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Heat tolerance in Thai rice varieties
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ABSTRACT: Rice yield reduction at high temperature is a serious problem in the tropics and is likely to worsen with
climate change. Temperature-tolerant rice varieties would be highly desirable in areas at risk of extreme temperatures.
This study evaluated 7 modern Thai rice varieties with a wet season planting on 1st July (Planting date 1 (PD1)), and
3 dry season plantings 9th January (PD2), 23rd January (PD3), and 6th February (PD4), in 2009. The mean minimum
and maximum temperature to which the crop was exposed during the different phases of reproductive growth were
20.6-24.1°C and 33.3-36.9 °C for the 30 days before anthesis, 22.1-24.4°C and 32.1-37.6 °C at anthesis, 22.5-24.0°C
and 34.3-37.5 °C for the 30 days after anthesis. Grain yields of all the varieties were lower in PD2-PD4 than in PD1. The
dry season yield depression separated the rice varieties into two classes: sensitive varieties with a dry season yield of
about half of the wet season yield (SPT1, NP1, R258 and SKN1), and tolerant varieties which showed much less seasonal
difference in yield (RD10, CNT1, and SPR1). Sensitive and tolerant varieties were also differentiated by the way in
which the proportion of unfertilized spikelets, number of spikelets per panicle, and proportion of filled grain correlated
with the temperature during the relevant period of development, with the tolerant varieties being less responsive to
rising temperature than the sensitive varieties. This study demonstrates a range of heat sensitive and tolerance already
in existence among modern Thai rice varieties. We found a complex physiology of the high temperature response of
rice, in which grain yield may be adversely affected during panicle development, anthesis, and during grain filling. The
genes and QTLs for heat tolerance may need to be separately identified.
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INTRODUCTION

High temperature is a threat to rice production in
tropical areas. The risk of yield loss increases with
rising global temperature due to climate change'
particularly during the dry season in monsoonal
Asia. Yield reduction by high temperature over
35°C has been reported in various crop species such
as wheat, soya bean, barley, maize®™*, and rice>®.
Rice yield reduction caused by high temperature oc-
curs in irrigated systems’ and is particularly severe
during the dry season®. There was a report that for
every 1°C increase of the mean minimum tempera-
ture over 22 °C the yield of IR72, one of Asia’s mega-
varieties, was depressed by 10%°. High tempera-
ture affects rice yield through various growth and
development stages'’. High temperature during
the early reproductive stage depresses the number
of spikelets per panicle!?, which is associated with
fewer primary and secondary rachis-branches!2.
The number of spikelets per panicle is the major fac-

tor that limits the yield by reducing the sink size 2,
leading to lower yield producing capacity. High tem-
perature during anthesis adversely affects the fertil-
ization process 4. During pollination, temperatures
higher than 34-35 °C increase empty grain®. High
temperature impedes anther dehiscence and pollen
release ', causing fewer pollen grains landing on
the stigma'®!7 with the result of lower probability
for successful fertilization even though only one
germinated pollen is required®. The risk of high
temperature affecting yield through grain filling was
demonstrated in an earlier report that rice yield
declined with increasing of temperature during the
30-day period after anthesis 8.

As a strategy for adaptation to high tempera-
ture, heat tolerant rice varieties providing desirable
yield under high temperature is necessary. Thus
effective screening methods are important to iden-
tify heat tolerant rice variety. Although different
genotypes for heat tolerance have been reported
in the amount of pollen, pollen germinated on
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Fig. 1 Rice spikelet at maturity: fertilized and filled (left), fertilized but unfilled (centre), and unfertilized (right).

stigma, pollen tube length!®1%2° spikelet fertil-
ity21:22_filled grain?3, seed set?*, and empty grain®,
these heat tolerant genotypes were not clear in
terms of using them as the selection criteria for heat
tolerant rice variety. The objectives of this study
were (1) to examine the effects of high temperature
on different yield forming processes among seven
rice varieties and (2) to obtain screening method for
heat tolerance in rice.

MATERIALS AND METHODS
Genotypes

Seven Thai rice genotypes used in this study com-
prised San-pah-tawng 1 (SPT1), Neaw Phrae 1
(NP1), R258, Skon Nakhon 1 (SKN1), RD10, Chai
Nat 1 (CNT1), and Suphan Buri 1 (SPR1). All geno-
types have a semi-dwarf plant type, are photoperiod
insensitive, lowland rice, and popularly grown in
irrigated areas. NP1, R258, SKN1, and RD10 were
the varieties most commonly grown in the North and
Northeast while CNT1 and SPR1 were commonly
grown in the Central Plain.

Experimental procedures

The rice genotypes were grown in four planting
dates, including one wet season planting on July
1 (PD1), and 3 dry season plantings 9th Jan-
uary (PD2), 23rd January (PD3), and 6th February
(PD4), in 2009, aiming to subject the plant to differ-
ent temperature regimes during their reproductive
development. For each planting date, 7-day old
seedlings of each genotype were transplanted into
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plastic undrained pots (30 cm diameter and 30 cm
depth) at 10 per pot, arranged in a completely
randomized design with 3 replicated pots. Fertilizer
applied included 0.18 g P/pot and 0.22 g N/pot at
20 days after transplanting and 0.2 g N/pot at 45 at
60 days after transplanting.

Daily maximum and minimum temperature
were measured every 5 min by Ebro EBI20-TH1 data
locker (Ebro Electronic GmbH & Co. KG) placed
above the canopy over the whole experimental pe-
riod. At anthesis, flowering date was recorded for
individual plants. This study focus on different yield
forming processes; hence, the effects of average
maximum and minimum temperature were divided
into three periods: before anthesis, anthesis, and af-
ter anthesis. At physiological maturity, plant height
and number of panicles per plant were determined.
The first two panicles of each plant were collected
to evaluate number of spikelets per panicle, number
of filled grains, fertilized but unfilled/partially filled
and unfertilized spikelets (Fig. 1). Proportion of
unfertilized spikelet U, proportion of filled grain
Fg, and proportion of fertilized spikelet F; were
calculated as

no. unfertilized spikelets

Us = no. spikelets per panicle ’
P no. filled grain

& no. spikelets per panicle ’
F,=F,+ no. fertilized but unfilled grain

no. spikelets per panicle


http://www.scienceasia.org/2017.html
www.scienceasia.org

ScienceAsia 43 (2017)

60 1

63

Flowering
55 { Transplanting duration
50 }  Pre-anthesis ¥ Post-anthesis
— —
| PD2
45 S = PD3
- ‘ PD4
9401 PDI
e
£ 35 4
2
<
3 30
(=%
£
£ 25 4
20 A
15 4
—— minimum temperature
101 —— maximum temperature
5 T T T T T T T T T T T
1/1/09  1/2/09 1/3/09  1/4/09 1/5/09 1/6/09 1/7/09  1/8/09  1/9/09 1/10/09 1/11/09 1/12/09
Date

Fig. 2 Maximum and minimum temperature during the experiment with wet season planting (PD1) and 3 dry season
plantings (PD2-PD4) and timing of transplanting and duration of reproductive developmental phases indicated.

Table 1 Average minimum and maximum temperature ranges during the 30 days before anthesis, during anthesis, and
30 days after anthesis of 7 rice varieties in 4 plantings in 2009 growing season.

Planting Transplanting Expected flowering
date

Actual flowering

Temperature (°C)

Before Anthesis After

PD1 1st Jul 1st—21st Oct 9th-20th Sep min 23.6-23.8 22.1-23.1 22.5-23.4
max 33.4-33.9 32.1-33.2 34.3-35.6

PD2 9th Jan 9th-29th Apr 4th-20th Apr min 20.6-21.6 22.6-24.2 23.9-24.0
max 35.1-35.3 35.4-37.3 35.8-36.0

PD3 23rd Jan 23rd Apr-13th May  15th Apr-10th May min 23.1-23.8 23.4-24.0 23.6-23.9
max 36.8-36.9 35.3-37.6 36.5-36.6

PD4 6th Feb 6th-27th May 30th Apr-22nd May min 23.6-24.1 22.6-24.4 23.7-23.8
max 36.0-36.9 35.3-37.2 36.5-37.5

Data were analysed by ANOVA with appropriate  (Table 1). During anthesis, which lasted about
transformations. Means were compared by LSD 7 days, the minimum temperature ranged from

at p < 0.05. Regression analysis were conducted
to relate grain yield and yield components, and to
relate number of spikelets, fertilization success or
failure, and grain filling to variation in temperature,
separately for heat tolerant and sensitive varieties.

RESULTS
Maximum and minimum temperatures

Temperatures during the experiment ranged from
19.6-23.0°C for the daily mean minimum (02:00-
05:00) and from 34.0-35.4°C for the daily mean
maximum (10:00-14:00) (Fig.2). For the 30-
day period before anthesis, the minimum temper-
ature ranged from 20.6°C to 24.1°C and the max-
imum temperature ranged from 33.4°C to 36.9°C

22.1°C to 24.4°C and the maximum temperature
ranged from 32.1°C to 37.6°C. In the 30 days
period following anthesis the minimum temperature
ranged from 22.5°C to 24.0°C and the maximum
temperature ranged from 34.3°C to 37.5°C. Av-
erage maximum and minimum temperatures were
different for the four planting dates before anthesis,
anthesis, and after anthesis (Fig. 3).

Effects of planting date on flowering date, yield,
and yield components

Interaction between genotype and planting date
significantly affected the flowering date, number
of spikelets per panicle, proportion of unfertilized
spikelet, proportion of fertilized spikelets, and pro-
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Fig. 3 Differences in (a-c¢) minimum and (d-f) maximum mean temperature for four planting dates: (a,d) before
anthesis, (b,e) anthesis, and (c,f) after anthesis. Flowering duration of PD1-PD4 were 9th-20th September, 4th—20th
April, 15th April-10th May, and 30th April-22nd May 2009, respectively.

Table 2 ANOVA of night traits of seven rice varieties
grown at different four planting dates.

Traits Genotype (G) G xPD

*dkk ns

*kk

Plant height (cm)
Flowering date
Number of panicles/plant ns ns
Number of spikelets/panicle
Fertilized spikelets (%)
Unfertilized spikelets (%)
Filled grain (%)

Number of grains/panicle
100-grain weight (g) * ns ns
Yield (g/plant) ok

*
*

%k
b
* o
* o

%ok sk

S

%% %
*
*

PR
* ok
* o %
* sk %
% ok
%%

ok

* %% = significant difference at p < 0.05 and 0.001;
ns = not significant, p > 0.05.

portion of filled grain (p < 0.001) (Table 2). Flow-
ering date was significantly different between va-
rieties within planting date and different planting
date. Grain yield and yield components of all 7 rice
varieties were highest in the wet season planting,
with significant varietal differences in dry season
depression of the yield and its components.

The highest grain yield in all 7 varieties was
achieved with PD1, the wet season planting, the
extent to which the yield was depressed in the dry
season plantings varied among the varieties (Fig. 4).
The largest depression of around 50% in PD4 was
found in the varieties SPT1, NP1, R258, and SKN1,
while the dry season depression in RD10 and CNT1
was 15-20%, and even smaller for SPR1. The
varieties also differed in their yield response to the
different dry season plantings. In SPT1, NP1, and
R258, the yield from PD2, PD3, and PD4 were lower
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Fig. 4 Effect of planting date on dry season yield (PD2—
PD4) relative to wet season. An arcsine transformation
was used before analysis by ANOVA. The bars indicate
mean + SE.

than PD1 to about the same extent. RD10, CNT1,
and SPR1, on the other hand, had similar yield in
PD1 and PD4, and in SPR1 significantly lower yield
was produced only in PD2.

All the rice varieties flowered later in PD2-
PD4 than in PD1 by about 10 days later in SPT1,
NP1, and R258, while the others were 5 days later
compared with PD1 (Fig. 5a). The highest number
of spikelets per panicle in all varieties was found
in PD1, with 100-140 spikelets/panicle, but the
varieties differed in the degree to which the num-
ber of spikelets was depressed in the dry season
plantings (Fig. 5b). The number of spikelets in
SPT1, NP1, and R258 suffered the greatest dry-
season depression by 20-30%, while RD10, CNT1,
and SPR1 were much less affected.

All 7 rice varieties achieved the greatest fertil-
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Fig. 5 Effect of planting date (PD1-PD4) and genotype on (a) flowering date, (b) number of spikelets per panicle,
(c) proportion of fertilized spikelets, and (d) proportion of filled grain. An arcsine transformation was used for the
proportion of fertilized spikelet and filled grain before analysis by ANOVA. Bars indicate mean + SE.

ization success in PD1, with 94-97% of the spikelet
fertilized, with different degrees of failure among
the varieties in PD2-PD4 (Fig. 5¢). The variety
SPR1 exhibited no effect of planting date on the
proportion fertilized spikelets, while dry season de-
pression in spikelet fertility in SPT1 and NP1 was
30-50%, and 10-15% in the remaining varieties.

The highest proportion of filled grain at 88-
95% was achieved in PD1 for all 7 varieties, but the
varieties differed in the degree to which their grain
filling was depressed in the dry season plantings
(Fig. 5d). Dry season depression in grain filling was
minor in the varieties CNT1 and SPR1, while the
proportion of filled grain in the dry season plantings
was depressed by 20% in NP1 and RD10, and by
50% in SPT1, R258, and SKN1.

Grain yield correlated positively with number of
spikelets per panicle (c = 0.80, p < 0.001), number
of grain per panicle (¢ = 0.88, p < 0.001), propor-
tion of filled grain (¢ = 0.62, p < 0.001), and 100-
grain weight (¢ = 0.25, p < 0.01), but negatively
with proportion of unfertilized spikelets (¢ =—0.55,
p < 0.001) (Table 3).

Table 3 Correlation between yield and growth parame-
ters of seven rice varieties grown at four planting dates.

Growth parameter Yield
Correlation (¢) p-value
Flowering date —0.36 < 0.001
Plant height 0.04 ns’
Number of panicles/plant —0.03 ns’
Number of spikelets/panicle 0.80 < 0.001
Number of grains/panicle 0.88 < 0.001
% unfertilized spikelet —0.55 < 0.001
% filled grain 0.62 < 0.001
100-grain weight 0.25 <0.01

" ns = not significant at p < 0.05.

Relating yield and components to the
temperature

According to the level of dry season depression in
yield and yield components, SPT1, NP1, R258, and
SKN1 were classified into a heat sensitive group, and
RD10, CNT1, and SPR1 into a heat tolerant. The
groups were found to be differentiated by the way in
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Fig. 6 Relationships between (a) mean maximum tem-
perature, (b) mean minimum temperature, 30 days before
anthesis, and number of spikelets per panicle of sensitive
(black circle) and tolerant (open circle) group of varieties.

which their number of spikelets, fertilization success
and grain filling varied with temperature.

The increase in daily maximum temperature
during the 30 days before anthesis from 33.5 to
37.0°C was associated with fewer spikelets per pan-
icle in the sensitive varieties (slope = —10.11, p <
0.01) but not in the tolerant varieties. The increase
in the minimum temperature was associated with
increased spikelet number in the tolerant varieties
(slope = 9.45, p < 0.01) but not in the sensitive
varieties (Fig. 6b).

The proportion of unfertilized spikelets gener-
ally increased with increasing daily maximum tem-
perature, but more sharply in the sensitive (slope =
3.19, p < 0.001) than in the tolerant (slope = 1.22,
p < 0.05) varieties (Fig. 7a). No relationship was
observed between the daily minimum temperature
at anthesis and spikelet fertilization (Fig. 7b).

The proportion of filled grain generally declined
with increasing daily maximum and minimum tem-
perature during the 30 days after anthesis, but
with a significant difference among the rice va-
rieties (Fig. 8). The increase in daily maximum
temperature from 34.3-37.5 °C was associated with
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Fig. 7 Relationships between (a) mean maximum tem-
perature, (b) mean minimum temperature, at anthesis,
and proportion of unfertilized spikelets of sensitive (o)
and tolerant (o) group of varieties.

a sharper decline in proportion of filled grain in the
sensitive (slope = —9.87, p < 0.001) than in the tol-
erant (slope = —4.47, p < 0.05) varieties. Similarly
to the minimum temperature, the increase in mini-
mum temperature from 22.5-24.0 °C was associated
with a sharper decline in the proportion of filled
grain in the sensitive varieties (slope =—12.98, p <
0.01) than the tolerant varieties (slope = —9.20,
p < 0.05) (Fig. 8b).

DISCUSSION

By varying planting date in the wet and dry sea-
son, the rice plants were subjected to temperatures
that varied from optimum to critically high for its
development and yield. The optimum temperature
for anthesis in rice was 30-33°C and critical high
at 35-36°C depending on the variety?>. In this
study the temperature during PD1, the wet season
when most rice in Thailand is grown, was within the
optimal range, but the temperature during the dry
season planting PD2-PD4 rose to the critically high
ranges. This study shows that rice yield from the
dry season plantings were lower than the wet season
planting, with the degree of yield depression that


http://www.scienceasia.org/2017.html
www.scienceasia.org

ScienceAsia 43 (2017)

110 7 (a) y = -4.472x + 246.53
= *

100 1 r=0.392
g Q. Tol t variet
5 g0 > olerant variety
s | TN
E 804 T Q el
© o

70 4
qi;b o 3
§ 60 1 T
8 5 y =-9.870x +436.16 gensitive variety

r = 0.566%*%**
40 T T T )
34 35 36 37 38
Mean maximum temperature (°C)

110 7 (b)
= 100 - Tolerant variety y =-9.202x + 301.68
g r=0.434%
E 90 A g)
E 80 -
: 70
o i
g o
5 60 - - .
S Sensitive variety
& 50 y=-12.981x +385.4

= kg
40 . r=0.351 .
22 23 24 25

Mean minimum temperature (°C)

Fig. 8 Relationships between (a) mean maximum tem-
perature, (b) mean minimum temperature, 30 days after
anthesis, and proportion of filled grain of sensitive (o) and
tolerant (o) group of varieties.

differed among the rice varieties. This is in contrast
to the generally held view that rice yield in the
tropics is significantly higher in the dry season than
in the wet season®®?’. The higher dry season yield
has been attributed experimentally to higher radi-
ation with less cloud cover associated with higher
biomass?®2°. The present results demonstrate how
the seasonal variation in grain yield is associated
with the number of spikelets and the proportion
at which they are fertilized and filled. The vari-
ation in tolerance to high temperature among the
rice varieties in this study was indicated by the
different degree to which these components of the
yield were associated with the rise in temperature.
Out of the seven rice varieties, high temperature
largely affected SPT1, NP1, R258, and SKN1 with
30-50% yield reduction varied with variety. The
most affected was SPT1 while the less affected were
RD10, CNT1, and SPR1 with lower yield reduction
of 10-15% and much less for SPR1. Rice yield
has been previously reported to be depressed when
the number of spikelets per panicle declines with
rising night temperature®2°. As for the failure of

67

the fertilization process from depression of pollen
viability®°, the number of pollen germinating on
the stigma is associated with high daytime tem-
perature!”-2%39  This study demonstrates how the
yield of different rice varieties may vary differently
with rising temperature through variations in the
relationship between temperature and their yield
forming process from panicle development, to fer-
tilization, and grain filling.

During panicle development, the increase in
maximum temperature (i.e., daytime temperature)
before anthesis was associated with decreasing
number of spikelets per panicle in the sensitive
varieties but not in the tolerant varieties. The lack
of a relationship between the minimum tempera-
ture (i.e., night-time temperature) before anthesis
and the number of spikelets (Fig. 6) suggests that
all seven Thai rice varieties in this study may be
more tolerant to increasing of night temperature
than IR72, the variety studied in Ref. 9. The effect
of high temperature on fertilization failure in the
sensitive varieties in this study was consistent with
most studies on the effect of high temperature on
yield reduction and genotypic variation in high-
temperature tolerance, which usually focused on
the fertilization process”>3!. Furthermore, the heat
tolerance in the fertilization process of SPR1 and
CNT1 and the heat sensitivity in SPT1 have been
reported>®. During anthesis the proportion of un-
fertilized spikelet of all varieties increased when
the maximum temperature increased, but the lack
of relationship with minimum temperature is to be
expected as pollination takes place in the daytime.
This serves as a reminder of the need to focus on the
temperature specific to each yield forming process in
order to identify the relevant physiological basis for
tolerance and controlling genes or QTLs.

The negative correlation between the propor-
tion of filled grain with both maximum and min-
imum temperature suggests that after fertilization
has been successfully completed, high temperature
may still depress the yield through the adverse effect
on grain filling (Fig. 8). To identify the particular
yield forming process that is adversely affected by
high temperature, it would be necessary to distin-
guish between unfertilized spikelets, recognized by
remnant of the stigma, and fertilized but unfilled
or partially-filled grain, indicated by small unde-
veloped grain and complete disappearance of the
stigma (Fig. 1). Normally fertilization is complete
within 5-6 h after pollination and the kernel appears
after 2-3 days®2. However, this does not mean
that all grain that are fertilized are then filled. The
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filling of fertilized grains is determined by the supply
of photosynthates®®. The evaluation of fertilized
and filled grain has therefore enabled the sensitivity
or tolerance to temperature of two very different
process, i.e., fertilization of the gametes and the
capacity to supply photosynthates, to be precisely
identified. Furthermore, this should enable relevant
genes and QTLs as well as more varieties with tol-
erance at the most critical time to be more precisely
identified. Thus contributions can be made towards
adapting rice to climate change.

In conclusion, this study found variation in heat
tolerance among modern Thai rice varieties. The
tolerant and sensitive varieties were distinguished
by differential responses to rising temperature dur-
ing three main yield forming processes, i.e., the
number spikelets before anthesis, the success in
fertilization of the gametes during anthesis, and
grain filling in the period after anthesis. To identify
heat tolerance at specific stages, specific time, and
relevant traits, emphasis needs to be placed on the
number of spikelets per panicle at 30 days before an-
thesis, number of fertilized spikelet during anthesis,
and number of filled grain at 30 days after anthesis.
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