(L9ESEARCH ARTICLE
doi: 10.2306/scienceasial513-1874.2016.42S.049

ScienceAsia 42S (2016): 49-55

Model checking the DNS under DNS cache-poisoning

attacks using SPIN

Wei Zhang®"™*, Meihong Yang?, Xinchang Zhang?, Huiling Shi?

2 Shandong Key Laboratory of Computer Networks, Shandong Computer Science Centre
(National Supercomputer Centre in Jinan), Jinan 250000, China
b College of Information Science and Engineering, Shandong University of Science and Technology,

Qingdao 266510, China

*Corresponding author, e-mail: wzhang@sdas.org

Received 31 Aug 2014
Accepted 20 Jul 2016

ABSTRACT: Domain name system (DNS) security has garnered substantial interest due to DNS cache-poisoning attacks.
In this article, a model checking method is employed to verify the security of the DNS protocol, especially when it is
under DNS cache-poisoning attacks. The DNS protocol is first translated into a simpler model that preserves all the
attack behaviour to be verified. Extended finite state machine models are given and represented in PROMELA which

can be identified by SPIN; and then the whole process of model checking is proposed. The initial results on verification
of the DNS under DNS cache-poisoning attacks using SPIN are also proposed. From the experimental results it can be
seen that the security of DNS should be carefully considered.

KEYWORDS: protocol verification, extended finite state machine, PROMELA

INTRODUCTION

Domain Name System (DNS) is a hierarchical dis-
tributed naming system that translates alphanu-
meric domain names into IP addresses. DNS makes
it possible to use a Uniform Resource Locator (URL)
to address a host in the internet. DNS forms the
logical backbone of the World Wide Web, and the
service it provides is used on the order of a trillion
times a day!. That the administration of the system
can be distributed among several name servers is an
important feature of the design of DNS. Zone is a
contiguous part of the domain name space which is
managed by many authoritative name servers. Then
the distribution is achieved by delegating part of the
zone administration to several subzones. DNS was
designed to be a public database with no intentions
to restrict access to information. Nowadays, many
distributed applications make use of DNS. Confi-
dence on the working of those applications depends
critically on the use of trusted data: fake informa-
tion inside the system has been shown to lead to
unexpected and potentially dangerous problems.
DNS security has garnered substantial interest,
due to the highly publicized DNS cache-poisoning
vulnerability discovered by Kaminsky?. The attack
targets DNSs URL-resolution mechanism so that an
infected DNS server gives an incorrect IP address for
a URL. An intruder can exploit this mechanism to

hijack an internet domain. Specifically, a corrupted
DNS server will reply with the IP address of a mali-
cious web server when asked to resolve URLs within
a non-malicious domain such as www.qq.com. This
would direct many unsuspecting clients (ordinary
desktop machines) to the malicious web site when
they wanted to visit a web site within the domain
www.qq.com.

In this article, we use the model checker SPIN.
In general, this approach consists of constructing a
formal model of the protocol design, and then using
an automatic analysis technique to prove or to check
the satisfaction of a given set of critical proper-
ties3. Probably, the most promising formal methods
to ensure a prior reliability is model checking®?,
Analysing the DNS protocol with model checking
comprises the following steps: (a) construction of
a protocol model; (b) specification of the reliability
properties with a property-oriented language; and
(c) production of a reachability graph including all
the execution paths for the model in order to check
whether these paths satisfy the properties. This
technique has been integrated in many academic
and industrial oriented tools.

This article also discusses how to employ
SPIN®8, one of the most powerful and well-known
model checkers, in order to specify the correctness
of DNS protocol, and analyse the DNS under cache-
poisoning attacks. The rest of the article is orga-

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2016.42S.049
http://www.scienceasia.org/2016.html
mailto:wzhang@sdas.org
www.scienceasia.org

50

2. cannot find, send the

DNS Caching ****"" ik Maln DNS Sever

requests
Seye
3. Returns the query to
the IP address

Target_Sever

Fig. 1 Domain name resolution in DNS.

2
>
g
g
2 (<]
5 3}
L s .,
S
5
=
S
53
-~

addl“es o

2

£
=
3]
CZ

S. Visit the tar},et
server

Qi

User

nized as follows. The Background Section provides
background material on DNS, DNS cache-poisoning
attacks and the model checking technology. Then
we presents the modelling process of DNS protocol
and DNS under attack. The process of the model
checking is also given. The results of some experi-
ments of the verification are discussed. we give some
conclusions of the works we have done, and point
out some further works we would do in the last

section.

BACKGROUND
DNS protocol

Domain Name System is a hierarchical naming sys-
tem for the internet based on underlying client-
server architecture, which is also hierarchical in
nature. The primary function of a DNS server is
to perform URL-resolution: the process of translat-
ing a URL or domain name, such as www.qq.com
into a physical IP address, such as 119.188.89.220.

DNS servers are organized hierarchically in terms

of top-level domains and subordinate, lower-level

domains, respectively, com, qg and www in the
example.

The DNS protocol is shown in Fig. 1 and the
details of steps are as follows:

(1) In client, a URL (e.g., www.qq.com) is filled in
into the address bar of the browser, the client
must know the IP address corresponding to the
URL. The client then sends a parse request
for temporary DNS server; the request is some-
thing like: “could you tell me which IP address
www.qq.com is?”

(2) If the IP address of www.qq.com cannot be
found in the temporary DNS server, the DNS
server will send the parse request to the main

www.scienceasia.org

ScienceAsia 42S (2016)

DNS server. The main DNS server on the
preservation of www.qq.com corresponds to the
IP address.

(3) The main DNS server replies to temporary
DNS server request, the response is some-
thing like: “the IP address of www.qq.com is
119.188.89.220”.

(4) After the temporary DNS server received the
response from the main DNS server, it sends the
response message to the client.

(5) The client uses the correct IP address to access
the gqq homepage.

DNS cache-poisoning attacks

The attack targets URL-resolution mechanism of
DNS so that an infected DNS server gives an in-
correct IP address for a URL. An intruder can
exploit this mechanism to hijack an internet do-
main. Specifically, a corrupted DNS server will
reply with the IP address of a malicious web server
when asked to resolve URLs within a non-malicious
domain such as www.qq.com. To understand how
DNS cache-poisoning attack works, consider the
following steps. A user wants to visit the target
domain, and asks to resolve the URL within the
DNS. Meanwhile, an intruder substitutes a wrong
IP address of the DNS server. So the user may be
receiving the wrong IP address, and visit the server
which has been set up by the intruder. In the event
of a successful attack, the intruder will reply to the
users URL-resolution request for a URL within the
target domain with the IP address of the malicious
domain.

The DNS cache-poisoning attack is shown in
Fig. 2, in which the steps marked in red are the steps
of the attack process. The details of steps are as
follows:

(1) The user sends a parse request to temporary
DNS server for the IP address of www.qq.com.

(2) If the IP address of www.qq.com cannot be
found in the temporary DNS server, the DNS
server will send the parse request to the main
DNS server. The main DNS server on the
preservation of www.qq.com corresponds to the
IP address.

(3) When the main DNS server has not returned to
the temporary DNS server, the attacker sends a
wrong IP address to the temporary DNS server.
The temporary DNS server does not know that
it has been given a DNS cache poison.

(4) The temporary DNS server replies to the client
with the false IP address of the domain name.

(5) The user receives the false IP address, and visits

http://www.scienceasia.org/2016.html
www.scienceasia.org

ScienceAsia 42S (2016)

Main DNS_Sever

2. cannot find, send the
superior DNS query
requests
DNS Caching /
Seyg: :

Attacking Caching
S Sever

3. Send the fales IP i
S

Malicious.Sever

>

Target.Sever

Fig. 2 DNS cache-poisoning attacks.

the malicious server which has been set up by
the attacker.

Model checking and SPIN

Model checking is a technique that relies on building
a finite model of a system and checking that a
desired property holds in the model or not. As
specified in Ref. 9, model checking has been used
primarily in hardware and protocol verification.
There are two methods for model checking. The first
one is modelled as finite transition system and speci-
fications are expressed in a temporal logic. Another
is that, the specification is given as an automaton
and the system is also modelled as automaton, and is
compared to the specification to determine whether
its behaviour conforms to the specification *°.

There are many kinds of model checking tools,
such as SPIN’, this NUSMV2, and etc. Among them,
the model checker SPIN is one of the most popular,
providing a friendly user interface and acceptance
model specification written in PROMELA (PROcess
MEta LAnguage) !'. PROMELA is used for building
verification models which represents an abstract of
a protocol, which contains the aspects relevant to
the properties one wants to verify'2. A PROMELA
program consists of processes, message channels,
and variables. Processes are defined globally; while
message channels and variables can be declared
either globally or locally within a process. Processes
are used to specify system types of behaviour, and
channels and global variables are used to define the
environment in which the processes run. Examples
and further details about the PROMELA language

51

can be found in Ref. 7.

MODELLING THE DNS UNDER DNS
CACHE-POISONING ATTACKS

Formal modelling is the first and crucial step in
model checking. Constructing a model for a pro-
tocol in PROMELA requires a previous abstraction
process of the original source code. Usually, this
process eliminates details that are not necessary for
debugging purposes. Models will therefore be as
small as possible, making sure that they represent
the exact details needed for the properties to be
analysed.

Extended finite state machine model

Extended finite state machine (EFSM) model is ex-
tended from the finite state machine (FSM) model.
Compared with FSM, there are environmental vari-
ables and the migration of pre-conditions in EFSM.
So EFSM model has a stronger ability to describe
the dynamic behaviour of the system. For these
reasons, we use EFSM to model the process, which
is a formula in the area of model checking, and can
be described in PROMELA easily.

Definition 1 EFSM M is defined as the tuple
(S,s9,V,My,P,Mp,I,0, T)in which S is a finite set of
states; s, is the initial state, s, € S; V is the finite set
of the internal variables (environment variables),
and the range of the internal variable is Dy; My is
the set of the initial (or default) values of variables
in V, in which any element can be expressed as a
tuple (s,v), s €S, v € Dy; P is the set of the input
and output parameters; Mj is the set of the initial
(or default) values of variables in P, in which any
element can be expressed as a tuple (p,u), p € IUO,
u € D,, D, is the range of the input and output
parameters; I is the set of the input symbols; O is
the set of the output symbols; T is the finite set of
state transition.

A state transition t (t € T) is defined as the
tuple (s,x,Y,gp,gr,0p,€), where: s and t are the
start (head) state and the end (tail) state; g, is
the input and output conditions to determine; gy is
the conditions to determine of the variable required
for migration; x and y are the input and output
symbols; op is the output operations.

Modelling the DNS protocol by EFSM

It requires a previous abstraction process of the
original source code that constructing a model for a
protocol in PROMELA. Usually, details that are not

www.scienceasia.org

http://www.scienceasia.org/2016.html
www.scienceasia.org

52

€ DNS S

resolution request

>

IP address

visit

Parse failure

<

Fig. 3 Message flow in the DNS protocol.

necessary for debugging purposes will be eliminated
in this process. In addition, the models should be as
small as possible to make sure that they represent
the exact details which are needed to be analysed.
As the analysis, we focus on the most important at-
tributes, ignore the less important attribute. Hence
we abstract the DNS protocol. In the formal mod-
elling process, we should ignore the participants
which are independent of the desired characteristics
of the protocol. To obtain an accurate model of the
DNS protocol, here we only pay attention to the
three objects, the client (C), the DNS, and the target
server (S). We use the notation “A = B: message” to
indicate that A sends the message to B. The basic
DNS protocol consists of the following messages:
(1) C = DNS: Domain name resolution requests

(2) DNS = C: IP Address

(3) C= S: Visit

(4) DNS = C: Parse failure

The message flow is shown in Fig. 3.

Fig. 4 shows the EFSM model of the DNS proto-
col, containing three-state and five-state transitions.
The abstracted model is small but can describe all
the properties which we care about. The label

R-OK/IP
Start

DN/
INIT

R-noOK/
1P/
;Yisit
“V-OK/

Fig. 4 EFSM of the DNS protocol.

www.scienceasia.org

ScienceAsia 42S (2016)

C€ DNS DNS S

Resolution request
ST

Wrong IP address

<
<

visit

Find the attack

Fig. 5 Message flow under DNS cache-poisoning attacks.

R-OK/IP means that, when the input symbol of the
state RESOLUTION satisfying R-OK, the state will
be converted to the state INIT, and it will output the
symbol IP.

Modelling the DNS cache-poisoning attacks

The whole process of attack is given in the last
section. Combined with DNS protocol model ab-
stracted in the last section, we will make further
abstraction and description of the message flow in
the process of attack. Here we only consider the
three objects: the client (C), the DNS, the bogus
DNS (DNS’) and the bogus server (S). The detailed
message flow is shown in Fig. 5.

According to the EFSM model of DNS protocol
discussed in last section, the EFSM model of the DNS
under DNS cache-poisoning attacks can be shown in
Fig. 6. There are five-state and nine-state transitions
in the EFSM model. The label IP =wip /attack ok
means that, when the input symbol of the state INIT
satisfying IP =wip, the state will be converted to the
state W-VISIT, and it will output the symbol attack
ok.

R-OK/IP
Start DN/
DN/
< R-noOK/
[N
1P/
Ip/ IP=wip/
Visit attack ok
V-OK/ attack ok v
>

Fig. 6 EFSM of DNS under cache-poisoning attacks.

http://www.scienceasia.org/2016.html
www.scienceasia.org

ScienceAsia 42S (2016)

THE PROCESS OF MODEL CHECKING

According to the analysis of message flow above,
we have abstracted two models. The EFSM models
can be identified by SPIN while they have been
translated by the PROMELA. The fragment of
PROMELA code that represents EFSM is presented
in Listing 1 as the DNS Process. In this fragment,
each label like DNS_init or DNS_wait represents
every state of the process. Notation : denotes the
possible nondeterministic choices of further execu-
tion options inside bodies of if and do operations.
The option can be selected if its guard (the first
statement follows right after :) is enabled — that is
executable. If more than one option is enabled, one
will be selected at random. Notation goto means
the process turns from one state to another state.

Channels are used to model data flow between
processes and can be either globally scoped or lo-
cally scoped within a single process. The fragment
presented in Listing 2 shows how to define the
channels.

SPIN supports two kinds of analysis for the mod-
elled protocols. The first one consists of checking
deadlocks and other safety properties by generating
the execution paths in the model. The second kind
of analysis consists of checking temporal properties
specified with temporal logic. Here we describe the
correctness criteria we are interested in, and show
how they can be defined in SPIN. To formalize both
desired and undesired properties of the DNS, we
use linear temporal logic notation (LTL) to describe
them. The SPIN model checker supports specifica-
tion of system properties using LTL, which has been
proven to have good expressibility and more natural

Listing 1 Fragment of DNS Process in PROMELA.

1 active proctype DNS()
2 {records=100;
s DNS_init:

if

4
5 ::C_DNS?RS ->

6 if

7 ::IP=wip -> DNS_C!R-0K;

8 goto DNS_wait
9 ::IP!=wip -> DNS_C!R-no0K;
10 goto DNS_init
1 fi;

12 fi;

13 DNS_wait:

53

Listing 2 Fragment of the definition of channels in
PROMELA.

1 {chan
chan
chan
chan
chan
chan

DNS_C=[0] of
DNS_C=[0] of
C_DNS=[0] of
S_DNS=[0] of
c_s=[0]
S_c=[0]

{mtype};
{int};
{mtypel};
{mtype};
of {mtype};
of {mtypel};

© N o v A W N

language like statements for verification!® 1. LTL
consists of only a few logic operators, such as []
(always), <> (eventually), U (until), W (unless, or
weak until), and O (next). Combining with Boolean
operators, i.e., && (and), || (or), ! (Negation), —
(logical implication), and «— (logical equivalence),
LTL is capable of describing many key properties of
a concurrent software system.

EXPERIMENTAL RESULTS

SPIN will search the whole state space of the model,
if the model has been given in PROMELA. SPIN can
also identify the unreachable state or deadlock in
model. In addition, SPIN can construct a verifier,
which can check several claims on the execution
of the model. We have established the model of
DNS under cache-poisoning attacks. In this section,
we present various kinds of verifications that can
be performed on a PROMELA model described in
the sections above. Using SPIN and the PROMELA
specification presented above, several properties of
the execution of the models were verified. For each
experiment, the size of the model constructed by
SPIN, and the time for verification were measured.
The experiments were carried out on a 2.7 GHz
Pentium dual-core machine with 8 GB of memory.
First, we let SPIN perform a full state space
search for invalid end states, which is SPIN formal-
ization of deadlock states, in case of 10 attackers.
The results are shown in Fig. 7. In line 2, the + sign
indicates that the default simple algorithms have
been used; otherwise, the — sign indicates that it is
fully compiled without simplification. Line 3 repre-
sents the type of search. The — sign in line 4 means
that it did not use a never claim or an LTL formula.
Line 5 indicates that the detection process does not
violate the user-defined statements (assert). Line 6
indicates that the process does not detect the current
user-defined acceptable cycle or no progress marked
circle. The + sign in line 7 represents the correct end

www.scienceasia.org

http://www.scienceasia.org/2016.html
www.scienceasia.org

54

(Spin Version 6.1.0 -- 4 May 2014)
+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)
assertion violations +

cycle checks - (not selected)
invalid end states +

State-vector 100 byte, depth reached 3162, errors: 0
94540894 states, stored
337456453 states, matched
431997347 transitions (= stored+matched)
0 atomic steps
hash conflicts: 126864754 (resolved)

3616.172 memory usage (Mbyte)

pan: elapsed time 251.8 seconds
pan: rate 375460.26states/second

Fig. 7 Results of verification using SPIN.

state, which means that there is no deadlock.

We have employed SPIN to perform a full state
space search in cases of 1, 10, 20, 30, 40, and 50
attackers. The results are summarized in Fig. 8.
The exponential increase in the number of memory
usage seems to be not manageable when checking
more than 50 attackers. In Fig. 8, we can also see
the number of the output attack ok is in the growth
with the increasing of the number of attackers. In
other words, this means the DNS cache-poisoning
attacks are successful.

CONCLUSIONS

In this paper, we introduced a model checking
approach to verify the DNS under DNS cache-
poisoning attacks. First we analysed the DNS pro-
tocol, the participants of the DNS under DNS cache-
poisoning attacks, and the message flow in them.
We proposed the EFSM models, and translated them
in PROMELA. Then we analysed the whole pro-
cess of model checking using SPIN. We did some
experiments, which can prove that our model can
simulate the actual attacks. The initial results on
verification of the DNS under DNS cache-poisoning
attacks using SPIN are also proposed in this paper.
Through the experimental results, it can be seen that
the security of DNS should be paid more attention
to. For our future work, we will try to combine
our approach with more details of the DNS protocol.
Also we will perform model checking on the DNSEC

www.scienceasia.org

ScienceAsia 42S (2016)

6000 I I I 6
5000 4 —4— Memorey usage / 5
a x Number of Attracker OK / o
2 4000 4 8
= i
: /
3 3000 / 3 2
5 E
z 2000 2 o
/ 2
=
= 1000 1 3
Z

0 0

0 10 20 30 40 50 60
Number of Attrackers

Fig. 8 Results of the experiments.

protocol to compare whether it is more secure than
the DNS protocol.

Acknowledgements: This work was supported by Shan-
dong Provincial Natural Science Foundation of China
(Grant no. ZR2015YL019) and National Natural Sci-
ence Foundation of China (Grant no. 61272433 and no.
61472230).

REFERENCES

1. Alexiou N, Basagiannis S, Katsaros B Dashpande T,
Smolka SA (2010) Formal analysis of the Kamin-
sky DNS cache-poisoning attack using probabilistic
model checking. In: Proceedings of the 2010 IEEE
12th International Symposium on High-Assurance Sys-
tems Engineering (HASE), pp 94-103.

2. Kaminsky D (2008) It’s the end of the cache as we
know it, Black Hat USA 2008, [talk].

3. Gallardo MM, Martinez J, Merino P (2005) Model
checking active networks with SPIN. Comput Comm
28, 609-22.

4. Clarke EM, Emerson EA, Sistla AP (1986) Automatic
verification of finite-state concurrent systems using
temporal logic specifications. ACM Trans Program
Lang Syst 8, 244-63.

5. Clarke EM, Grumberg O, Peled D (1999) Model
Checking, MIT Press.

6. Holzmann GJ (1991) Design and Validation of Com-
puter Protocols, Prentice-Hall.

7. Holzmann GJ (1997) The model checker SPIN. IEEE
Trans Software Eng 23, 279-95.

8. Eker S, Meseguer J, Sridharanarayanan A (2004)
The Maude LTL model checker. Electron Notes Theor
Comput Sci 71, 162-87.

9. Clarke EM, Wing JM (1996) Formal methods: State
of the art and future directions. ACM Comput Surv
28, 626-43.

10. Shaikh R, Devane S (2010) Formal verification of
payment protocol using AVISPA. Int J Infonomics 3,
326-37.

http://www.scienceasia.org/2016.html
http://dx.doi.org/10.1109/HASE.2010.25
http://dx.doi.org/10.1109/HASE.2010.25
http://dx.doi.org/10.1109/HASE.2010.25
http://dx.doi.org/10.1109/HASE.2010.25
http://dx.doi.org/10.1109/HASE.2010.25
http://dx.doi.org/10.1109/HASE.2010.25
http://dx.doi.org/10.1016/j.comcom.2004.08.006
http://dx.doi.org/10.1016/j.comcom.2004.08.006
http://dx.doi.org/10.1016/j.comcom.2004.08.006
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1016/S1571-0661(05)82534-4
http://dx.doi.org/10.1016/S1571-0661(05)82534-4
http://dx.doi.org/10.1016/S1571-0661(05)82534-4
http://dx.doi.org/10.1145/242223.242257
http://dx.doi.org/10.1145/242223.242257
http://dx.doi.org/10.1145/242223.242257
http://dx.doi.org/10.20533/iji.1742.4712.2010.0035
http://dx.doi.org/10.20533/iji.1742.4712.2010.0035
http://dx.doi.org/10.20533/iji.1742.4712.2010.0035
www.scienceasia.org

ScienceAsia 42S (2016)

11.

12.

13.

14.

Holzmann GJ (2004) The SPIN Model Checker:
Primer and Reference Manual, Addison-Wesley,
pp 17-9.

Xu H, Cheng YT (2007) Model checking bidding be-
haviors in internet concurrent auctions. Int J Comput
Syst Sci Eng 22, 179-91.

Manna Z, Pnueli A (1992) The Temporal Logic of Reac-
tive and Concurrent Systems: Specifications, Springer
Science & Business Media.

Clarke EM, Grumberg O, Hamaguchi K (1997) An-
other look at LTL model checking. Formal Meth Syst
Des 10, 47-71.

55

www.scienceasia.org

http://www.scienceasia.org/2016.html
http://dx.doi.org/10.1007/978-1-4612-0931-7
http://dx.doi.org/10.1007/978-1-4612-0931-7
http://dx.doi.org/10.1007/978-1-4612-0931-7
http://dx.doi.org/10.1023/A:1008615614281
http://dx.doi.org/10.1023/A:1008615614281
http://dx.doi.org/10.1023/A:1008615614281
www.scienceasia.org

