operatorname{E}_{VK}(\infty, R) \end{cases} \\ = \operatorname{USp}_{VK}(2, \infty, R). \end{cases}$$

Now we give some notation which will be used in this paper. For a group *G* and elements *a* and *b* of *G*, we write $[a, b] = a^{-1}b^{-1}ab$ as the commutator of *a* and *b*. [G, G] stands for the commutator subgroup of *G* generated by all the commutators of the elements in *G*. Suppose *H* is a subgroup of *G*, by [H, G] we denote the subgroup of *G* generated by all commutators [h, g], where $h \in H, g \in G$. The lower central series of *G* is defined inductively as

$$\gamma_0(G) = G, \ \gamma_{n+1}(G) = [\gamma_n(G), G] \quad \text{for } n \ge 0.$$

Denote by c(G) the commutator width of G, which is the least integer s such that every element of the commutator subgroup of G is the product of at most s commutators. If such an s does not exist, we set $c(G) = \infty$.

The following problem has been discussed in Refs. 4, 5, 7, 8.

ScienceAsia 43 (2017)

Problem 1 Does $E_{VK}(\infty, R)$ coincide with the commutator subgroup of $GL_{VK}(\infty, R)$?

The above problem was posed by Sushchanskii at the conference, Groups and Their Actions, Bedlewo 2010. Gupta and Hołubowski gave a positive answer for fields and a wide class of associative rings^{4, 5}. For the symplectic case, we can investigate the following two problems.

Problem 2 Does $USp_{VK}(2, \infty, R)$ coincide with the commutator subgroup of $GSp_{VK}(2, \infty, R)$?

Problem 3 Does $USp_{VK}(2, \infty, R)$ coincide with the commutator subgroup of $Sp_{VK}(2, \infty, R)$?

Our main results are the following.

Theorem 1 Assume that R is a commutative ring such that 1 is a sum of two invertible elements. Then the commutator subgroup of $Sp_{VK}(2, \infty, R)$ coincides with the group $USp_{VK}(2, \infty, R)$.

Theorem 2 Assume that R is a commutative ring such that 1 is a sum of two invertible elements. Then the commutator subgroup of $GSp_{VK}(2, \infty, R)$ coincides with the group $USp_{VK}(2, \infty, R)$.

When we consider these kinds of symplectic groups over an infinite field, we have the following two theorems.

Theorem 3 Assume that K is an infinite field. Then the commutator subgroup of $Sp_{VK}(2, \infty, K)$ coincides with the group $USp_{VK}(2, \infty, K)$ and $c(Sp_{VK}(2, \infty, K)) \leq 3$.

Theorem 4 Assume that *K* is an infinite field. Then the commutator subgroup of $GSp_{VK}(2, \infty, K)$ coincides with the group $USp_{VK}(2, \infty, K)$ and $c(GSp_{VK}(2, \infty, K)) \leq 3$.

To prove the results above, we will use the following important theorems.

Theorem 5 (Ref. 5) Assume that R is an associative ring with a commutative group of invertible elements such that 1 is a sum of two invertible elements. Then the commutator subgroup of the group $GL_{VK}(\infty, R)$ coincides with the group $E_{VK}(\infty, R)$.

Theorem 6 (Ref. 5) Assume that R is an associative ring with commutative group of invertible elements such that 1 is a sum of two invertible elements. Then the commutator subgroup of the group $T(\infty, R)$ coincides with the group $UT(\infty, R)$ and $c(T(\infty, R)) \leq$

2. Furthermore the lower central series of the group $T(\infty, R)$ is

$$\begin{split} \gamma_0(\mathrm{T}(\infty,R)) &= \mathrm{T}(\infty,R), \\ \gamma_k(\mathrm{T}(\infty,R)) &= \mathrm{UT}(\infty,R), \quad for \ all \quad k \ge 1, \end{split}$$

i.e., it stabilizes on the group $UT(\infty, R)$.

PROOFS OF THE MAIN RESULTS

We first define the following subgroups. Let

$$\begin{cases} \begin{pmatrix} I & B \\ O & I \end{pmatrix} \in \operatorname{Sp}_{2,\infty}^{\operatorname{fin}}(R) \mid B = B' \\ = \mathbb{U}, \\ \begin{cases} \begin{pmatrix} A & O \\ O & (A')^{-1} \end{pmatrix} \in \operatorname{Sp}_{2,\infty}^{\operatorname{fin}}(R) \mid A \in \operatorname{UT}(\infty, R) \\ \end{bmatrix} \\ = \mathbb{UT}, \\ \begin{cases} \begin{pmatrix} A & O \\ O & (A')^{-1} \end{pmatrix} \in \operatorname{Sp}_{2,\infty}^{\operatorname{fin}}(R) \mid A \in \operatorname{T}(\infty, R) \\ \end{bmatrix} \\ = \mathbb{T}, \\ \begin{cases} \begin{pmatrix} A & O \\ O & (A')^{-1} \end{pmatrix} \in \operatorname{Sp}_{2,\infty}^{\operatorname{fin}}(R) \mid A \in \operatorname{E}_{\operatorname{VK}}(\infty, R) \\ \end{bmatrix} \\ = \mathbb{E}_{\operatorname{VK}}, \\ \begin{cases} \begin{pmatrix} A & O \\ O & (A')^{-1} \end{pmatrix} \in \operatorname{Sp}_{2,\infty}^{\operatorname{fin}}(R) \mid A \in \operatorname{GL}_{\operatorname{VK}}(\infty, R) \\ \end{bmatrix} \\ = \mathbb{GL}_{\operatorname{VK}}. \end{cases}$$

It is clear that \mathbb{U} and \mathbb{UT} are two subgroups of USp $(2, \infty, R)$ and \mathbb{U} is a normal subgroup of USp $(2, \infty, R)$. So it is easy to verify the following lemma.

Lemma 1 USp $(2, \infty, R) = \mathbb{U} \rtimes \mathbb{UT}$.

In the same way, we can obtain the following conclusion.

Lemma 2 $\operatorname{TSp}(2, \infty, R) = \mathbb{U} \rtimes \mathbb{T}$. Furthermore, $\operatorname{USp}_{VK}(2, \infty, R) = \mathbb{U} \rtimes \mathbb{E}_{VK}$ and $\operatorname{Sp}_{VK}(2, \infty, R) = \mathbb{U} \rtimes \mathbb{GL}_{VK}$.

To prove Theorem 1 and Theorem 2, we need to use Lemma 3, Corollary 1 and Theorem 7 which will be proved below.

Lemma 3 For any commutative ring R with 1, every element of the group \mathbb{U} can be written as a commutator of USp $(2, \infty, R)$.

Proof: For any element *H* of \mathbb{U} we can write

$$H = \begin{pmatrix} I & X \\ O & I \end{pmatrix},$$

where $X = (x_{ij})$ is a row-column-finite matrix in $Mat_{\infty}(R)$ with X' = X. Let *J* be an infinite Jordan matrix

$$J = \begin{pmatrix} 1 & 1 & & \\ & 1 & 1 & \\ & & \ddots & \ddots \end{pmatrix}.$$

All blank entries are equal to 0. For each $H \in \mathbb{U}$, we will find $X = (x_{ij}) \in \text{Mat}_{\infty}(R)$ such that

$$\begin{pmatrix} I & X \\ O & I \end{pmatrix}^{-1} \begin{pmatrix} J^{-1} & O \\ O & J' \end{pmatrix}^{-1} \begin{pmatrix} I & X \\ O & I \end{pmatrix} \begin{pmatrix} J^{-1} & O \\ O & J' \end{pmatrix}$$
$$= \begin{pmatrix} I & JXJ' - X \\ O & I \end{pmatrix} = \begin{pmatrix} I & B \\ O & I \end{pmatrix}$$

Note that B' = B and X' = X. We only need to find x_{ij} for all $i \le j \in \mathbb{N}$. Comparing entries of two sides of B = JXJ' - X we obtain for all $i \in \mathbb{N}$

$$b_{ii} = x_{i+1,i} + x_{i,i+1} + x_{i+1,i+1}$$

= $2x_{i,i+1} + x_{i+1,i+1}$,

and for all $k \in \mathbb{N}$

$$b_{i,i+k} = x_{i+1,i+k} + x_{i,i+1+k} + x_{i+1,i+1+k},$$

which is equivalent to

$$x_{i+1,i+1} = b_{ii} - 2x_{i,i+1},$$

$$x_{i+1,i+1+k} = b_{i,i+k} - x_{i+1,i+k} - x_{i,i+1+k}.$$

We can choose the elements in the first row of *X* to be arbitrary. Then all the elements in first column of *X* are obtained from X' = X. Next, from the equations above, we can find x_{22} , $x_{23} = x_{32}$, $x_{24} = x_{42}$, $x_{25} = x_{52}$, and so on. In this way, row by row and column by column, we can find any element x_{ij} of *X* in finite number of steps.

Lemma 4 Assume that R is a commutative ring such that 1 is a sum of two invertible elements. Then the commutator subgroup of the group \mathbb{T} coincides with the group \mathbb{UT} and $c(\mathbb{T}) \leq 2$. Furthermore, the lower central series of the group \mathbb{T} is

$$\gamma_0(\mathbb{T}) = \mathbb{T}, \quad \gamma_k(\mathbb{T}) = \mathbb{UT}, \quad \text{for all} \quad k \ge 1,$$

i.e., it stabilizes on the group \mathbb{UT} .

Proof: Note that there exists a group isomorphism from $UT(\infty, R)$ to UT:

$$A \mapsto \begin{pmatrix} A & O \\ O & (A')^{-1} \end{pmatrix}$$

From Theorem 6 we can easily obtain the conclusion. $\hfill \Box$

In the same way, from Theorem 5 we have the following result.

Corollary 1 Assume that R is a commutative ring such that 1 is a sum of two invertible elements. Then the commutator subgroup of the group \mathbb{GL}_{VK} coincides with the group \mathbb{E}_{VK} .

Theorem 7 Assume that R is a commutative ring such that 1 is a sum of two invertible elements. Then the commutator subgroup of $TGSp(2, \infty, R)$ coincides with $USp(2, \infty, R)$ and $c(TGSp(2, \infty, R)) \leq 3$. Furthermore, the lower central series of the group $TGSp(2, \infty, R)$ is

$$\gamma_0(\text{TGSp}(2,\infty,R)) = \text{TGSp}(2,\infty,R),$$

$$\gamma_k(\text{TGSp}(2,\infty,R)) = \text{USp}(2,\infty,R),$$

for all $k \ge 1$,

i.e., it stabilizes on the group $USp(2, \infty, R)$.

Proof: For any two elements in TGSp $(2, \infty, R)$ having the form

$$\begin{pmatrix} A_1 & B_1 \\ O & \lambda_1(A_1')^{-1} \end{pmatrix}, \begin{pmatrix} A_2 & B_2 \\ O & \lambda_2(A_2')^{-1} \end{pmatrix},$$

the commutator is

$$\begin{bmatrix} \begin{pmatrix} A_1 & B_1 \\ O & \lambda_1(A'_1)^{-1} \end{pmatrix}, \begin{pmatrix} A_2 & B_2 \\ O & \lambda_2(A'_2)^{-1} \end{pmatrix} \end{bmatrix}$$
$$= \begin{pmatrix} \begin{bmatrix} A_1, A_2 \end{bmatrix} & B_3 \\ O & (\begin{bmatrix} A_1, A_2 \end{bmatrix}')^{-1} \end{pmatrix},$$

where $\lambda_1, \lambda_2 \in \mathbb{R}^*, A_1, A_2 \in T(\infty, \mathbb{R})$ and

$$B_{3} = A_{1}^{-1}A_{2}^{-1}(A_{1}B_{2} + \lambda_{2}B_{1}(A_{2}')^{-1}) - (\lambda_{1}A_{1}^{-1}A_{2}^{-1}B_{2}A_{2}' + A_{1}^{-1}B_{1}A_{1}'A_{2}') \cdot (A_{1}')^{-1}(A_{2}')^{-1}.$$

From

$$[T(\infty, R), T(\infty, R)] \subseteq UT(\infty, R),$$

we can easily obtain

$$[TGSp(2, \infty, R), TGSp(2, \infty, R)] \subseteq USp(2, \infty, R).$$
(1)

From Lemma 1, $USp(2, \infty, R) = U \rtimes UT$. Thus we know that for all elements *G* in $USp(2, \infty, R)$, there exists a unique *H* in U and *K* in UT such that G = HK. For each $G \in USp(2, \infty, R)$, we can write

$$H = \begin{pmatrix} I & B \\ O & I \end{pmatrix}, K = \begin{pmatrix} A & O \\ O & (A')^{-1} \end{pmatrix},$$

ScienceAsia 43 (2017)

$$G = \begin{pmatrix} A & B_0 \\ O & (A')^{-1} \end{pmatrix} = \begin{pmatrix} I & B \\ O & I \end{pmatrix} \begin{pmatrix} A & O \\ O & (A')^{-1} \end{pmatrix}$$
$$= HK,$$

where $A \in UT(\infty, R)$ and $B = B' = B_0A' = A'B_0$, $H \in \mathbb{U}$, and $K \in \mathbb{UT}$. From Lemma 3 we know *H* is a commutator of $USp(2, \infty, R)$. And from Lemma 4 we obtain that *K* can be written as a product of two commutators of \mathbb{T} . So each element in $USp(2, \infty, R)$ can be written as a product of three commutators of $USp(2, \infty, R)$.

$$USp(2, \infty, R) \subseteq [USp(2, \infty, R), USp(2, \infty, R)] \subseteq [USp(2, \infty, R), TGSp(2, \infty, R)] \subseteq [TGSp(2, \infty, R), TGSp(2, \infty, R)].$$
(2)

Thus from (1) we obtain

$$USp(2, \infty, R)$$

= [USp(2, \omega, R), USp(2, \omega, R)]
= [USp(2, \omega, R), TGSp(2, \omega, R)]
= [TGSp(2, \omega, R), TGSp(2, \omega, R)].

Then the lower central series of $TGSp(2, \infty, R)$ is

$$\gamma_{0}(\text{TGSp}(2, \infty, R)) = \text{TGSp}(2, \infty, R),$$

$$\gamma_{1}(\text{TGSp}(2, \infty, R)) = \text{USp}(2, \infty, R),$$

$$\gamma_{2}(\text{TGSp}(2, \infty, R))$$

$$= [\gamma_{1}(\text{TGSp}(2, \infty, R)), \text{TGSp}(2, \infty, R)]$$

$$= \text{USp}(2, \infty, R)$$

and so on.

When we chose $\lambda_1 = \lambda_2 = 1$, the two elements

$$\begin{pmatrix} A_1 & B_1 \\ O & \lambda_1(A_1')^{-1} \end{pmatrix}, \begin{pmatrix} A_2 & B_2 \\ O & \lambda_2(A_2')^{-1} \end{pmatrix}$$

in TGSp(2, ∞ , *R*) are also two elements in the group TSp(2, ∞ , *R*). Then (1) and (2) in the proof of Theorem 7 are changed to

$$[TSp(2, \infty, R), TSp(2, \infty, R)] \subseteq USp(2, \infty, R)$$

and

$$USp(2, \infty, R) \subseteq [USp(2, \infty, R), USp(2, \infty, R)]$$
$$\subseteq [USp(2, \infty, R), TSp(2, \infty, R)]$$
$$\subseteq [TSp(2, \infty, R), TSp(2, \infty, R)],$$

respectively. So

$$USp(2, \infty, R) = [USp(2, \infty, R), USp(2, \infty, R)]$$
$$= [USp(2, \infty, R), TSp(2, \infty, R)]$$
$$= [TSp(2, \infty, R), TSp(2, \infty, R)].$$

And the lower central series of $TSp(2, \infty, R)$ is

$$\gamma_0(\text{TSp}(2, \infty, R)) = \text{TSp}(2, \infty, R),$$

$$\gamma_1(\text{TSp}(2, \infty, R)) = \text{USp}(2, \infty, R),$$

$$\gamma_2(\text{TSp}(2, \infty, R))$$

$$= [\gamma_1(\text{TSp}(2, \infty, R)), \text{TSp}(2, \infty, R)]$$

$$= \text{USp}(2, \infty, R).$$

Thus we can obtain the following corollary.

Corollary 2 Assume that R is a commutative ring such that 1 is a sum of two invertible elements. Then the commutator subgroup of $TSp(2, \infty, R)$ coincides with the group $USp(2, \infty, R)$ and $c(TSp(2, \infty, R)) \leq 3$. Furthermore, the lower central series of the group $TSp(2, \infty, R)$ is

$$\begin{split} \gamma_0(\mathrm{TSp}(2,\infty,R)) &= \mathrm{TSp}(2,\infty,R), \\ \gamma_k(\mathrm{TSp}(2,\infty,R)) &= \mathrm{USp}(2,\infty,R), \quad \forall k \geq 1 \end{split}$$

i.e., it stabilizes on the group $USp(2, \infty, R)$.

Now we finish the proof of Theorem 1 and Theorem 2. *Proof*: Using the method in Theorem 7, we can easily obtain

 $[GSp_{VK}(2,\infty,R),GSp_{VK}(2,\infty,R)] \subseteq USp_{VK}(2,\infty,R)$

and

$$[\operatorname{Sp}_{VK}(2,\infty,R),\operatorname{Sp}_{VK}(2,\infty,R)] \subseteq \operatorname{USp}_{VK}(2,\infty,R),$$

which are similar to (1). From Lemma 2 we know that $USp_{VK}(2, \infty, R) = \mathbb{U} \rtimes \mathbb{E}_{VK}$. So for each $G \in USp_{VK}(2, \infty, R)$, there exists a decomposition

$$G = \begin{pmatrix} I & B \\ O & I \end{pmatrix} \begin{pmatrix} A & O \\ O & (A')^{-1} \end{pmatrix},$$

where

$$\begin{pmatrix} I & B \\ O & I \end{pmatrix} \in \mathbb{U}, \quad \begin{pmatrix} A & O \\ O & (A')^{-1} \end{pmatrix} \in \mathbb{E}_{\mathrm{VK}}.$$

Then from Lemma 3 and Corollary 1 we obtain

$$[GSp_{VK}(2,\infty,R),GSp_{VK}(2,\infty,R)] \supseteq USp_{VK}(2,\infty,R)$$

and

 $[\operatorname{Sp}_{VK}(2,\infty,R),\operatorname{Sp}_{VK}(2,\infty,R)] \supseteq \operatorname{USp}_{VK}(2,\infty,R).$

Thus we obtain the conclusions of Theorem 1 and Theorem 2. $\hfill \Box$

To prove Theorem 3 and Theorem 4, Corollary 3 of Lemma 5 will be used. Next we show Lemma 5 (which is also proved in Ref. 9 in a different way) and two corollaries.

Lemma 5 Assume that R is an associative ring with an infinite field K in the centre Z(R) of R. Every element $C \in UT(\infty, R)$ is a commutator of $T(\infty, R)$.

Proof: Let $A = \text{diag}(a_1, a_2, ..., a_n, ...)$ be a diagonal matrix with pairwise distinct non-zero elements $a_1, a_2, ..., a_n, ...$ of K in its diagonal. We will find $X = (x_{ij}) \in \text{UT}(\infty, R)$ such that $C = X^{-1}A^{-1}XA$. Since every unitriangular matrix is invertible, this equation is equivalent to

$$AXC = XA.$$

We use induction on n = j - i (i.e., n is a number of the superdiagonal of X above the main diagonal). When n = 1, comparing the (i, i + 1) entries of both sides of the matrix equation we can obtain

$$a_i(c_{i,i+1} + x_{i,i+1}) = a_{i+1}x_{i,i+1},$$

which implies

$$(a_{i+1}-a_i)x_{i,i+1}=a_ic_{i,i+1}.$$

Now we suppose that x_{ij} for all j - i < n has been found. Comparing the (i, i + n) entries of both sides of the matrix equation we obtain

$$a_i(c_{i,i+n} + x_{i,i+1}c_{i+1,i+n} + x_{i,i+2}c_{i+2,i+n} + \cdots + x_{i,i+n-1}c_{i+n-1,i+n} + x_{i,i+n}) = a_{i+n}x_{i,i+n}$$

which is equivalent to

$$(a_{i+n} - a_i)x_{i,i+n} = a_i(c_{i,i+n} + x_{i,i+1}c_{i+1,i+n} + x_{i,i+2}c_{i+2,i+n} + \dots + x_{i,i+n-1}c_{i+n-1,i+n}).$$

Thus we can find $x_{i,i+n}$ for all $i \in \mathbb{N}$.

Corollary 3 Assume that K is an infinite field. Then every element $C \in UT(\infty, K)$ is a commutator of $T(\infty, K)$.

Corollary 4 Assume that *K* is an infinite field. Then the commutator subgroup of $\text{TSp}(2, \infty, R)$ coincides with the group $\text{USp}(2, \infty, R)$ and $c(\text{TSp}(2, \infty, R)) \leq$ 2. Furthermore the lower central series of the group $\text{TSp}(2, \infty, R)$ is

 $\gamma_0(\mathrm{TSp}(2,\infty,R)) = \mathrm{TSp}(2,\infty,R),$ $\gamma_k(\mathrm{TSp}(2,\infty,R)) = \mathrm{USp}(2,\infty,R), \quad \forall k \ge 1,$

i.e., it stabilizes on the group $USp(2, \infty, R)$ *.*

Now we finish the proof of Theorem 3 and Theorem 4. *Proof*: From Theorem 1 and Theorem 2, we know that the commutator subgroup of $Sp_{VK}(2, \infty, K)$ coincides with $USp_{VK}(2, \infty, K)$. So does the commutator subgroup of $GSp_{VK}(2, \infty, K)$. Next we will determine the commutator width of $Sp_{VK}(2, \infty, K)$ and $GSp_{VK}(2, \infty, K)$.

From Lemma 2 we know that every element of $USp_{VK}(2, \infty, K)$ can be written as a product of an element of \mathbb{U} and an element of \mathbb{E}_{VK} . Each element of $\mathbb{E}_{VK}(\infty, K)$ has the following decomposition:

$$\begin{pmatrix} M_{11} & M_{12} \\ O & M_{22} \end{pmatrix} = \begin{pmatrix} I_n & M_{12} \\ O & M_{22} \end{pmatrix} \begin{pmatrix} M_{11} & O \\ O & I \end{pmatrix}$$

where $M_{11} \in E(n, K)$ and $M_{11} \in UT(\infty, K)$. From Theorems 1 and 2 of Ref. 10, we know that for any field *K* except \mathbb{F}_2 and \mathbb{F}_3 , every element of SL(*n*,*K*) (coinciding with E(*n*,*K*)) is a commutator of GL(*n*,*K*). Note that

$$\begin{bmatrix} \begin{pmatrix} A_1 & O \\ O & I \end{pmatrix}, \begin{pmatrix} A_2 & O \\ O & I \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} A_1, A_2 \end{bmatrix} & O \\ O & I \end{pmatrix},$$

and the matrix

$$\begin{pmatrix} M_{11} & O \\ O & I \end{pmatrix}$$

is a commutator. From Corollary 3 it follows that

$$\begin{pmatrix} I_n & M_{12} \\ O & M_{22} \end{pmatrix}$$

is a commutator of GL(n, K). So

$$\begin{pmatrix} M_{11} & M_{12} \\ O & M_{22} \end{pmatrix}$$

is a product of at most 2 commutators. Note that there is a group isomorphism from $E_{VK}(\infty, R)$ to \mathbb{E}_{VK} :

$$A \mapsto \begin{pmatrix} A & O \\ O & (A')^{-1} \end{pmatrix},$$

and any element of \mathbb{E}_{VK} is a product of at most 2 commutators. Finally, from Lemma 3, every element of USp_{VK}(2, ∞ , *K*) can be written as a product of at most 3 commutators.

REFERENCES

- 1. Kerov SW (2003) Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Amer Math Soc, Providence, RI.
- Vershik AM, Kerov SW (2007) Four drafts on the representation theory of the group of infinite matrices over a finite field. *Zap Nauchn Sem S Peterburg Otdel Mat Inst Steklov* 344, 5–36.

ScienceAsia 43 (2017)

- Vershik AM, Kerov SW (1998) On an infinite dimensional group over a finite field. *Funktsional Anal i Prilozhen* 32, 3–10 [in Russian].
- 4. Gupta CK, Hołubowski W (2012) Commutator subgroup of Vershik-Kerov group. *Lin Algebra Appl* **436**, 4279–84.
- Gupta CK, Hołubowski W (2015) Commutator subgroup of Vershik-Kerov group II. *Lin Algebra Appl* 471, 85–95.
- 6. Hołubowski W (2002) Parabolic subgroups of Vershik-Kerov's group. *Proc Am Math Soc* **130**, 2579–82.
- Hołubowski W, Słowik R (2012) Parabolic subgroups of groups of column-finite infinite matrices. *Lin Algebra Appl* 437, 519–24.
- Słowik R (2012) The lower central series of subgroups of the Vershik-Kerov group. *Lin Algebra Appl* 436, 2299–310.
- Bier A, Hołubowski W (2015) A note on commutators in the group of infinite triangular matrices. *Lin Multilin Algebra* 63, 2301–10.
- 10. Thompson RC (1961) Commutators in the special and general linear groups. *Trans Am Math Soc* **101**, 16–33.