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Some refinements of operator inequalities
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ABSTRACT: In this note, we refine some operator inequalities for positive unital linear maps and then give the p > 1

power inequality of the Ando-Li-Mathias geometric mean.
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INTRODUCTION

Let M, m be scalars and I be the identity operator.
Let %B(¢) denote the C*-algebra of all bounded
linear operators on a Hilbert space (%, (:,-)).
Throughout this paper, a capital letter means an
operator in %(5¢). An operator A is called positive
if (Ax, x) = 0 for all x € #, and we write A= 0. An
operator A is said to be strictly positive if A> 0. For
self-adjoint operators A,B € B(5), we say B = A
(B<A)ifB—A>0 (B—A<0). The operator norm
is denoted by ||-||. We identify the absolute value
operator of A with JA| = (A*A)"/2, where A* stands
for the adjoint of A. A linear map @ is positive if
®(A) = 0 whenever A > 0. It is said to be unital if
d()=1.

For A,B > 0, the geometric mean AfB b2 is
defined by

AﬂB :A1/2(A_I/ZBA_l/z)l/zAl/z.

One motivation for such a notion is of course the
operator AM-GM inequality:

A+EB > AfB.
2
We denote the Ando-Li-Mathias geometric
mean®* for A,...,A, > 0 by G(A,,...,A,). There
is no explicit formula for G(4,,...,A,) in terms of
A,,...,A, when n = 3. However, the only two basic
properties that we need are

GA,.. ., AN =G"(A,,....A)), (1)

A1+"'+An (2)

G(A,,...,A) <

It is well known that for two positive operators
Aand B,

A=ZB#» A’ > B? for p>1.
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Let 0 < mI < A< MI and ® be positive unital linear
map. Lin (Theorem 2.10 in Ref. 5) proved the
operator inequalities

|B(A1)B(A) + (A)B(A!

| < 5u, 3)
(A HP(A) +dA)PAY

1
<3

<z @
where y = (M +m)?/Mm.

Fu (Theorem 4 in Ref. 6) presented the follow-
ing generalizations of (3) and (4). Let0 <mlI <A<
MI and p = 1. Then for positive unital linear map
o,

@, (A)] < P (5)
Vy(4) < % (6)

where W, (A) = ®P(A )PP (A) + PP (A)PP(A).
Let 0 < ml <A; < MI fori=1,...,n. Fujii’

proved the reverse operator AM-GM inequality

Aj+--+A
———1 < uG(A,,..

AL )
Lin (Theorem 3.2 in Ref. 8) revealed that the reverse
AM-GM inequality (7) can be squared:

A+ + AN

(%) S(GUPGHAL.. A, (8)
Fu (Theorem 5 in Ref. 6) also generalized (8) as
follows. Let 0 <mlI <A; < MI, (i=1,...,n) and
p = 1. Then for positive unital linear map @,

A+ + AN 2
(%) <(30°) G*(A,...,A,). (9

In this paper, we will give some operator inequalities
which are refinements of (5), (6) and (9).
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MAIN RESULTS

We give some Lemmas before we present the main
theorems of this paper. The following two lemmas
can be found in Ref. 9 (Theorem 1.6.9 and p. 39,
Kadison’s inequality).

Lemma 1 Let A and B be positive operators. Then for
1<Sr<oo

A"+ BT < [I(A+B)"]|. (10)

Lemma 2 Let $ be positive unital linear map. Then
for every self-adjoint operator A

$2(A) < 9(A2). (11

Furthermore, in Lemma 2 if A is positive and 1 < r <
2, then

3"(A) < (A"). (12)

The next two lemmas are presented in
Refs. 5,10,11 (Lemma 2.9 in Ref. 5).

Lemma 3 Let A, B > 0. Then the following norm
inequality holds:

lAB|| < gllA+ B>, (13)
Lemma 4 For any bounded linear operator X
tI X
< < = 0.
XI<tle||X|<te [X* tl] 0 14

Now we present the first main result in the
following theorem.

Theorem 1 Let A= 0. Then for positive unital linear
map &,

Up,
p
2

1sp<2,
Py, P22

AARV/AN

1
NACGES {i
2

>

where p, = (M®* + m*)?*/(Mm)®, pp, = (M® +
m®)/(Mm)? and

Uy,

) p<2,
p
P 2.

3 1<
T,(A)<{? o (15)
2M2.15 p=

Proof: We first consider the case of p = 2. Compute
[|9P (A)MPmP &P (A7)
< 31197 (A) + MPmPRP (AT (by (13))
= ;I @*W)P2 + (M*m* B> (A~ 1))P/|)?
< 3@+ MPmPe* A )|P  (by (10))
<IM2+m?P by (11) and® (4.6)).
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So
9P (A)2P (A < b ;-

From (14) and (16), we obtain

(16)

TRV OV o) I
[eP(ADRP@A)  quh, [T

and
w1 eeew)
| P(A)BP (A7) U1 -

Summing these two operator matrices, the matrix
1,.p
[2“2,11 ;IJP(A) }
¥, (A) 5“12),11 ’

is positive. From (14), we achieve the operator

inequality
@, (A < 305,

Secondly, we consider the case of 1 < p < 2. Com-
pute
€ (A)MPmP &P (A7)]|
< lle* (@) +MPmPEP(ADI? (by (13))
< zlle@)+ MPmPe(A)*  (by (12))
1 2
< Z(MP +mP)=

The last inequality above holds as follows. Since 0 <
ml <A< MI and 0 < mPI < AP < MPI, we have

(MP —AP)(mP —AP)A™P <0
& MPMPA™P + AP < MP +mP,

and hence
MPmPO(A™P) + B(AP) < MP +mP.

So
|87 (A)@P (Al < 31,

From (14) and the above inequality, we obtain

Tl dP(A)PP (A ] >0
[2P(AT)RP(A) gl ’
and
il AP
| aP(A)BP(AT) Tl

Summing these two operator matrices, we have

1
[EMPI \I;P(A)] > 0.
Uy(A)  supl
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From (14) we obtain
ARSI

As |X| = X for any self-adjoint X, (15) follows from
(1). The desired inequalities follow. O

Remark 1 For any p = 1in (1),

and

Thus (1) is the refinement of (5). Similarly, (15) is
tighter than (6).

In the next theorem, we show a refinement of
the reverse operator AM-GM inequality (9).

Theorem 2 Let 0 < mI < A; < MI (i =1,...,n).
Then for positive unital linear map ®,

(Al + .- +An )Zp
n
< {(%;u‘p)szp(Alﬁ s 7An);

ps2, a7
(Gu51)°G*(Ay,...,A,), 2.

1<
p=

Proof: Firstly, consider the case of p = 2. Compute

A+ +AY
(Y st
n
) ((A1+---+An)2)p/2
<z ———— +
n
2
(M*m*G*(Ay,..., AP (by (13)
DI 2
<1 ’(u) .
n
p
M*m?G™%(A,,...,A,)| (by(10))
A2+ A
g% ;_F
n
p

M*m?G™%(A,,...,A,)

(by operator convexity of A?)
< %(M 241 m2)p.

The last inequality above is obtained as follows.

From
0<m?l <A <M’
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and
2 A2\(2 A2\ A2

(M2 —A%)(m*—ANA2 <0,
it suffices to show that, fori =1,...,n,

A2+ MPmPA? S MP 4+ m?
and

2 2 —2 —2
AT+ +AY +M2m2A1 +- A
n n

hold. Furthermore, by (1) and (2), we have

2 2
At A

n

Thus
A+ +A p
(A2t G,
n

From Ref. 12 (p. 40), we know that the last inequal-
ity is equivalent to

A +---+A 2p 5
(%) <(1u8.) G¥(A,,....A,).

Next, consider the case of 1 < p < 2. Compute

< M?+m?

+M?*m?G™%(A,,...,A,) S M?*+m?.

1.p
S ghg,

1

Ap+-+ANN
H(l—) MPmPGP(A,,...,A,)
n
p
] [Crahe
n
2
MPmPG—P(Al, . -’An) (bY (13))
P 2
At A
< || ——L2+MPmPGP(A;,...,A,)
n

(by operator convexity of A?)
1 2
< 1(MP +mP)>.

As with the proof of the case of p = 2, the last
inequality is obtained. So

Ap+--+AN
(At G,
n

which is equivalent to

(A1+"‘+An
n

1
< zMp,

2p 2
) <(3u,)" G*(Ay,...,A,).
O

Remark 2 For any p 2 1 in (17), the following
inequalities always hold:

()’ < Gury?,
and )

(u5.) < Gury”
Thus (17) is sharper than (9).
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