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ABSTRACT: We investigate the existence of positive solutions for a class of nonlinear Hadamard fractional differential
equations with integral boundary conditions. By using the properties of Green’s functions and the Krasnoselskii-
Zabreiko fixed point theorem, two new existence results for at least one positive solution are obtained. Two examples
are given to illustrate the main results.
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INTRODUCTION

Fractional differential equations can describe phe-
nomena in fields such as control, porous media,
electrochemistry, viscoelasticity, and electromag-
netism1–4. Zhou and Peng5, 6 obtained the existence
and uniqueness of local and global mild solutions
for the time-fractional Navier-Stokes equations by
using fixed point theory. Some authors studied the
existence and multiplicity of solutions or positive
solutions for nonlinear boundary value problems
involving fractional differential equations with var-
ious kinds of boundary value conditions7–10. and
quoted the references therein. For example, the
solutions of fractional integrodifferential equations
with boundary value conditions have been inves-
tigated11, 12. Yang13 obtained the existence and
multiplicity of positive solutions for nonlinear Ca-
puto fractional differential equations with integral
boundary conditions. Henderson and Luca investi-
gated the positive solutions of nonlinear boundary
value problems for systems of fractional differential
equations14.

In the past ten years, most of the work on the
topic has been based on Riemann-Liouville and Ca-
puto type fractional differential equations. Recently,
more studies have looked at the boundary value
problems of nonlinear Hadamard fractional differ-
ential equations15–18. Ahmad and Ntouyas19, 20

studied the existence and uniqueness of solutions

for fractional integral boundary value problem in-
volving Hadamard-type fractional differential equa-
tions/systems with integral boundary conditions
by applying some standard fixed point theorems.
Ahmad et al21 investigated the existence of solu-
tions for fractional boundary value problem involv-
ing Hadamard-type fractional differential inclusions
and integral boundary conditions based on stan-
dard fixed point theorems for multivalued maps.
By applying some inequalties with Green’s func-
tions and Guo-Krasnoselskii fixed point theorems,
Yang22, 23 considered the existence of positive so-
lution for nonlinear Hadamard fractional differen-
tial equations with four-point coupled and coupled
integral boundary conditions, respectively. Aljoudi
et al studied a nonlocal boundary value problem of
Hadamard type coupled sequential fractional differ-
ential equations supplemented with coupled strip
conditions24.

Motivated by above results, the main aim of
this paper is to investigate the following nonlinear
Hadamard fractional differential equation with in-
tegral boundary conditions:

Dqu(t)+ f (t, u(t)) = 0, t ∈ [1, e],

u(m)(1) = 0, u(e) =

∫ e

1

g(t)u(t)
dt
t

,
(1)

where 0¶m¶ n−2, n ∈N, n¾ 3, q ∈ (n−1, n] is a
real number, Dq is the Hadamard fractional deriva-
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tive of fractional order q, f ∈ C([1, e]×R+,R), and
g ∈ C([1, e],R+). The nonlinear term f may grow
both superlinearly and sublinearly at ∞. In this
paper, by using the properties of Green’s functions
and the Krasnoselskii-Zabreiko fixed point theorem,
two new existence results for at least one positive
solution for (1) are obtained.

PRELIMINARIES

Definition 1 The Hadamard derivative of fractional
order q for a function g : [1,∞)→ R is defined3 as

Dq g(t) =
1

Γ (n− q)

�

t
d
dt

�n
∫ t

1

�

log
t
s

�n−q−1 g(s)
s

ds,

where n− 1 < q < n, n = [q] + 1, and [q] denotes
the integer part of the real number q.

Definition 2 The Hadamard fractional integral of
order q for a function g : [1,∞)→ R is defined3

as

Iq g(t) =
1
Γ (q)

∫ t

1

�

log
t
s

�q−1 g(s)
s

ds, q > 0,

provided the integral exists.

Set ρ(t) = (log t)q−1(1− log t) and ρ̂(t) = (1−
log t)q−1 log t, for q > 2, t ∈ [1, e], and

G(t, s) =
1
Γ (q)

¨

Λ− (log(t/s))q−1, 1¶ s ¶ t ¶ e,

Λ, 1¶ t ¶ s ¶ e,
(2)

where Λ= (log t)q−1(1− log s)q−1.

Lemma 1 (Ref. 22) The function G(t, s) defined by
(2) has the following properties.
(P1) G(t, s) is a continuous function on (t, s) ∈
[1, e]2 and G(t, s)> 0, for t, s ∈ (1, e).

(P2) ρ(t)ρ̂(s)¶ Γ (q)G(t, s)¶ (q−1)ρ̂(s), for t, s ∈
[1, e].

(P3) ρ(t)ρ̂(s)¶ Γ (q)G(t, s)¶ (q−1)ρ(t), for t, s ∈
[1, e].

For the sake of simplicity, we always assume that
the following conditions hold.
(H1) κ= 1−

∫ e

1(log t)q−1 g(t)dt/t > 0;
(H2) there exists a positive constant M such that

f (t, u(t))¾ −M , for any (t, u) ∈ [1, e]×R+.

Lemma 2 Let x ∈ C[1, e]. Then the Hadamard
fractional boundary value problem

Dqu(t)+ x(t) = 0, t ∈ [1, e],

u(m)(1) = 0, u(e) =

∫ e

1

g(t)u(t)
dt
t

,
(3)

where 0¶ m¶ n−2, n ∈ N, n¾ 3, q ∈ (n−1, n] is a
real number, has a unique solution in the form

u(t) =

∫ e

1

H(t, s)x(s)
ds
s

,

where

H(t, s) = G(t, s)+
(log t)q−1

κ

∫ e

1

G(t, s)g(t)
dt
t

.

Proof : As argued in Ref. 3, the solution of the
Hadamard differential equation in (3) can be writ-
ten as the equivalent integral equation

u(t) = c1(log t)q−1+ c2(log t)q−2+ · · ·+ cn(log t)q−n

−
1
Γ (q)

∫ t

1

�

log
t
s

�q−1
x(s)

ds
s

. (4)

From u(m)(1) = 0, 0¶m¶ n−2, we have cn = cn−1 =
· · ·= c2 = 0. Thus (4) reduces to

u(t) = c1(log t)q−1−
1
Γ (q)

∫ t

1

�

log
t
s

�q−1
x(s)

ds
s

.

(5)
Using the integral boundary condition u(e) =
∫ e

1 g(t)u(t)dt/t in (5), we have

c1 =

∫ e

1

g(t)u(t)
dt
t
+

1
Γ (q)

∫ e

1

�

log
e
s

�q−1
x(s)

ds
s

.

(6)
Substituting (6) into (5), we obtain

u(t) = (log t)q−1

∫ e

1

g(t)u(t)
dt
t

+(log t)q−1 ·
1
Γ (q)

∫ e

1

�

log
e
s

�q−1
x(s)

ds
s

−
1
Γ (q)

∫ t

1

�

log
t
s

�q−1
x(s)

ds
s

= (log t)q−1

∫ e

1

g(t)u(t)
dt
t
+

∫ e

1

G(t, s)x(s)
ds
s

.

(7)

Multiplying (7) by g(t)/t and integrating the result-
ing identity with respect to t from 1 to e, we obtain

∫ e

1

g(t)u(t)
dt
t
=

∫ e

1

(log t)q−1 g(t)
dt
t

∫ e

1

g(t)u(t)
dt
t

+

∫ e

1

g(t)

∫ e

1

G(t, s)x(s)
ds
s

dt
t

.
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Solving for
∫ e

1 g(t)u(t)dt/t, we obtain

∫ e

1

g(t)u(t)
dt
t
=

1
κ

∫ e

1

g(t)

∫ e

1

G(t, s)x(s)
ds
s

dt
t

.

(8)
Combining (7) and (8) gives

u(t) =
(log t)q−1

κ

∫ e

1

g(t)

∫ e

1

G(t, s)x(s)
ds
s

dt
t

+

∫ e

1

G(t, s)x(s)
ds
s
=

∫ e

1

H(t, s)x(s)
ds
s

.

2

Lemma 3 The following inequalities hold:

K1ρ̂(s)¶
∫ e

1

H(t, s)ρ̂(t)
dt
t
¶K2ρ̂(s), s ∈ [1, e],

where

K1 =
qΓ (q)
Γ (2q+1)

�

q
2q+1

+
1
κ

∫ e

1

ρ(t)g(t)
dt
t

�

,

K2 =
q−1
Γ (q+2)

�

1+
1
κ

∫ e

1

g(t)
dt
t

�

.

Proof : Combining Lemmas 1 and 2, we obtain

1
Γ (q)

�

ρ(t)+
(log t)q−1

κ

∫ e

1

ρ(t)g(t)
dt
t

�

ρ̂(s)

¶ H(t, s)¶
q−1
Γ (q)

�

1+
1
κ

∫ e

1

g(t)
dt
t

�

ρ̂(s). (9)

Multiplying the above equation by ρ̂(t)/t and inte-
grating the resulting identity with respect to t from
1 to e, we obtain the desired results. 2

Let E = C([1, e],R), ‖u‖=maxt∈[1,e]|u(t)|,P =
{u ∈ E : u(t)¾ L−1ω(t)‖u‖, ∀t ∈ [1, e]}, where L=
(q − 1)(1+

∫ e

1(g(t)/t)dt/κ)/Γ (q), ω(t) = (ρ(t) +
(log t)q−1

∫ e

1(ρ(t)g(t)/t)dt/κ)/Γ (q). Then (E ,‖·‖)
becomes a real Banach space with the norm ‖u‖ =
maxt∈[1,e]|u(t)| and P is a cone on E . We denote
Bτ = {u ∈ E : ‖u‖< τ} for τ > 0 in the following.

We now note that u is the solution of (1) if and
only if u is a fixed point of the operator

(Au)(t) =

∫ e

1

H(t, s) f (s, u(s))
ds
s

.

Clearly, from the Arzelà-Ascoli Theorem, A : E → E
is a completely continuous operator. We now show

the relation between the fixed point of A and the
fixed point of the operator B defined by

(Bu)(t) =
∫ e

1

H(t, s)F(s, u(s)−w(t))
ds
s

,

where

F(t, x) =

¨

f̄ (t, x), t ∈ [1, e], x ¾ 0,

f̄ (t, 0), t ∈ [1, e], x < 0,

the function f̄ (t, x)+M , f̄ : [1, e]×R+→R+ is con-
tinuous and w(t) = M

∫ e

1{H(t, s)/s}ds, t ∈ [1, e].
Clearly, B : E → E is also a completely continuous
operator. From Lemma 3, we can easily obtain
B(P ) ⊂ P . By Lemma 2 in Ref. 25, we easily have
the following lemma.

Lemma 4 If u∗ is a positive fixed point ofA, then u∗+
w is a positive fixed point of B. Conversely, if u is a
positive fixed point of B and u(t) ¾ w(t), t ∈ [1, e],
then u∗ = u−w is a positive fixed point of A.

Lemma 5 (Ref. 26) Let E be a real Banach space
andP a cone of E . Suppose thatA : (B̄R\Br)∩P →
P is a completely continuous operator with 0< r < R.
If either
(i) Au� u for each u∈ ∂Br∩P andAu� u for each

u ∈ ∂BR ∩P or
(ii) Au � u for each u ∈ ∂Br ∩P and Au � u for

each u ∈ ∂BR ∩P ,
then A has at least one fixed point on (BR\B̄r)∩P .

MAIN RESULTS

In this section, by the Krasnoselskii-Zabreiko fixed
point theorem in Lemma 5, we obtain two new
existence results for at least one positive solution
for the boundary value problem (1). To obtain a
positive fixed point of the operator A, by Lemma 4,
we need only seek the positive fixed point u of B and
u¾ w. It follows from (P3) in Lemma 1 that

∫ e

1

H(t, s)
ds
s

=

∫ e

1

�

G(t, s)+
(log t)q−1

κ

∫ e

1

G(t, s)g(t)
dt
t

�

ds
s

¶
q−1
Γ (q)

∫ e

1

�

ρ(t)+
(log t)q−1

κ

∫ e

1

ρ(t)g(t)
dt
t

�

ds
s

= (q−1)ω(t).
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For any u ∈ P and t ∈ [1, e], we have

u(t)−w(t) = u(t)−M

∫ e

1

H(t, s)
ds
s

= u(t)−M(q−1)ω(t)

¾ u(t)−ML(q−1)u(t)‖u‖−1.

Hence ‖u‖ ¾ ML(q − 1) = M(q − 1)2(1 +
∫ e

1(g(t)/t)dt/κ)/Γ (q) leads to u(t) ¾ w(t) for
t ∈ [1, e].

Next, let M−1
1 =K1 and M−1

2 =K2. Meanwhile,
we list the following assumptions on f :
(H3) lim infu→∞( f (t, u)/u) > M1 uniformly with

respect to t ∈ [1, e];
(H4) there exists Q(t) : [1, e]→ [0,+∞) such that

f (t, u) + M ¶ Q(t), for any u ∈ [0, M(q −
1)2(1 +

∫ e

1(g(t)/t)dt/κ)/Γ (q)] and t ∈ [1, e],
∫ e

1(ρ̂(s)Q(s)/s)ds ¶ M(q−1)/Γ (q);
(H5) lim infu→∞( f (t, u)/u) < M2 uniformly with

respect to t ∈ [1, e];
(H6) there exists Q(t) : [1, e] → [0,+∞), θ ∈
(0, (e− 1)/2) and t0 ∈ [1+ θ , e− θ] such that
f (t, u) + M ¾ Q(t), for any u ∈ [0, M(q −
1)2(1 +

∫ e

1(g(t)/t)dt/κ)/Γ (q)] and t ∈ [1 +

θ , e − θ],
∫ e−θ

1+θ (ω(t0)ρ̂(s)Q(s)/s)ds ¾ M(q −
1)2(1+

∫ e

1(g(t)/t)dt/κ)/Γ (q).

Theorem 1 Let (H1)–(H4) hold. Then the boundary
value problem (1) has at least one positive solution.

Proof : (H3) implies that lim infu→∞( f (t, u)/u) >
M1 uniformly with respect to t ∈ [1, e]. Conse-
quently, there exist ε > 0 and b > 0 such that
f (t, u) + M ¾ (M1 + ε)u − b for all u ∈ R+ and
t ∈ [1, e]. We now show that there exists a
large enough positive number R > M(q − 1)2(1 +
∫ e

1(g(t)/t)dt/κ)/Γ (q) such that

u� Bu, ∀u ∈ ∂BR ∩P . (10)

Indeed, if the claim is false, there exists u∈ ∂BR∩P
such that u¾ Bu. This yields, for all t ∈ [1, e]:

u(t)¾ (Bu)(t)

¾
∫ e

1

H(t, s)
�

(M1+ ε)(u(s)−w(s))− b
� ds

s
.

Multiplying this by ρ̂(t)/t and integrating over
[1, e], we obtain
∫ e

1

u(t)ρ̂(t)
dt
t
+

∫ e

1

ρ̂(t)

∫ e

1

H(t, s)
�

(M1+ ε)w(s)

+ b
� ds

s
dt
t
¾
∫ e

1

ρ̂(t)

∫ e

1

H(t, s)(M1+ ε)u(s)
ds
s

dt
t

.

It follows from the above inequality and Lemma 3
that

∫ e

1

u(t)ρ̂(t)
dt
t
+
K∈−(q)
Γ (q+2)

(b+M(M1+ ε)K2)

¾ (M1+ ε)K1

∫ e

1

u(t)ρ̂(t)
dt
t

.

The preceding inequality and u ∈ P imply that

K∞
L
‖u‖=

∫ e

1

L−1‖u‖ω(t)ρ̂(t)
dt
t
¶
∫ e

1

u(t)ρ̂(t)
dt
t

¶
Γ (q)K2(b+M(K −1

1 + ε)K2)

εK1Γ (q+2)
. (11)

From (11), we immediately have

‖u‖¶
LΓ (q)K2(b+M(K −1

1 + ε)K2)

εK 2
1 Γ (q+2)

:= N1 > 0.

If R > max{N1, M(q − 1)2(1 +
∫ e

1(g(t)/t)dt/κ)
/Γ (q)}, this contradicts u ∈ ∂BR ∩P . As a result,
(10) is true. On the other hand, by (H4) and (9), we
have

(Bu)(t) =
∫ e

1

H(t, s)F(t, u(s)−w(s))
ds
s

¶
∫ e

1

H(t, s)Q(s)
ds
s
¶
∫ e

1

Lρ̂(s)Q(s)
ds
s

¶
M(q−1)2

Γ (q)

�

1+
1
κ

∫ e

1

g(t)
dt
t

�

= ‖u‖,

for any (t, u)∈ [1, e]×∂Br , where r =M(q−1)2(1+
∫ e

1(g(t)/t)dt/κ)/Γ (q). Then we have ‖Bu‖ ¶ ‖u‖,
for any u ∈ ∂Br ∩P . This leads to u � Bu, for any
u ∈ ∂Br ∩P . Now Lemma 5 implies that B has at
least one fixed point on (BR\B̄r)∩P . Hence (1)
has at least one positive solution. 2

Theorem 2 Let (H1), (H2), (H5), and (H6) hold.
Then the boundary value problem (1) has at least one
positive solution.

Proof : (H5) implies that lim infu→∞( f (t, u)/u) <
M2 uniformly with respect to t ∈ [1, e]. Hence there
exist ε ∈ (0,M2) and b > 0 such that f (t, u)+M ¶
(M2 − ε)u + b for all u ∈ R+ and t ∈ [1, e]. We
now show that there exists a large enough positive
number R > M(q − 1)2(1 +

∫ e

1(g(t)/t)dt/κ)/Γ (q)
such that

u� Bu, ∀u ∈ ∂BR ∩P . (12)
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Indeed, if the claim (12) is false, there exists u ∈
∂BR ∩P such that u¶ Bu. This yields

u(t)¶ (Bu)(t)

¶
∫ e

1

H(t, s)
�

(M2− ε)(u(s)−w(s))+ b
� ds

s

¶
∫ e

1

H(t, s)
�

(M2− ε)u(s)+ b
� ds

s
,

for any t ∈ [1, e]. Multiplying the above inequality
by ρ̂(t)/t and integrating over [1, e], we obtain

∫ e

1

u(t)ρ̂(t)
dt
t

¶
∫ e

1

ρ̂(t)

∫ e

1

H(t, s)
�

(M2− ε)u(s)+ b
� ds

s
dt
t

¶
∫ e

1

K2ρ̂(t)
�

(M2− ε)u(t)+ b
� dt

t
.

It follows from the above inequality and Lemma 3
that

∫ e

1

u(t)ρ̂(t)
dt
t
¶

bΓ (q)
εΓ (q+2)

.

As with (11), we immediately have
‖u‖ ¶ bLΓ (q)/(εK1Γ (q + 2)) := N2 > 0. If
R>max{N2, M(q−1)2(1+

∫ e

1(g(t)/t)dt/κ) /Γ (q)},
this contradicts u ∈ ∂BR ∩P . As a result, (12) is
true. On the other hand, by (H6) and (9), we have

(Bu)(t0) =

∫ e

1

H(t, s)F(t0, u(s)−w(s))
ds
s

¾
∫ e−θ

1+θ
H(t0, s)Q(s)

ds
s

¾
∫ e−θ

1+θ
ω(t0)ρ̂(s)Q(s)

ds
s

¾
M(q−1)2

Γ (q)

�

1+
1
κ

∫ e

1

g(t)
dt
t

�

= ‖u‖,

for any (t, u)∈ [1, e]×∂Br , where r =M(q−1)2(1+
∫ e

1(g(t)/t)dt/κ)/Γ (q). Then we have ‖Bu‖ ¾ ‖u‖,
for any u ∈ ∂Br ∩P . This leads to u � Bu, for any
u ∈ ∂Br ∩ P . Now Lemma 5 implies that B has
at least one fixed point on (BR\B̄r)∩P . Hence the
boundary value problem (1) has at least one positive
solution. 2

TWO EXAMPLES

Consider the Hadamard fractional boundary value
problem

D2.5u(t)+ f (t, u(t)) = 0, t ∈ [1, e],

u(1) = u′(0) = 0, u(e) =

∫ e

1

u(t)
dt
t

.
(13)

(i) Suppose that f (t, u) = M1(u/8)β −
p
πt sin u,

where M1 > 0 and β > 1. Then for any M1 ¶
8
p
π, (13) has at least one positive solution.

(ii) Suppose that f (t, u) = M2 exp(16/
p
π − u) −

2t cos u, where M2 > 0. Then for any M2 ¾ 757,
(13) has at least one positive solution.

Proof : By direct calculation, we have κ = 3
5 , which

implies (H1). Since q = 2.5, then Γ (2.5) = 3
p
π/4,

Γ (4.5) = 105
p
π/16, Γ (6) = 120, L = 16/(3

p
π),

K1 = 17
p
π/1792, K2 = 64/105

p
π.

(i) Fix M =
p
π. Then f (t, u) = M1(u/8)β −p

πt sin u ¾ −
p
π = −M for all t ∈ [1, e], u ∈

[0,+∞). Then the condition (H2) holds. By simple
computation, we obtain

lim
u→∞

f (t, u)
u

= lim
u→∞

M1

�

u
8

�β −
p
πt sin u

u
= +∞>M1

uniformly with respect to t ∈ [1, e]. Thus (H3)
holds true. Furthermore, f (t, u)+M = M1(u/8)β −p
πt sin u+

p
π¶ M1(u/8)β+

p
π¶ M1+

p
π=Q(t)

for all u ∈ [0,8], and
∫ e

1

ρ̂(s)Q(s)
ds
s
=
�

M1+
p
π

�

∫ e

1

ρ̂(s)
ds
s

¶
2

9
p
π

�

M1+
p
π

�

¶ 2=
M(q−1)
Γ (q)

.

Hence (H4) holds. By Theorem 1, the boundary
value problem (13) has at least one positive solu-
tion.

(ii) Fix M = 2. Then we obtain f (t, u) =
M2 exp(16/

p
π − u) − 2t cos u ¾ −2 = −M for all

t ∈ [1, e], u ∈ [0,+∞). Then the condition (H2)
holds. Next, we shall show that f (t, u) satisfies the
conditions (H5) and (H6). Since

lim
u→∞

f (t, u)
u

= lim
u→∞

M2 exp(16/
p
π−u)−2t cos u
u

= 0<M2

uniformly with respect to t ∈ [1, e], we have (H5).
Choosing θ = 0.25 and t0 =

p
e, gives

ω(t0) = 29/(63
p

2π), f (t, u) + M = f (t, u) + 2 ¾
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M2 exp(16/
p
π − u) ¾ M2 = Q(t) for all

u ∈ [0, 16/
p
π]. Since

∫ e−0.25

1.25 (ρ̂(s)/s)ds =
∫ e−0.25

1.25 (1 − log s)1.5{(log s)/s}ds ¾
∫ e−0.25

1.25 (1 − log s)2 log s(ds/s) ≈ 0.06501,

we have
∫ e−0.25

1.25 ω(
p
π)(ρ̂(s)Q(s)/s)ds =

M2ω(
p
π)
∫ e−0.25

1.25 (ρ̂(s)/s)ds ¾ M229/(63
p

2π) ×
0.06501 ¾ 16/

p
π. Consequently, (H6) holds. By

Theorem 2, the boundary value problem (13) has
at least one positive solution. 2
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