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ABSTRACT: We consider an n×n system of nonlinear integral equations of Volterra type (nonlinear VIEs) arising from
an economic model. By applying the Newton-Kantorovich method to the nonlinear VIEs we linearize them into linear
Volterra type integral equations (linear VIEs). Uniqueness of the solution of the system is shown. An idea has been
proposed to find the approximate solution by transforming the system of linear VIEs into a system of linear Fredholm
integral equations by using sub-collocation points. Then the backward Newton interpolation formula is used to find the
approximate solution at the collocation points. Each iteration is solved by the Nystrom type Gauss-Legendre quadrature
formula (QF). It is found that by increasing the number of collocation points of QF with fewer iterations, a high accurate
approximate solution can be obtained. Finally, an illustrative example is demonstrated to validate the accuracy of the
method.
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INTRODUCTION

The Newton-Kantorovich method is a powerful
technique for solving nonlinear problems, and the
Kantorovich theorems are significant in nonlinear
analysis to prove the existence and uniqueness of
the solution of nonlinear integral equations arising
in many scientific areas. In recent years, many
different methods have been used to obtain the
solution of the system of integral equations, such
as Adomian decomposition method1, step method2,
modified reproducing kernel method3, Chebyshev
wavelets method4, biorthogonal systems5 and se-
ries method6. In this note, we consider the system
of nonlinear Volterra integral equations

x i(t) =
r
∑

κ=1

∫ t

y(t)
Hik(t,τ)Ψ(xκ(τ))dτ,

z j(t) =
r
∑

κ=1

∫ t

y(t)
K jκ(t,τ)Ψ(xκ(τ))dτ, (1)

c(t) =
r
∑

i=1

x i(t)+
p
∑

j=1

z j(t),

where i = 1, 2, . . . , r, j = 1, 2, . . . , p, r + p+1= n
and Ψ(u) = um, m ¾ 2 is an integer. The unknown
functions are

x i(t) ∈ C[t0, T], i = 1,2, . . . , r,

z j(t) ∈ C[t0, T], j = 1,2, . . . , p,

y(t) ∈ C1[t0, T],

where 0< t0 ¶ t ¶ T , y(t)< t, y(t)¾ y(t0) = t0 >
0, and the kernel functions Hiκ(t,τ), K jκ(t,τ) ∈
C([t0, T]× [t0, T]), i,κ = 1, 2, . . . , r; j = 1, 2, . . . , p
and non-negative. The system (1) represents the n-
commodity model where x i(t), i = 1,2, . . . , r is the
reconstruction rate of ith commodity of kind I used
for performing internal function of the system, and
z j(t), j = 1, 2, . . . , p is the reconstruction rate of jth
commodity of kind I I used for performing external
functions of the system, and Hiκ(t,τ), K jκ(t,τ),
i,κ = 1, 2, . . . , r; j = 1,2, . . . , p, are the productivi-
ties of the generation of the ith commodity of kind I
and the jth commodity of kind I I with the use of the
corresponding κth commodity. The function y(t)
corresponding to the intensity of using commodities
of kind I at time t. Boikov and Tynda7 implemented
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the Newton-Kantorovich method to solve (1) when
Ψ(u) = u with the same conditions above for the
known and unknown functions.

The paper is arranged as follows. We describe
the Newton-Kantorovich method. Then we solve
the system of linear integral equation of Volterra
type using Nystrom type Gauss-Legendre quadra-
ture formula. An example is described to show the
accuracy and efficiency of the method. The last
section concludes the main ideas of the approximate
method.

DESCRIPTION OF THE METHOD

In solving (1) let

Pi(V ) = x i(t)−
r
∑

κ=1

∫ t

y(t)
Hiκ(t,τ)Ψ(xκ(τ))dτ= 0,

Pr+ j(V ) = z j(t)−
r
∑

κ=1

∫ t

y(t)
K jκ(t,τ)Ψ(xκ(τ))dτ= 0,

Pn(V ) = c(t)−
r
∑

i=1

x i(t)−
p
∑

j=1

z j(t) = 0, (2)

where i = 1,2, . . . r, j = 1,2, . . . p, V = (X , Z , y),
r + p + 1 = n, X = (x1(t), x2(t), . . . , x r(t)), Z =
(z1(t), z2(t), . . . , zp(t)), then the system of (1) can
be reduced to the operator form

P(V ) = (Pi(V ), Pr+ j(V ), Pn(V )) = (0, 0,0), (3)

i = 1, . . . , r, j = 1, . . . , p, n= r + p+1.

Eq. (3) can be solved by Newton-Kantorovich
method. Let the initial approximation be

P ′(V0)(V − V0)+ P(V0) = 0, (4)

where V0 = (X0; Z0; y0) = (x10(t), . . . , x r0(t); z10(t),
. . . , zp0(t); y0(t)) denotes the initial guess and can
be chosen as any continuous functions provided that
y0(t) < t. The Fréchet derivative of P(V ) at the
point V0 is defined as

P ′(V0)V =
�

lim
s→0

1
s

�

Pi(V0+ sV )− Pi(V0)
�

,

lim
s→0

1
s

�

Pr+ j(V0+ sV )− Pr+ j(V0)
�

,

lim
s→0

1
s

�

Pn(V0+ sV )− Pn(V0)
�

�

,

i = 1,2, . . . , r, j = 1, 2, . . . , p, n= r + p+1,
(5)

since V0 = (X0; Z0; y0) and V = (X ; Z; y). Then we
obtain P ′(V0)V =
















∂ Pi

∂ xκ

�

�

�

�

V0

∂ Pi

∂ zl

�

�

�

�

V0

∂ Pi

∂ zl

�

�

�

�

V0
∂ Pr+ j

∂ xκ

�

�

�

�

V0

∂ Pr+ j

∂ zl

�

�

�

�

V0

∂ Pr+ j

∂ y

�

�

�

�

V0

∂ Pn

∂ xκ

�

�

�

�

V0

∂ Pn

∂ zl

�

�

�

�

V0

∂ Pn

∂ y

�

�

�

�

V0

















�

xκ; zl ; y
�

,

where κ= 1,2, . . . , r; l = 1,2, . . . , p. Hence (5) rep-
resents the Fréchet derivative of nonlinear operator
P(V ) at the point V0, where

∂ Pi(V )
∂ xκ

�

�

�

�

V0

= δiκxκ(t)

−m

∫ t

y0(t)
Hiκ(t,τ)x

m−1
κ (τ)xκ(τ)dτ

i,κ= 1,2, . . . , r,

∂ Pi(V )
∂ zl

�

�

�

�

V0

= 0, i = 1, . . . , r, l = 1, . . . , p,

∂ Pi(V )
∂ y

�

�

�

�

V0

=
r
∑

κ=1

Hiκ(t, y0(t))x
m
κ0(y0(t))y(t),

i = 1, 2, . . . , r,

∂ Pr+ j(V )

∂ xκ

�

�

�

�

V0

= −m

∫ t

y0(t)
K jκ(t,τ)x

m−1
κ0 (τ)xκ(τ)dτ,

j = 1, . . . , p, κ= 1, . . . , r,

∂ Pr+ j(V )

∂ zl

�

�

�

�

V0

= δ jlzl , j, l = 1, . . . , p,

∂ Pr+ j(V )

∂ y

�

�

�

�

V0

=
r
∑

κ=1

K jκ(t, y0(t))x
m
κ0(y0(t))y(t),

j = 1, 2, . . . , p,

∂ Pn(V )
∂ xκ

�

�

�

�

V0

= − xκ(t), κ= 1, . . . , r,

∂ Pn(V )
∂ zl

�

�

�

�

V0

= − zl(t), l = 1, . . . , p,

∂ Pn(V )
∂ y

�

�

�

�

V0

= 0,

where δiκ denotes the Kronecker delta. Thus (4)
has the form

∆x i(t)−m
r
∑

κ=1

∫ t

y0(t)
Hiκ(tτ)x

m−1
κ0 (τ)∆xκ(τ)dτ

+∆y(t)
r
∑

κ=1

Hiκ(t, y0(t))x
m
κ0

�

y0(t)
�
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=
r
∑

κ=1

∫ t

y0(t)
Hiκ(t,τ)x

m
κ0(τ)− x i0(t),

∆z j(t)−m
r
∑

κ=1

∫ t

y0(t)
K jκ(t,τ)x

m−1
κ0 (τ)∆xκ(τ)dτ

+∆y(t)
r
∑

κ=1

K jκ

�

t, y0(t)
�

xm
κ0(y0(t))

=
r
∑

κ=1

∫ t

y0(t)
K jκ(t,τ)x

m
κ0(τ)dτ− z j0(t),

r
∑

i=1

∆x i(t)+
p
∑

j=1

∆z j(t)

= c(t)−
r
∑

i=1

x i0(t)−
p
∑

j=1

z j0(t), (6)

where

∆x i(t) = x i1(t)− x i0(t), i = 1, 2, . . . , r,

∆z j(t) = j j1(t)− x j0(t), j = 1, 2, . . . , p,

∆y(t) = y1(t)− y0(t),

and (x10(t), . . . , x r0(t); z10(t), . . . , zp0(t); y0(t)) is
the initial approximation. By solving the system (6)
for ∆x i , i = 1, . . . , r; ∆z j , j = 1, . . . , p; and ∆y we
obtain (x11(t), . . . , x r1(t); z11(t), . . . , zp1(t); y1(t)).
In the same manner, a sequence of approximate
solutions Vq(t) = (Xq(t), yq, Zq) = (x i(q), yq, z j(q)),
q = 2,3, . . . can be assessed from the equation

P ′(V0)(Vq − Vq−1)+ P(Vq−1) = 0, q = 2, 3, . . .

which is equivalent to the system

∆x i(q)(t)

−m
r
∑

κ=1

∫ t

y0(t)
Hiκ(tτ)x

m−1
κ0 (τ)∆xκ(q)(τ)dτ

+∆yq(t)
r
∑

κ=1

Hiκ(t, y0(t))x
m
κ0

�

y0(t)
�

=
r
∑

κ=1

∫ t

y0(t)
Hiκ(t,τ)x

m
κ0(τ)− x i0(t),

∆z j(q)(t)

−m
r
∑

κ=1

∫ t

y0(t)
K jκ(t,τ)x

m−1
κ0 (τ)∆xκ(q)(τ)dτ

+∆yq(t)
r
∑

κ=1

K jκ

�

t, y0(t)
�

xm
κ0(y0(t))

=
r
∑

κ=1

∫ t

y0(t)
K jκ(t,τ)x

m
κ0(τ)dτ− z j0(t),

r
∑

i=1

∆x i(q)(t)+
p
∑

j=1

∆z j(q)(t)

= c(t)−
r
∑

i=1

x i0(t)−
p
∑

j=1

z j0(t), (7)

where

∆x i(q)(t) = x i(q)(t)− x i(q−1)(t), i = 1, . . . , r,

∆z j(q)(t) = j j(q)(t)− x j(q−1)(t), j = 1, . . . , p,

∆yq(t) = yq(t)− yq−1(t), q = 2, 3, . . . .

Solving the system (7) for ∆x i(q)(t), ∆yq(t),
∆z j(q)(t) yields sequences of approximate solutions
x i(q)(t), yq(t), and z j(q)(t), where i = 1, 2, . . . r, j =
1,2, . . . p, and q = 2, 3, . . ..

Lemma 1 If the system of (6) has a unique solution
V ∗ = (X ∗, y∗, Z∗) = (x∗i , y∗, z∗j ), i = 1,2, . . . r, j =
1, 2, . . . p, ‖∆V‖¶ η and ‖P ′′(V )‖¶ ζ, where η and
ζ are the coefficients of Kantorovich’s majorant func-
tion, R(t) = ζt2−2t +2η. Then the sequence of suc-
cessive approximation Vq(t) = (Xq(t), yq(t), Zq(t)) =
(x i(q)(t), yq(t), z j(q)(t)), q = 2, 3, . . . converges to the
solution V ∗(t) = (X ∗(t), y∗(t), Z∗(t)) and the rate of
convergence is

‖V ∗− Vq‖¶
1
ζ

�

1−
Æ

1−2ζη
�q+1

, q = 1,2, . . . .

Proof : We set

L1
i (t) =

r
∑

κ=1

Hiκ

�

t, y0(t)
�

xm
κ0

�

y0(t)
�

,

L2
j (t) =

r
∑

κ=1

K jκ

�

t, y0(t)
�

xm
κ0

�

y0(t)
�

,

F1
i (t) =

∫ t

y0(t)

r
∑

κ=1

Hiκ(t,τ)x
m
κ0(τ)dτ− x i0(t),

F2
j (t) =

∫ t

y0(t)

r
∑

κ=1

K jκ(t,τ)x
m
κ0(τ)dτ− zi0(t),

F3(t) = c(t)−
r
∑

i=1

x i0(t)−
p
∑

j=1

z j0(t),

where i = 1, . . . , r and j = 1, . . . , p. As consequently,
the system (6) can be represented as

∆x i(t)−m
r
∑

κ=1

∫ t

y0(t)
Hiκ(t,τ)x

m−1
κ0 (τ)∆xκ(τ)dτ

+∆y(t)L1
i (t) = F1

i (t), i = 1, . . . , r
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∆z j(t)−m
r
∑

κ=1

∫ t

y0(t)
K jκ(t,τ)x

m−1
κ0 (τ)∆xκ(τ)dτ

+∆y(t)L2
j (t) = F2

j (t), j = 1, . . . , p,
r
∑

i=1

∆x i(t)+
p
∑

j=1

∆z j(t) = F3(t). (8)

By expressing∆y(t) from the first and second equa-
tions of the system (8), we obtain

∆y L1
i (t) = F1

i (t)−∆x i(t)

+m
r
∑

κ=1

∫ t

y0(t)
Hiκ(tτ)x

m−1
κ0 (τ)∆xκ(τ)dτ,

i = 1, . . . , r (9)

and

∆y L2
j (t) = F2

j (t)−∆z j(t)

+m
r
∑

κ=1

∫ r

y0(t)
K jκ(t,τ)x

m−1
κ0 (τ)∆xκ(τ)dτ,

j = 1, . . . , p. (10)

We add the first r equations of (9) to obtain

∆y(t)
r
∑

i=1

L1
i (t) =

r
∑

i=1

F1
i (t)−

r
∑

i=1

∆x i(t)

+m
r
∑

i=1

r
∑

k=1

�∫ t

y0(t)
Hiκ(t,τ)x

m−1
κ0 (τ)

∆xκ(τ)

�

dτ, (11)

and we do summation of equations in (10) with
respect to r + j, j = 1,2, . . . , p to obtain

∆y(t)
p
∑

i=1

L2
j (t) =

p
∑

j=1

F2
j (t)−

p
∑

j=1

∆z j(t)

+m
p
∑

j=1

r
∑

k=1

∫ t

y0(t)

�

K jκ(t,τ)x
m−1
κ0 (τ)

∆xκ(τ)
�

dτ. (12)

Then, by adding (11) and (12), we obtain

∆y(t)
� r
∑

i=1

L1
i (t)+

p
∑

j=1

L2
j (t)

�

=
r
∑

i=1

F1
i (t)+

r
∑

i=1

F2
i (t)− F3(t)

+m
r
∑

i=1

∫ t

y0(t)

� r
∑

κ=1

Hκi(t,τ)x
m−1
i0 (τ)∆x i(τ)

+
p
∑

κ=1

Kκi(t,τ)x
m−1
i0 (τ)∆x i(τ)

�

dτ. (13)

Assume that G(t) = [
∑r

i=1 F1
i (t) +

∑p
i=1 F2

i (t)] has
no zeros on the interval [t0, T]. Then ∆y(t) has
the form

∆y(t) =
1

G(t)

�

m
r
∑

i=1

∫ t

y0(t)

� r
∑

κ=1

�

Hκi(t,τ)x
m−1
i0 (τ)

∆x i(τ)
�

+
p
∑

κ=1

Kκi(t,τ)x
m−1
i0 (τ)∆x i(τ)

�

dτ

+
r
∑

i=1

F1
i (t)+

p
∑

j=1

F2
j (t)− F3(t)

�

. (14)

To find ∆x i(t), i = 1,2, . . . , r we substitute (14) in
the first equation of the system (8)

∆x i(t)−m
r
∑

j=1

∫ t

y0(t)
Hi j(t,τ)x

m−1
j0 (τ)∆x j(τ)dτ

+
L1

i

G(t)

�

m
r
∑

j=1

∫ t

y0(t)

� r
∑

κ=1

�

Hκ j(t,τ)x
m−1
j0 (τ)

∆x j(τ)
�

+
p
∑

κ=1

Kκ j(t,τ)x
m−1
j0 (τ)∆x j(τ)

�

dτ

+
r
∑

i=1

F1
i (t) +

p
∑

j=1

F2
j (t)− F3(t)

�

= F1
i (t), (15)

then

∆x i(t)+m
r
∑

j=1

∫ t

y0(t)

�

Ωi j(t,τ)x
m−1
j0 (τ)

∆x j(τ)dτ
�

= Φi(t), i = 1, . . . , r, (16)

where

Ωi j(t,τ) =
L1

i (t)

G(t)

� r
∑

κ=1

Hκ j(t,τ)

+
p
∑

κ=1

Kκ j(t,τ)
�

−Hi j(t,τ)

Φi(t) = F1
i (t)+

L1
i (t)

G(t)

�

F3(t)

−
r
∑

i=1

F1
i (t)+

p
∑

j=1

F2
j (t)

�

.
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∆zi(t) can be evaluated from the second equation
of the system (8) to be of the form

∆z j(t) = F2
j (t)+m

r
∑

κ=1

∫ t

y0(t)

�

K jκ(t,τ)x
m−1
κ0 (τ)

∆xκ(τ)
�

dτ−∆y(t)L2
j (t), j = 1, . . . , p. (17)

Eq. (16) represents a standard system of linear
system of Volterra integral equation of the second
kind with respect to ∆x i(t), and from the theory of
integral equations it has a unique solution provided
that Ωi j(t,τ) and Φi(t) are continuous functions in
their range of definitions and G(t) has no zeros on
[t0, T]. Then by using the concept of Kantorovich’s
Theorem8, we can reveal that V ∗(t) is the unique
solution to the operator system (2) and ‖V ∗−Vq‖¶
(1/ζ)(1−

p

1−2ζη)q+1, q = 1,2, . . . 2
By solving (14), (16) and () in terms of ∆y(t),

∆x i(t), i = 1,2, . . . , r and ∆y j(t), j = 1,2, . . . , p we
obtain (x i1(t), z1 j(t), y1(t)), and for the process of
successive approximation we have

∆x i(q)(t)+m
r
∑

j=1

∫ t

y0(t)

�

Ωi j(t,τ)x
m−1
j0 (τ)

∆x j(q)(τ)
�

dτ= Φi(q−1)(t), i = 1, . . . , r,

∆yq(t) =
1

G(t)

�

m
r
∑

i=1

∫ t

y0(t)

� r
∑

κ=1

�

Hκi(t,τ)

xm−1
i0 (τ)∆x i(q)(τ)

�

+
p
∑

κ=1

Kκi(t,τ)x
m−1
i0 (τ)∆x i(q)(τ)

�

dτ

+
r
∑

i=1

F1
i(q−1)(t)+

p
∑

j=1

F2
j(q−1)(t)− F3

q−1(t)

�

,

∆z j(q)(t) = F2
j(q−1)(t)

+m
r
∑

κ=1

∫ t

y0(t)
K jκ(t,τ)x

m−1
κ0 (τ)∆xκ(q)(τ)dτ

+∆y(t)q L2
j(q−1)(t), j = 1, . . . , p, (18)

where q = 2, 3, . . ., and

Φi(q−1)(t) = F1
i(q−1)(t)+

L1
i(q−1)(t)

G(t)

�

F3
s−1(t)

−
r
∑

i=1

F1
i(q−1)(t)+

p
∑

j=1

F2
j(q−1)(t)

�

,

F1
i(q−1)(t) =

∫ t

y0(t)

r
∑

κ=1

Hiκ(t,τ)x
m
κ(q−1)(τ)dτ

− x i(q−1)(t), i = 1, . . . , r,

F2
j(q−1)(t) =

∫ t

y0(t)

r
∑

κ=1

K jκ(t,τ)x
m
κ(q−1)(τ)dτ

− zi(q−1)(t), j = 1, . . . , p,

F3
q−1(t) = c(t)−

r
∑

i=1

x i(q−1)(t)−
p
∑

j=1

z j(q−1)(t),

L1
i(q−1)(t) =

r
∑

κ=1

Hiκ

�

t, yq−1(t)
�

xm
κ(q−1)

�

yq−1(t)
�

,

L2
j(q−1)(t) =

r
∑

κ=1

K jκ

�

t, yq−1(t)
�

xm
κ(q−1)

�

yq−1(t)
�

,

where

∆x i(q)(t) = x i(q)(t)− x i(q−1)(t), i = 1, . . . , r,

∆yq(t) = yq(t)− yq−1(t),

∆z j(q)(t) = z j(q)(t)− z j(q−1)(t), j = 1, . . . , p

q = 2, 3, . . .

Remark: the first equation of system (18) is a
linear Volterra integral equation of second kind, so
it has a unique solution in terms of ∆x i(q)(t), since
G(t) has no zeros on the interval [t0, T] and the
kernels Ωi, j(t,τ), i, j = 1,2, . . . , r are continuous
functions, that can be evaluated by the method
of successive approximation, then the sequences
∆yq(t) and ∆z j(q)(t) can be uniquely determined
from the second and third equations of the system
(18).

GAUSS-LEGENDRE QUADRATURE METHOD FOR
APPROXIMATE SOLUTION

For the approximate solution of system (18), we
define a grid (ω) of points tα = t0 + α(T − t0)/d,
α = 0,1, . . . , d, where d refers to the number of
partitions in [t0, T]. Hence we obtain the following
system

∆x i(q)(tα)+m
r
∑

j=1

∫ tα

y0(tα)

�

Ωi j(tα,τ)xm−1
j0 (τ)

∆x j(q)(τ)
�

dτ= Φi(q−1)(tα), i = 1, . . . , r,

∆yq(tα) =
1

G(t)

�

m
r
∑

i=1

∫ tα

y0(tα)

� r
∑

κ=1

�

Hκi(tα,τ)

xm−1
i0 (τ)∆x i(q)(τ)

�

+
p
∑

κ=1

�

Kκi(tα,τ)xm−1
i0 (τ)

∆x i(q)(τ)
�

�

dτ+
r
∑

i=1

F1
i(q−1)(tα)+

p
∑

j=1

F2
j(q−1)(tα)

− F3
q−1(tα)

�

,
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∆z j(q)(tα) = F2
j(q−1)(tα)

+m
r
∑

κ=1

∫ tα

y0(tα)
K jκ(tα,τ)xm−1

κ0 (τ)∆xκ(q)(τ)dτ

+∆y(tα)q L2
j(q−1)(tα), j = 1, . . . , p,

α= 1, . . . , d, (19)

and

Φi(q−1)(tα) = F1
i(q−1)(tα)

+
L1

i(q−1)(tα)

G(tα)

�

F3
n−1(tα)−

r
∑

i=1

F1
i(q−1)(tα)

+
p
∑

j=1

F2
j(q−1)(tα)

�

,

F1
i(q−1)(tα) =

∫ tα

yq−1(tα)

r
∑

κ=1

Hiκ(tα,τ)xm
κ(q−1)(τ)dτ

− x i(q−1)(tα), i = 1, . . . , r,

F2
j(q−1)(tα) =

∫ tα

yq−1(tα)

r
∑

κ=1

K jκ(tα,τ)xm
κ(q−1)(τ)dτ

− zi(q−1)(tα), j = 1, . . . , p,

F3
q−1(tα) = c(tα)−

r
∑

i=1

x i(q−1)(tα)−
p
∑

j=1

z j(q−1)(tα),

L1
i(q−1)(tα) =

r
∑

κ=1

�

Hiκ

�

tα, yq−1(t)
�

xm
κ(q−1)

�

yq−1(tα)
�

�

, i = 1, . . . , r,

L2
j(q−1)(tα) =

r
∑

κ=1

�

K jκ

�

t, yq−1(tα)
�

xm
κ(q−1)

�

yq−1(tα)
�

�

, j = 1, . . . , p.

The powerful technique to approximate all integra-
tions in the system (19) is Gauss-Legendre quadra-
ture formula, so that for an arbitrary interval [a, b]
we have the following form

∫ b

a

f (t)dt =
b− a

2

d
∑

j=1

w j f (t j)+Rd , (20)

where the nodes t j = (
1
2 (b − a))x j +

1
2 (b + a) are

related to the zeros x j of Legendre polynomial Pd(x)
over the interval [−1, 1], with Pd(1) = 1 and the
three term recurrence relation is

(d +1)Pd+1(x) = (2d +1)x Pd(x)− dPd−1(x), (21)

and the weight function w(t) = 1, where

w j =
2

(1− x2
j )[P

′
d(x j)]2

, j = 1, . . . , d (22)

and the remainder is

Rd =
22d+1(d!)4

(2d +1)[2d!]3
f 2d(ξ), −1< ξ < 1. (23)

We introduce a subgrid (ω1) of ` Legendre knot
points at each subinterval (y0(tα), tα) such that

τv
α =

tα− y0(tα)
2

xv +
tα+ y0(tα)

2
,

v = 1, . . . ,`, α= 1, . . . , d.

xv represents the zeros of Legendre polynomial
Pd(x) over the interval [−1,1] and τv

α 6= tα. Ap-
plying Gauss-Legendre quadrature formula (20) for
the integral system (19) at the Legendre grid points
τv
α, we obtain

∆x i(q)(τ
v
α)+m

r
∑

j=1

�

tα− y0(tα)
2

�

∑̀

κ=1

Ωi j(τ
v
α,τκα)x

m−1
j0 (τκα)∆x j(q)(τ

κ
α)wκ

= Φi(q−1)(τ
v
α), i = 1, . . . , r,

∆yq(τ
v
α) =

1
G(t)

�

m
r
∑

i=1

�

tα− y0(tα)
2

�

∑̀

j=1

� r
∑

κ=1

Hκi(τ
v
α,τ j

α)x
m−1
i0 (τ j

α)∆x i(q)(τ
j
α)

+
p
∑

κ=1

Kκi(τ
v
α,τ j

α)x
m−1
i0 (τ j

α)∆x i(q)(τ
j
α)
�

w j

+
r
∑

i=1

F1
i(q−1)(τ

v
α)+

p
∑

j=1

F2
j(q−1)(τ

v
α)− F3

q−1(τ
v
α)

�

,

∆z j(q)(τ
v
α) = F2

j(q−1)(τ
v
α)

+m
r
∑

κ=1

�

tα− y0(tα)
2

�

∑̀

i=1

K jκ(τ
v
α,τi

α)

xm−1
κ0 (τ)∆xκ(q)(τ

i
α)wi +∆y(τv

α)q L2
j(q−1)(τ

v
α),

j = 1, . . . , p, v = 1, . . . ,`, α= 1, . . . , d, (24)

where

Φi(q−1)(τ
v
α) = F1

i(q−1)(τ
v
α)+

L1
i(q−1)(τ

v
α)

G(τv
α)

�

F3
q−1(τ

v
α)−

r
∑

i=1

F1
i(q−1)(τ

v
α)+

p
∑

j=1

F2
j(q−1)(τ

v
α)
�

,
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F1
i(q−1)(τ

v
α) =

�

tα− yq−1(tα)

2

�

∑̀

j=1

r
∑

κ=1

Hiκ(τ
v
α,τ j

α)x
m
κ(q−1)(τ

j
α)w j

− x i(q−1)(τ
v
α), i = 1, . . . , r,

F2
j(q−1)(τ

v
α) =

�

tα− yq−1(tα)

2

�

∑̀

i=1

r
∑

κ=1

K jκ(τ
v
α,τi

α)x
m
κ(q−1)(τ

i
α)wi

− zi(q−1)(τ
v
α), j = 1, . . . , p,

F3
q−1(τ

v
α) = c(τv

α)−
r
∑

i=1

x i(q−1)(τ
v
α)−

p
∑

j=1

z j(q−1)(τ
v
α),

L1
i(q−1)(τ

v
α) =

r
∑

κ=1

Hiκ

�

τv
α, yq−1(τ

v
α)
�

xm
κ(q−1)

�

yq−1(τ
v
α)
�

, i = 1, . . . , r,

L2
j(q−1)(τ

v
α) =

r
∑

κ=1

K jκ

�

τv
α, yq−1(τ

v
α)
�

xm
κ(q−1)

�

yq−1(τ
v
α)
�

, j = 1, . . . , p,

where v = 1, . . . ,`, α = 1, . . . , d. The first equation
of the system (24) is a linear algebraic system of d×l
equations and d × l unknowns. If the matrix of this
system is not singular then it has a unique solution
in terms of ∆x i(q)(τv

α), i = 1, . . . , r, s = 2,3, . . .,
v = 1, . . . ,`, α= 1, . . . , d, then the values of∆yq(τv

α)
and ∆z j(q)(τv

α), j = 1, . . . , p can be easily evaluated
by direct substitution the value of ∆x i(q)(τv

α) in the
second equation of system (24) and ∆x i(q)(τv

α) and
∆yq(τv

α) in the third equations, respectively. Since
the values of the functions x i(q)(τv

α) are known at l
Legendre grid points in each subinterval (y0(tα), tα)
for each q iteration, the values of unknown functions
x i(tα) can be found by applying the Newton forward
interpolation formula which are

x i(q)(t)' P`(t)

= x i(q)(τ
`
α)+ x i(q)(τ

`
α,τ`−1

α )(t −τ
`
α)

+ x i(q)(τ
`
α,τ`−1

α ,τ`−2
α )(t −τ

`
α)(t −τ

`−1
α )

+ · · ·+ x i(q)(τ
`
α,τ`−1

α ,τ`−2
α , . . . ,τ1

α)

× (t −τ`α)(t −τ
`−1
α ) · · · (t −τ

1
α).
(25)

It is known9 that the error of (25) is

�

�x i(q)(t)− P`(t)
�

�¶
M
`+1!

,

Table 1 Numerical results for (26) with d = 10, h = 0.5,
`= 5.

q εx εz εy

1 0.00 1.014137×10−4 0.022024
2 0.00 6.931068×10−5 0.015093
5 0.00 2.228037×10−5 0.004871

10 0.00 3.416982×10−6 8.201659×10−4

20 0.00 1.190459×10−7 3.166210×10−5

40 0.00 2.350333×10−10 6.639312×10−8

Table 2 Numerical results for (26) with d = 10, h = 0.5,
`= 10.

q εx εz εy

1 0.00 7.615760×10−5 0.00167
2 0.00 5.112875×10−7 8.618341×10−4

5 0.00 4.964108×10−9 2.761149×10−5

10 0.00 4.287655×10−11 9.764381×10−7

20 0.00 1.005649×10−12 3.914765×10−9

40 0.00 3.964122×10−15 4.765199×10−13

where

M =max
¦
�

�x`+1
i(q) (ξ) · (t −τ

1
α) · · · (t −τ

`
α)
�

�

©

.

From the system (24) it follows that by increasing
the knot points l the more accurate solution is ob-
tained, therefore the Newton forward interpolation
method can be used for reasonable amount of l.

NUMERICAL EXAMPLES

Consider the system of nonlinear Volterra integral
equation

x(t) =

∫ t

y(t)
t x2(τ)dτ, z(t) =

∫ t

y(t)
t x2(τ)dτ,

(26)
and c(t) = 2t, where t ∈ [t0, T] = [5, 10], and the
exact solution of (26) is x∗(t) = t, z∗(t) = t, and
y∗(t) = 3pt3−3. In this particular example, initial
guesses are x0(t) = 2t, z0(t) =

1
2 t, and y0(t) =

5pt5−5.
Tables 1, 2, 3, and 4 show that xq(t) coincides

with the exact x∗(t) from the first iteration, whereas
zq(t) and yq(t) are close to z∗(t) and y∗(t), respec-
tively, after some iterations. Notation used here
are d is the number of nodes, l is the number of
subnodes, q is the number of iterations, and

εx = max
t∈[5,10]

�

�xq(t)− x∗(t)
�

� ,

εz = max
t∈[5,10]

�

�zq(t)− z∗(t)
�

� ,
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Table 3 Numerical results for (26) with d = 20, h= 0.25,
`= 5.

q εx εz εy

1 0.00 1.013038×10−4 0.020035
2 0.00 6.032177×10−5 0.009872
5 0.00 1.997625×10−5 0.002792

10 0.00 3.223779×10−6 8.170566×10−4

20 0.00 1.084199×10−7 3.009728×10−5

40 0.00 2.197287×10−10 6.290796×10−8

Table 4 Numerical results for (26) with d = 20, h= 0.25,
`= 10.

q εx εz εy

1 0.00 7.291381×10−5 0.00097
2 0.00 5.001363×10−7 8.2875310×10−4

5 0.00 4.103774×10−9 2.4910043×10−5

10 0.00 4.011820×10−11 9.3871220×10−7

20 0.00 9.003781×10−13 3.6992101×10−9

40 0.00 3.210009×10−15 4.4000439×10−13

εy = max
t∈[5,10]

�

�yq(t)− y∗(t)
�

� .

CONCLUSIONS

In this article, the approximate solution of n × n
system of nonlinear Volterra integral equations by
the Newton-Kantorovich method is discussed and
the uniqueness of the solution is shown. A new
interesting idea has been proposed by introducing
a subgrid of collocation points τv

α, α = 1, 2, . . . , d,
v = 1,2, . . . , l which are included in y0(tα, tα]. To
obtain a good accuracy it is enough to increase `
but not d as shown in Tables 1, 2, 3, and 4. This is
the advantage of the present approach of solving the
n×n system of nonlinear Volterra integral equations.
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