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ABSTRACT: In this paper, we study the steady mixed convection boundary layer flow over a horizontal circular cylinder
in a viscous fluid with the bottom surface of the cylinder heated by convection from a hot fluid. The resulting system of
nonlinear partial differential equations is solved numerically using an efficient implicit finite-difference scheme known
as the Keller box method along with Newton’s linearization techniques. The special case at the lower stagnation point
of the cylinder is considered. The solutions for the flow and heat transfer characteristics are obtained and presented
for various values of the governing parameters, namely, the mixed convection parameter, the Prandtl number, and
the conjugate parameter. The effects of these parameters on the flow and heat transfer characteristic are thoroughly
examined in this study.
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INTRODUCTION

A mixed convection flow describes the situation in
which the effect of the buoyancy force in forced
convection, or the effect of forced flow in free con-
vection becomes significant. This phenomena leads
to a combination of free and forced convection, i.e.,
mixed convection. Over the past decade, the study
on mixed convection over a horizontal cylinder has
progressed tremendously due to the demand in
the industrial manufacturing process, geothermal
power generation, pollutants dispersion, drilling
operation, and many more fields. There is always
a need to study in advance the heat and flow char-
acteristic in order to enhance the heat transfer rate
and flow.

Acrivos1 proposed the theoretical problem of
mixed convection flow from general bodies with a
boundary layer. Joshi and Sukhatme2 solved the
boundary layer of this problem by using a series
method in which the cases of assisting and opposing
flow were considered. By using Gill Runge-Kutta
integration along with the shooting method, Spar-
row and Lee3 studied mixed convection from a hor-
izontal circular cylinder subject to a constant wall

temperature. These authors only considered the
opposing flow in their studies. Merkin4 extended
the problem discussed by them, where a numerical
solution to the boundary layer equations with Pr= 1
is obtained. The solution restricted to the region
precedes the point of boundary layer separation
since the boundary layer is not valid beyond that
point. Nazar et al5, 6 investigated the problem of
mixed convection in a horizontal circular cylinder
for both heating conditions, namely, constant wall
temperature and constant heat flux. They explained
how the governing parameters affect the flow and
heat transfer characteristics as well as the position of
the boundary layer separation. Subsequantly, Nazar
et al5, 6 and Salleh et al7 solved the same problem by
incorporating Newtonian heating into the boundary
conditions. This problem has then been expanded to
different geometries and extended in several cases
in viscoelastic, micropolar, and the latest develop-
ments in nanofluids. The problem of a mixed con-
vection flow of a micropolar fluids over a stretching
sheet has been solved by Takhar et al8. Anwar et al9

has analysed the mixed convection boundary layer
flow in viscoelastic fluid over a horizontal cylin-
der with constant temperature, while Ishak et al10
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considered mixed convection in a micropolar fluid
and found that dual solutions exist in assisting the
flow. Recently, Tham et al11 considered the mixed
convection flow from a horizontal circular cylinder
embedded in a porous medium and nanofluid using
the model proposed by Buongiorno. The authors
have discussed the influences of several parameters
of nanofluids and concluded that these parameters
affect the flow and heat transfer characteristics.

Apart from numerical work, it is worth men-
tioning that such mixed convection problems can
be solved analytically via the homotopy analysis
method (HAM) and differential transform method.
Rajeswari and Shankar12 and Rashidi et al13 pre-
sented analytical solution for the mixed convection
at the vertical plate in the presence of a heat source
and chemical reaction convection and magneto-
hydrodynamic boundary layer viscoelastic over a
continously moving stretching surface, respectively.
The analytical solutions are obtained using HAM
and the analytical result has been compared to
numerical work and a good agreement is observed.

Generally, there are four common heating pro-
cesses as stated by Merkin14, namely, (i) constant
wall temperature, (ii) constant heat flux, (iii) New-
tonian heating, and (iv) convective boundary con-
ditions. In all of the abovementioned investiga-
tions, the boundary conditions (i), (ii), and (iii)
were assumed. The heat transfer problems for flow
concerning boundary condition (iv) were investi-
gated by Aziz15. Since then several researchers em-
ployed convective boundary conditions in various
flow problems16–18. It is expected in near future
that there will be more flow problems to solve by
applying convective boundary conditions.

The present paper therefore studies mixed con-
vection boundary layer flow over a horizontal cir-
cular cylinder by incorporating convective bound-
ary condition as a heating condition, in which the
bottom surface of the cylinder is heated by con-
vection from a hot fluid. The coupled nonlinear
partial differential equations governing the flow
has been solved numerically using an efficient fi-
nite difference scheme known as the Keller box
method. Comprehensive review on this can be
found in Refs. 19, 20. The results for the velocity
and temperature profile near the lower stagnation
point are presented graphically. To the best of
our knowledge, this classical problem studied using
convective boundary conditions has not been con-
sidered before. In addition, the obtained theoretical
results can also be used as a reference for future
experimental research.

BASIC EQUATIONS

We consider the problem of mixed convection flow
of a viscous and incompressible fluid thrusted to
a horizontal circular cylinder with radius a, where
the bottom surface of the cylinder is heated by con-
vection from the hot fluid. The coordinates x̄ and
ȳ are measured along the surface of the cylinder,
starting with the lower stagnation point and normal
to it, respectively. The free stream velocity is U∞
and the ambient temperature is T∞. Boussinesq
equations and boundary layer approximation are
valid in this problem. Under these assumptions, the
basic steady mixed convection boundary layer flow
are (see Refs. 5–7)

∂ ū
∂ x̄
+
∂ v̄
∂ ȳ
= 0 (1)

ū
∂ ū
∂ x̄
+ v̄
∂ ū
∂ ȳ
= ūe

∂ ūe

∂ x̄
+ν

∂ 2ū
∂ ȳ2

+ gβ(T − T∞) sin
x̄
a

(2)

ū
∂ T
∂ x̄
+ v̄
∂ T
∂ ȳ
= α

∂ 2T
∂ ȳ2

(3)

where ū and v̄ are the velocity components along x̄
and ȳ , respectively; T is the fluid temperature in the
boundary layer, g is the gravitational acceleration, β
is the thermal expansion coefficient, α is the thermal
diffusivity, ν is the kinematic viscosity, and

ūe( x̄) = U∞ sin
x̄
a

. (4)

The boundary conditions for the flow and thermal
field are

ū= v̄ = 0, −k
∂ T
∂ ȳ
= hf(Tf− T ) at ȳ = 0

ū→ ūe( x̄), T → T∞ as ȳ →∞.
(5)

The bottom surface of cylinder is heated by con-
vection from a hot fluid of temperature Tf which
provides heat transfer coefficient hf. Further, k is
the thermal conductivity and Tf > T∞. To solve (1)–
(5), we introduce the following non-dimensional
variables defined as

x = x̄/a, y = Re1/2( ȳ/a),

u= ū/U∞ v = Re1/2(v̄/a)

ue(x) = ūe( x̄)/U∞, θ =
T − T∞
Tf− T∞

(6)

where Re = U∞a/ν is the Reynolds number. Sub-
stituting (6) into (1)–(5), we obtain the following
boundary layer equations:

∂ u
∂ x
+
∂ v
∂ y
= 0 (7)
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u
∂ u
∂ x
+ v
∂ u
∂ y
= ue

∂ ue

∂ x
+ν

∂ 2u
∂ y2

+λ sin x (8)

u
∂ θ

∂ x
+ v
∂ θ

∂ y
=

1
Pr
∂ 2θ

∂ y2
. (9)

The transformed boundary conditions are

u= v = 0,
∂ θ

∂ y
= −γ(1−θ ) at y = 0

u= ue(x), θ → 0 as y →∞
(10)

where λ is the constant mixed convection param-
eter, Pr is the Prandtl number, γ is the conjugate
parameter which are defined as

λ=
Gr
Re2 , γ=

ahfRe−1/2

k
, Pr=

ν

α

Gr=
gβ(T − T∞)a3

v2
,

(11)

where Gr is the Grashof number. It is worth men-
tioning that (i) λ> 0 for the assisting flow, (ii) λ< 0
for the opposing flow, and (iii) λ = 0 for forced
convection. Further, we introduce the following
similarity transformation (see Refs. 7, 9).

ψ= x f (x , y), θ = θ (x , y) (12)

where f is the dimensionless stream function, θ is
the dimensionless temperature, andψ is the stream
function defined as usual as

u=
∂ψ

∂ y
, v = −

∂ψ

∂ x
(13)

which identically satisfies (7). Using (12) and (13),
we obtain

∂ 3 f
∂ y3

+ f
∂ 2 f
∂ y2

−
�

∂ f
∂ y

�2

+(cos x +λθ )
sin x

x

= x
�

∂ f
∂ y

∂ 2 f
∂ x∂ y

−
∂ f
∂ x
∂ 2 f
∂ y2

�

(14)

1
Pr
∂ 2θ

∂ y2
+ f
∂ θ

∂ y
= x
�

∂ f
∂ y
∂ θ

∂ x
−
∂ f
∂ x
∂ θ

∂ y

�

(15)

while the boundary conditions (10) become

f =
∂ f
∂ y
= 0,

∂ θ

∂ y
= −γ(1−θ ) at y = 0

∂ f
∂ y
→

sin x
x

, θ → 0 as y →∞.

(16)

At the lower stagnation points of the cylinder x ≈ 0,
equations (14)–(16) reduce to

f ′′′+ f f ′′− ( f ′)2+1+λθ = 0 (17)

1
Pr
θ ′′+ f θ ′ = 0 (18)

while the boundary conditions (16) become

f (0) = f ′(0) = 0, θ ′(0) = −γ(1−θ (0))
f ′(∞)→ 1, θ (∞)→ 0

(19)

where primes denote differentiation with respect to
y . The quantities of practical interest are the local
skin friction coefficient Cf and local Nusselt number
Nu which are given by

Cf = x
∂ 2 f
∂ y2

, Nu= −
∂ θ

∂ y
= −γ(1−θ ).

Also, Cf = Re1/2τw/(ρU2
∞) where τw = µ∂ ū/∂ ȳ is

the wall shear stress.

NUMERICAL METHOD

The Keller box method used in this problem has
been found to be suitable in dealing with convective
boundary layer problems. The method is uncon-
ditionally stable and it can solve problems in any
order. Equations (17) and (18) subject to boundary
conditions (19) are solved by converting them to
first order equations. The first order equations then
are discretized by using central difference equations
with a constant step size.

Due to the nonlinearity of the equations, New-
ton’s methods are used to linearize the algebraic
equations. The linearized difference equation can
be solved by using block elimination techniques as
the system has a three diagonal block structure. A
starting step size of ∆y = 0.02 has been chosen for
the computation. The convergence criteria requires
that the maximum absolute error between two suc-
cessive iteration is 10−5.

RESULTS AND DISCUSSION

To analyse the results, numerical computation has
been carried out using the method described in the
previous section for various values λ, Pr, and γ.
To illustrate the computed results, some figures are
plotted, a table is drawn and physical explanations
are given.

For the verification purposes, comparison of
results have been made with those of Eckert21 and
Anwar et al9. This result pertains to when the value
γ →∞ (constant wall temperature). It is worth
mentioning that the constant wall temperature re-
sults were recovered when a large value of γ is
applied in the boundary conditions. The results in
Table 1 show that the numerical results obtained by
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Table 1 Comparison of the results for the local Nusselt
number Nu with Pr = 1, λ= −1,0, 1.

γ Eckert 21 Anwar et al 9 Present results

−1 0.5095 0.5072
0 0.5700 0.5705 0.5704
1 0.6156 0.6153
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Fig. 1 Velocity profiles f ′(y) for various values of γ when
Pr= 7.0 and λ= 1.0.

the present author are in good agreement with the
result of Eckert21 and Anwar et al9.

Figs. 1 and 2 display the effect of γ on the
velocity and temperature profiles. It is observed that
increasing γ leads to the increase of the temperature
and velocity profiles. As γ increases, the convective
heat transfer from the hot fluid on the surface of
the cylinder to the cold side increases leading to
increases in both velocity and temperature profiles.

Figs. 3 and 4 present the effects of Pr on the
velocity and temperature profiles, respectively. As
expected, velocity and temperature decrease as Pr
increases. This is because for Pr<< 1 the fluid is
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Fig. 2 Temperature profiles θ (y) for various values of γ
when Pr= 7.0 and λ= 1.0.
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Fig. 3 Velocity profiles f ′(y) for various values of Pr when
γ= 0.5 and λ= 1.0.
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Fig. 4 Temperature profiles θ (y) for various values of Pr
when γ= 0.5 and λ= 1.0.

highly conductive. Physically, if Pr increases, the
thermal diffusivity decreases and this phenomenon
leads to the decreasing energy transfer ability that
reduces the thermal boundary layer.

Figs. 5 and 6 illustrate the behaviour of velocity
and temperature profiles with the change in the
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Fig. 5 Velocity profiles f ′(y) for various values of λ when
γ= 0.5 and Pr= 7.0.
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Fig. 6 Velocity profiles f ′(y) for various values of λ when
γ= 0.5 and Pr= 7.0.

value of λ. From these figures, it is clear that
velocity profile increases as λ increases while then
opposite is observed for the temperature profile.
Due to favourable buoyancy effects, fluid velocity
increases within the boundary layer flow. We also
noticed that for high λ, there exists an overshoot
of the velocity profile from the free stream velocity.
With the increase in λ in Fig. 6, the convection
cooling effect increases and hence the fluid flow
accelerates; hence the temperature lowers. Finally,
it is observed from the profiles in Figs. 1–6 that they
satisfy the far field boundary conditions asymptoti-
cally, which support the numerical result obtained.

CONCLUSIONS

In this paper, we have studied the problem of a
steady 2-d mixed convection boundary flow past a
horizontal circular cylinder with convective bound-
ary conditions in viscous fluid at the lower stagna-
tion point of the cylinder. We have looked into the
effects of the mixed convection parameterλ, Prandtl
number Pr, conjugate parameter γ on the flow, and
heat transfer characteristic. The governing non-
similar boundary layer equations were transformed
into ordinary differential equations before being
solved numerically using the Keller box method.
Numerical results for the velocity and temperature
profiles are reported in figure form. From this
study, we could draw the following conclusions:
the temperature profile increases when conjugate
parameter increases, and different patterns are ob-
served for the increase in Pr number and mixed con-
vection parameter λ. On the other hand, when the
value of conjugate and mixed convection parameter
increase, the velocity profile increases, while the
increase in Pr number led to a decrease in velocity
profile.
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