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ABSTRACT: By using the boolean sum of cubic interpolating operators to blend together kinds of rational quartic/linear
interpolation splines as the boundary functions, a class of C' bi-cubic partially blended rational quartic/linear
interpolation splines with four families of local control parameters is constructed. By developing new constraints
on the boundary functions, simple sufficient data-dependent conditions are derived for the local control parameters to
generate C! positivity- and/or monotonicity-preserving interpolation surfaces for positive and/or monotonic data on
rectangular grids.
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INTRODUCTION

Constructing shape-preserving bivariate interpola-
tion splines for visualizing 3D positive and/or mono-
tonic data on rectangular grids is an essential prob-
lem in many computer graphics applications and in
data visualization. By developing some constraint
conditions on the first partial derivatives and first
mixed partial (twist) at the mesh points, some
algorithms for generating monotonicity-preserving
bi-cubic interpolation surfaces were proposed®?2.
Costantini and Fontanella proposed a tensor product
bivariate polynomial spline with variable degree
for constructing axially monotone surfaces interpo-
lating arbitrary sets of gridded data®. Sufficient
data dependent constraints were also derived on the
degree to preserve the shape of 3D monotone data
onrectangular grids. The given scheme can produce
interpolation surfaces of arbitrary continuity class
but its disadvantage is that it is not local; any
changes to a degree will influence a corresponding
row or column of interpolation surface patches,
and in some rectangular patches, the degree of
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interpolant may become too large, leading to the
polynomial patches tending to be linear in x and/or
y directions. The resulting surfaces are not always
visually pleasing.

Some C! shape-preserving bivariate interpola-
tion splines with local control parameters have been
proposed by using the Coons surface technique*. In
Refs. 5-7, by exchanging the cubic Hermite blend-
ing functions for the classical bi-cubic Coons surface
with different kinds of rational cubic or quartic
Hermite-type blending functions, several kinds of
C! rational bi-cubic or bi-quartic functions were
presented along with constraints concerning the
local control parameters for visualizing 3D positive
data and/or 3D monotonic data on rectangular
grids. Like the classical bi-cubic Coons surface
technique, these schemes need to provide the twists
on the grid lines for generating interpolation sur-
faces. In Refs. 8-11, based on the boolean sum
of cubic interpolating operators, by blending dif-
ferent splines such as variable degree interpolation
splines® and rational cubic interpolation splines !
as the boundary functions, simple schemes without
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making use of twists for constructing C'! positive
and/or monotonic interpolation of gridded data
were developed. These rational bi-cubic partially
blended interpolation spline methods are conve-
nient since it is possible to control the shape of
the interpolation surfaces by using the boundary
functions, although the generated surfaces have
zero twist vectors at the data points.

The sufficient conditions for generating posi-
tivity and/or monotonicity preserving interpolation
surfaces developed in Refs. 9-11 have a common
point that the positivity and/or monotonicity of the
global interpolation surfaces are determined by the
positivity and/or monotonicity of the four boundary
curves of each local interpolation surface patch.
However, as pointed out in Ref. 7, these methods
do not depict the positive or monotonic surfaces
because they conserve the shape of data only on the
boundaries of patch. Hence one asks whether it is
possible to generate positivity and/or monotonicity
preserving interpolation surfaces by controlling the
four boundary curves of each local interpolation
surface patch.

In this paper we present a new C bi-cubic par-
tially blended rational quartic/linear interpolation
surface which can preserve the shape of 3D positive
and/or monotonic data everywhere in the domain
by constraining the four boundary curves of each lo-
cal interpolation surface patch. To achieve this goal,
new constraint conditions on the boundary curves
of each local interpolation surface patch, differing
from those used in Refs. 9, 10, are developed.

C! RATIONAL QUARTIC/LINEAR HERMITE
INTERPOLATION SPLINES

In this section, we recall the rational quartic/linear
Hermite interpolation spline given in Ref. 12.

Let f; € R, i =1,...,n, be data given at the
distinct knots x; € R, i = 1,...,n, with interval
spacing h; = x;;; —x; > 0, and let d; € R denote
the first derivative values defined at the knots. For
x €[x;, x4, t=((x—x;)/h;, i=1,2,...,n—1, a
piecewise rational quartic/linear Hermite interpola-
tion spline, with two local control parameters a; and
B, is defined as follows:

h.
RGO = Bo(tsa)f + 1) (f+ -

i

h.
+Bz(t;/si)(fi+1—Fﬁdi+l)+33(r;/&i)fi+l, )

where a;,f; € [2,+00), and the rational quar-
tic/linear Said-Ball-like basis functions B;(t; a) and
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B;_(t;B), j =0, 1 are given by

Bo(t; @) = lf(;—i);t

By(t;a) = 1(+1(;—“'_)22t)t[a+2(a—2)t1,

Bt )= — ((ﬁl__g(f_t)[/s +2(B—2)(1-0)],
Bs(t; ) = -

1+(f—2)1—1t)

The spline given in (1) is a C! Hermite-type
interpolant as it satisfies the end point interpolation
properties R(x;) = fi, R(xi11) = fiy1, Ri(x;) = d;,
R'(x;41) = d;,,. Here R'(x) denotes the derivative
with respect to the variable x. It can be easily
checked that for all a; = f3; = 2, the interpolant (1)
is exactly the classical cubic Hermite interpolation
spline. Zhu et al developed some useful results
using the interpolant (1) to preserve the shape
of 2D positive and/or monotone data'?. In this
paper, the interpolant (1) is extended to a C! bi-
cubic partially blended rational quartic/linear in-
terpolation surface for the interpolation of 3D data
on rectangular grids. The developed bi-cubic par-
tially blended rational quartic/linear interpolation
surface is further used to preserve the shape of
3D positive and/or monotonic data on rectangular
domain. We will denote the interpolant R(x) as
R(&; fi, fivrs dis digas @, By) for x € [x;, x4 ]

BI-CUBIC PARTIALLY BLENDED RATIONAL
QUARTIC/LINEAR INTERPOLATION SURFACES

Let {(x;,y:,Fi;),i=1,2,...,n;j=1,2,...,m} be a
given set of data points defined over the rectangular
domain D = [xq,x,] X [¥1,Ym]), Where 7, : x; <
Xy < ... <X, is the partition of [x;,x,] and 7, :
Y1 <Yy <...<Y, is the partition of [y;, y,,]. For
(x,y) € [x;,xi411 % [y}, ¥j+1], by using the boolean
sum of cubic interpolating operators to blend to-
gether the rational quartic/linear Hermite interpo-
lation splines (1) as four boundary functions, a new
bi-cubic partially blended rational quartic/linear in-
terpolation surface is given by

S(x,y)=—bTUb, 2

where b” = (—1 by(t) by(t)),

O R(X,y)) R(X,.Yjﬂ)
U=| R(x;,y) F; Fijin )
R(xi4y1,¥)  Firj Fiiin
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hf = Xit1 — X, hjf =YY t= (x—xi)/hf, s =
(y—y;)/h}, and

bo(z) := (1—2)*[1+2z],
bi(2) :=2%[1+2(1—2)],
R(x’.)’]) :=R(t;Fi,j;Fi-i-l,j;Di)’Cj’D;:_l’j; a;(,j’ ﬂfj)a

R(xi’ .y) :=R(s;Fi,j7Fi,j+1;Di}:j’Di}:j+1; a{j’ ﬁl)’/])

Di’fj, Diy’ ; are the first partial derivatives at the
grld pOiIlt (xi:yj) and (aij)(n—l)xm; (ﬂi)’cj)(n—l)xm;
(@] Dnxm-1)> (B Jnx(m—1) are the four families of
local control parameters. From the interpolation
surface S(x,y) given in (2), we can see that the
change of a local control parameter a; i )
will affect the shape of two neighbouring patches
S(x,y) defined in the domain (x,y) € (x;, x;41) X
(¥i—1,Yi+1).- Since the four boundary functions
R(x,y;), R(x,yj41), R(x;, ), R(xiyq,y) are all ct
continuous, we can easily conclude that the given
bi-cubic partially blended rational quartic/linear in-
terpolation surface S(x,y) is global C! continuous
over the rectangular domain [x;, x,,] X [¥1, Ym]-

In most applications, the first partial derivatives
D ; and Dg ; are not given and hence must be de-
termined either from given data or by some other
means. Here we use the following arithmetic mean
method to compute them:

X

h
o N

1, >
j hY +h3
h*
DX =A% 4+ (AF, —AF )
n,j n—1,j n—1,j n—2,j h* 2+hx 1’
n— n—
X X
DX, — Ai—1,j +Ai,j
Lj 2 >

fori=2,3,...,n—1;j=1,2,...,m, and

y

D) =A) +(A) —A) )——

i,1 i,1 i,1 ,27 1Y y?

hy +h;
y

Y _ AY Y Y m—1

Di,m - Ai,m—l + (Ai,m—l - Ai,m—Z) hy + hy ’
m—2 m—1
Y y

o A +A

ij 2 ’

fori=1,2,...,n,j=2,3,...,m—1, where A;‘j =
(Fi+1,j _Fl,])/hi( and A'Z] == (Fi,j+1 _Fl,])/hj/ ThlS
arithmetic mean method is computationally eco-
nomical and suitable for the visualization of shaped
data®.
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C! SHAPE-PRESERVING INTERPOLATION
SURFACES

In this section, we develop simple schemes so that
the C! interpolation surface S(x,y) can preserve
the shape of 3D positive and/or monotonic data on
rectangular grids. For any a, 8 € [2, +00), the four
rational quartic/linear Said-Ball-like basis functions
B;(t;a) and By_;(t; B), j = 1,2 are nonnegative and
satisfy

Bo(t; a) + By (t; a) = by(t),

3)
By(t; 3)+Bs(t; B) = by(t).

For (x,¥) € [x;, X111 X [¥}, ¥j+1], we rewrite the
expression of the interpolation surface S(x, y) given
in (2) as

S(x,y) = bo()R(x, y;) + by (IR(x, yj41)
+bo()R(x;, ¥) + by (OR(x;41,¥)
— bo(£)bo(s)F; j = bo(£)b1($)F i
—by(t)bo($)Fi11,j = b1(£)b1($)Fis jn

= bo(s)[R(x, ¥;) = 5bo(£)F; j— 5b1(£)F; 11 5]

+ b1 ($)R(X, Y1) = 5bo(0)F; j1 — 501 (E)F i ja ]

+ bo()[R(x;, ¥) = 5bo(s)F; j — 5b1(8)Fy 1]
+ by (O[R(xi11, ¥) = 5bo(8)Fi, — %bl(s)FiJrl,jJré‘]")

C! positivity-preserving interpolation surfaces

Let {(x;,y;,F;;)} be a positive data set defined
over the rectangular grid [x;, x; 1] X [y}, ¥j11], 1=
1,2,...,n—1,j=1,2,...,m—1such that F; ; > 0,
Vi, j. The interpolation surface S(x, y) given in (2)
preserves the shape of positive data if S(x,y) > 0
for all (x,y) € [xq,x,] % [¥1,¥,,]. Without loss of
generality, for any (x,y) € [x;,xis1] % [y;.7;1;
since the two blending functions by(z) and b,(z) are
nonnegative on [0, 1] and strictly positive in (0, 1),
we can see from (4) that the interpolation surface
S(x,y) is positive if the following constraints hold:

R(x,¥;) = 3bo(t)Fy; — 3b1(1)Fiy; >0,
R(x,¥j41)— %bo(t)Fi,j-H - %bl(t)Fi+1,j+1 >0,
R(x;, y)— %bo(s)Fi,j - %bl(s)Fi,j+1 >0,
R(xi41,¥)— %bO(S)FH—l,j - %bl(s)Fi+1,j+1 > 0.

(5)
FOTR(X;}']')—%bo(t)Fi,j—%b1(f)Fi+1,j, from (3),
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we have
R(x,y;)— %bo(t)Fi,j - %bl(t)FHl,j

=3 O(t,ai’j) T ha 1(t,ai’j) 5 +a¥_ iy
1,]

Fit1; —ED"
2 ﬁlJf] i+1,j

1
+3B3(t; B )Fita 5

+Bz(t;/s;j,.)(

Since the four rational quartic/linear Said-Ball-like
basis functions Bj(t;af’j) and Bg_j(t;[jl:)fj), j=1,2
are nonnegative for any af,j, ﬂfj €[2,+00), we can
see that the following constraints are sufficient to
ensure R(x, y;) — %bo(t)Fl-,]» - %bl(t)FiH,j > 0:

X X
al;>2, Br>2,

F,; h¥ Fii: x
5] i x i+1,j 1 x
—=+—D>0 ——D. .20
x TLj ’ x Ci+1,j >
2 @ 2 B

which bring forth the following sufficient condi-
tions:

a; . = max{—2h; D} /F, ;,2},
)J 170 »J 6)
la’i’fj = max{2h§‘Di"+1’j/Fi+1)j,2}.
In the same fashion, we can
derive similar  sufficient  conditions for

R(x,¥j41) — %bo(t)Fi,jJrl - %bl(t)FiJrl,jJrl > 0,
R(x;,y) — %bo(s)Fi,j — %bl(s)Fi,jH > 0, and
R(xi41,¥) — %bo(s)FH—l,j - %bl(S)Fi+1,j+l >0. In
conclusion, for a positive data set, the following
constraint conditions are sufficient to ensure
S(X,J/) > O: V(X,J/) € [Xi, xi+1] x [yj:yj+1]:

a;; =max{—2h;D;/F; ;,2} + a7,
aij+1 = max{—thijH/Fi,jH: 2} + al?fj+1’
ﬁi’fj = max{2thf+Lj/Fi+1,j’ 2} + bij’

By = max{2hi Dy, [Fiy1 j41,2} + b7 50,

i,j+1
, r

aj ;= max{—2h) D] /F;;,2} +a],
aj,y; =max{—2h) D}, ;/Fi1 .2} +af,, ),
l?,’j = max{Zh?’Diy,jH/Fi,jH’ 2} + bl{j’
Y, = max{2h D}, o [Fi 1,21+ 07,

7

where i = 1,2,...,n—1, j=1,2,...,m—1, and
X y x Yy : 3

a;, @ bi’j, and bi’j are arbitrary nonnegative real
numbers and serve as free shape parameters.

189

C! monotonicity-preserving interpolation
surfaces

Let {(x;, y;, F; ;)} be a monotonic increasing data set
defined over the rectangular grid D = [x;,x;.q] X
jyimli=1,2,...,n=1,j=1,2,...,m—1such
that F;y ; > F; j, F; j41 > F; j, Vi, j, or equivalently
Ajfj >0, AZ P> 0, Vi, j. For a monotonic increasing
preserving interpolation surface S(x, y), it is neces-
sary that the corresponding partial derivatives D' ;

y .
and D; i should satisfy
y . .
Di’fj >0, D;;>0, Vi, j. (€))]

The interpolation surface S(x,y) preserves the
shape of monotonic increasing data if

9S(x,y) >0, dS(x,y) >0, ©
dx dy

for any (x,y) € [xlxxn] X [yl’ym]'

Without loss of generality, for any (x,y) €
[xi, X111 % [¥}, ¥j41], from (4), direct computation
gives that

oS(x,y) _ , .
= bo()IR(x, y;) =3t(1—t)A7;]
+ by ()R (%, yj01) —3t(1 = AT, ]
6t(1—t
* (h?‘ ){[R(XiJrl’y)_%bO(s)FiJrlJ_%bl(s)Fi+1,j+1]

—[R(x;, y)— %bo(s)Fi,j - %bl(s)Fi,j+1]}~ (10)
Thus we can see that the constraints
R'(x,y;)—3t(1— t)A}; >0,
R'(x,yj11)—3t(1—t)AY

i,j+1
[R(xi41,Y)— %bo(s)FiH,j - %bl(S)Fi+1,j+1]
—[R(x;, ) — %bo(s)Fi,j - %bl(s)Fi,jﬂ] >0
11)
are sufficient to ensure dS(x,y)/dx >0, V(x,y) €

[xi, X1 % [J’j,yj+1]-
For R'(x, y;)—3t(1— t)Afj, we have

>0,

R’(x,yj)—St(l—t)Af’j
_ (-0lay; +(af;—2)t]
af [1+(af;—2)e]*
t[afj+(afj—2)(l—t)]
2 i+1,j
af;[1+(af;—2)1-0)]" ™

A¥. DF. AY. Df ..
+6r(1—0)| | =L — =L )4 L))
4 aj; 4 B3
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It follows that the following conditions are sufficient
for R'(x, y;)—3t(1— t)Af’j > 0:

a; = ax{4Dx JAY . 2},
Jj ij (12)
ﬂi’fj > m ax{4Dl+1J/AlJ, }.
Similarly, we can conclude that the
following  conditions are  sufficient for
R'(x, Yj+1) —3t(1— t)Al]+1 > 0:
a;(,]-%—l = max{4D11+1/A11+1’ }’ (13)
ﬂi),c]-%—l = rnax{4Dl+1 ]+1/Al j+1° }

For [R(x;11,¥)— %bO(S)FHl,j_%bl(s)FiJrl,jJrl]_
[R(xi,y)—%bo(s)Fi’j—%bl(s)Fi,jH], after some ma-
nipulation, we have
[R(xi41,Y)— %bO(S)FHl,j - %bl(s)FiH,jH]

—[R(x;, y)— %bO(S)Fi,j - %bl(s)Fi,j+1]
y y
hy Fij—Fy hy
=Dbo(s)| 7Dy + P —— D
C‘l+1] ai’j
hY Fov:i—F. .
y i+1,j+1 i,j+1
+b1(3)|:EyJDU+1 (f
hjf y (1—s9) hy
2y D || T &7 {[al+1] ij
i+1,j Lj
y y
- al ]DH—l]](]‘ _5) + |:a1+1 ](a1+1 Jj - 1)Di,j
2 y
y Y Yy
_ai,j(a - 1)Dl+1]]s} +— {[ l]D1+1 j+1
l]
Y (pY
ﬂ1+1) 1)+1]s + [ﬂ (ﬁ 1)Dl+1 ,j+1
1+1 ](ﬁH—l] 1)D1]+1 _S)]}’

whered)y —al]al+lj[l+(a —2)3][1+(al+1] 2)s]

and ¢, = B} l+11[1+(/53,—2)(1 L+ (B
2)(1—s)]. Thus we can see that the constraints

y
Fp—F; ‘
+1 —Fij
— 5 T 20
%
y
Fijp1—Fijer I
¥
2 i+1,j

y
l+1] i,j a11D1+1]

y
l)Di,j_ai,j(a 1)Dl+l]

Y Y _py y
ijDi+1 j+1 i+1jDi j+1

DY

y
D1+1 ,Jj+1 = O

D.)'

-

l+1 SJ (aH—l SJ

VARYARVARY,
o o o ©

y y
ﬁl](ﬁl Jj - 1)Dl+l ]+1 l+1 ](ﬁl-l-l] i,j+1
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are sufficient for [R(x;41,y) — %bo(s)FiHJ —
%bl(s)Fi+1,j+1] [R(x;,y) %bo(S)Fi,j
%bl(s)Fi,j +1] > 0, from which we can obtain
the sufficient conditions

aj ; > max{2h] D}, /h{ A}, 2},
y
Ui 2 max{DlH] lJ/D”’ i’j}’ (14)
y ’D AT
g > maX{Zh 1+1 ;+1/hi Ai,1'+1’2}’
; y
/31,] > maX{Dl J+1 1+1 J/Dl+1 j+1 i+1’j}.

From (12), (13), and (14), we can obtain the
following sufficient conditions for dS(x,y)/dx > 0,

VO, y) € lx,xipa I x [y, yinl:

a max{4Dx JAY., 2},

i,j°
affjﬂ = max{4D; ]+1/A
X
B>

ﬁl),(]-I-l n13X{4D1+1 ]+1/A

i,j+1° }’

max{4Dl+1J/AU, b

i,j+1° }’

icj’ 2}5

W r(15)
a; max{zhyDy /hY

D

an , >rnaX{DHl] 1]/ i,j° i,j}’

T
\V

max{2h} D}, ;,,/h{ A}, 2},

ij+1°

/D’ y oy

i+1,j+1° Mi+1,j)°

ﬁy = max{D;

i,j i,j+1 1+1]

In the same fashion, we can conclude

that the following conditions are sufficient for
3S(x,y)/dy >0, V(x,y) € [x;, X411 % [y}, ¥js ]:

max{4Dy JAY .2},

i,j’

al,. .z max{4D} . /A

i+1,j i+1,j° }’

y
ﬁi’j

y
i+1,j

a;; > max{2h; D]; /hJ.'

i+1,j

V

max{4Dl J+1/Alj’ 5

V

InaX{4Dl+l ]+1/Al+1 Jj’ }’

r (16)
2},

i,j°

x
i,j+1

Biin

ﬁ:,(] > maX{Dl+1]ﬁ1]+1/Dl+1 ]+1’ﬁi,j+1}'

a = max{D]; ,a;;/D;, a7 ;},

\%

max{2h} D /hy 2},

i+1,j+1 i+1,5°

In summary, we conclude that for a monotonic
increasing data set, the following conditions are suf-
ficient to ensure dS(x,y)/dx>0, dS(x,y)/dx>0,
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Fig. 1 C! positivity-preserving interpolation surfaces for the 3D positive data set given in Example 1: (a) S;(x,y);
(b) xz-view of S;(x,y); (c) yz-view of S;(x,y); (d) S,(x,y); (e) xz-view of S,(x,y); (f) yz-view of S,(x,y). In this
and the other figures, the given data points are shown by black dots.

V(x,y) €lxp,xipa 1 x [y, yj I:

4DF. 2hiD;, \
x _ »J i70) x
@; ; = max A 5N ,2 4.

i,j Ty

4D* Df af’j

. L+l Pije . .
ai,j+1_max{ x T px % TG
i,j+1 i,j
X X X
. 4D% 1 ji 20Dy i oLy g
B7;41 = max A T A 2,
ij+1 i B
X X X
. 4D Din Bl e
B;; =ma A Dx B T

ij i+1,j+1 }
y 4Dy, 2hiD}; y
b T\ AT Ay,
1,] 1 L,]
y y oy
y 4Div1; Diyay y
Uipr; =Y Ty % FCit,jo
i+1,j i,j
y Yy
y 4D, 5 205 D7 5 ol g
i1, T A T T T A o iy g
i+1,j i Bj+1
y Yy py
y 4D; 111 DfjaBiin y &
B;,; = max N > Pivy (T
ij i+1,j+1
17)

where i = 1,2,...,n—1, j =1,2,...,m—1, and
X y X y : :

i G di’j, and di’j are arbitrary nonnegative real
numbers and serve as free shape parameters.

Notice that any monotonicity-preserving inter-

polation surfaces to 3D positive and monotonic data

on rectangular grids must then also be positive.
Thus we can see that for 3D positive and monotonic
data on rectangular grids, the conditions (17) are
sufficient for the interpolation surface S(x,y) to
preserve both positivity and monotonicity.

NUMERICAL EXAMPLES

We now give several numerical examples to show
that the proposed C! interpolation surface S(x, y)
given in (2) can be used to nicely visualize the shape
of 3D positive or monotonic data on rectangular
grids.

Example 1 We use the 3D positive data set® P,
for x,y =—3,-2,-1,1,2,3 where P_, , = Q,,,
Px,—y = Qx,y; P—x,—y = Qx,y; and Qx,y for X,y =
1,2, 3 is given by

1.3333 0.1667 0.0404
0.1667 0.0635 0.0238
0.0404 0.0238 0.0124

Q=

Fig. 1a shows the interpolation surface S;(x,y)
generated by using the sufficient conditions
given in (7) with all the free shape parameters

af;=a;=b};=b/;=0 Fig. 1d shows the
interpolation ~surface S,(x,y) generated by
changing the free shape parameters a; P> b P> i=3,

j=3,4, and af'j, bl?'j, i=23,4,j =23 from 0 to 5.
It can be seen that both the interpolation surfaces
preserve the shape of the data set well and the

www.scienceasia.org
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Fig. 2 C! positivity-preserving interpolation surfaces for the 3D positive data set given in Example 2: (a) S;(x,y);
(b) xz-view of S5(x,y); (c) yz-view of S5(x, y); (d) S4(x,y); (e) xz-view of S,(x,y); (f) yz-view of S,(x, y).

shape of the positivity-preserving interpolation
surfaces can be adjusted locally by using the shape
parameters.

Example 2 We use the 3D positive data set” P,
for x,y =-3,-2,-1,0,1,2,3 where P_, , =Q, ,,
P._y=Qyy, Py, =Q,,, and Q. , for x,y =
0,1,2,3 is given by

2.04 1.4079 1.0583 1.0401
| 1.1753 0.5432 0.1936 0.1755
Q= 1.0403 0.4082 0.0586 0.0404
1.04 0.4078 0.0583 0.0401

Fig. 2a shows the interpolation surface S;(x, y) gen-
erated by using the sufficient conditions given in (7)

3 X — Y — X —
with all the free shape parameters a;f TG = bi’j =

bl?: ;=0 Fig. 2d shows the interpolation surface
S4(x,y) generated by changing all the free shape
parameters a; ;, a{j, b} bij from 0 to 2. It is seen in
Fig. 2 that the positive shape of the data is preserved
nicely.

Example 3 We use the 3D monotonic data set”
M, , where x,y = 1,100,200, 300 and

0.6931 9.2104 10.5967 11.4076
M= 9.2104 9.9035 10.8198 11.5129
10.5967 10.8198 11.2898 11.7753
11.4076 11.5129 11.7753 12.1007

Fig. 3a shows the interpolation surface Ss(x, y) gen-
erated by using the sufficient conditions given in

www.scienceasia.org

(17) with all the free shape parameters al?fj = al?: ;=
by ;= bl?: ;=0 Fig. 3d shows the interpolation
surface Sg(x,y) generated by changing two free
shape parameters di 1 di , from 0 to 200. As can be
seen from Fig. 3, both surfaces visualize the shape

of the data well.

Example 4 We use the 3D monotonic data set?
M, , where x,y =1,2,3,4 and

0 2 19.998 19.999
M= 2.999 3  19.999 20
- 3 9 20 20.001

8 10 20.001 20.002

Fig. 4a shows the interpolation surface S,(x,y)
generated by using the sufficient conditions given
in (17) with af; = a}; = b}, = b], = 0. Fig. 4d
shows the interpolation surface Sg(x,y) generated
by changing two free shape parameters d,, da{ 1
from 0 to 10. As can be seen from Fig. 4, both

surfaces nicely visualize the shape of the data.

CONCLUSIONS

The constructed bi-cubic partially blended rational
quartic/linear interpolation spline with four families
of local control parameters can be C! continuous
without making use of the first mixed partial deriva-
tives at the data points. For 3D positive and/or
monotonic data on rectangular grids, by developing
new constraint conditions on the boundary curves
of each local interpolation surface patch, differing
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Fig. 3 C! monotonicity-preserving interpolation surfaces for the 3D monotonic data set given in Example 3:
(@) Ss(x,y); (b) xz-view of Sg(x, y); () yz-view of S5(x, y); (d) Se(x,y); (e) xz-view of S¢(x, y); (f) The yz-view of
Se(x, y).

25

S

“s‘:;:\‘
‘\\“{\\\“\
\\“\\\“\\\tt‘\

|

15 LT
N T
0 L] Zz

S
1\
5 \\!3)!’:'

o
N
N
o
w
w
o
EN
o
N
N
o
w
w
o
EN

|
|

ARAN\\R U

Fig. 4 C! monotonicity-preserving interpolation surfaces for the 3D monotonic data set given in Example 4:
(@) S,(x,y); (b) xz-view of S,(x,y); (c) yz-view of S,(x,y); (d) Sg(x,y); (e) xz-view of Sg(x,y); (f) yz-view of
SS(x’ J’)

from those given in Refs. 9,10, simple sufficient intend to study, such as the construction of convexity
data dependent conditions are given on the local preserving interpolation surfaces with local shape
control parameters to generate positivity and/or  parameters.

monotonicity preserving interpolation surfaces. The

given method also allows extensions to generate Acknowledgements: The authors thank the anonymous
C! shape-preserving interpolation surfaces for 3D  referees for their inspiring comments which helped to
non-gridded data. There remain some problems we  improve this manuscript significantly.
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