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ABSTRACT: Let G be a finite group and N be a normal subgroup of G. We define an undirected simple graph ΓN ,G to
be a graph whose vertex set is all elements in G \ ZN (G) and two vertices x and y are adjacent iff [x , y] /∈ N , where
ZN (G) = {g ∈ G : [x , g] ∈ N for all x ∈ G}. If N = 1, then we obtain the known non-commuting graph of G. We
give some basic results about connectivity, regularity, planarity, 1-planarity and some numerical invariants of the graph
which are mostly improvements of the results given for non-commuting graphs. Also, a probability related to this graph
is defined and a formula for the number of edges of the graph in terms of this probability is given.
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INTRODUCTION

There are many graphs which are associated with
groups: for instance, prime graphs1, non-cyclic
graphs2, and conjugate graphs3. An important one
is the non-commuting graph. Let G be a group.
Then the non-commuting graph of G, denoted by ΓG ,
is a graph whose vertices are elements of G \ Z(G)
and two distinct vertices x and y are adjacent if
x y 6= y x . Neumann4 obtained the first remarkable
result on the non-commuting graphs by answering
a problem of Erdős. From that time on, non-
commuting graphs have been studied extensively in
the literature5, 6.

The aim of this paper is to give a generalization
of the non-commuting graph of a group G with
respect to a given normal subgroup N of G. In
the next section, we introduce the generalized non-
commuting graph G through a normal subgroup N
of G denoted by ΓN ,G and state some of the basic
graph theoretical properties of this graph which are
mostly new or a generalization of some results in
Ref. 5. We also give a connection between ΓN ,G and
the probability that the commutator of two arbitrary
elements of G belongs to the normal subgroup N of
G. We also state some conditions under which the
graph is regular or strongly regular.

GENERALIZED NON-COMMUTING GRAPH

Definition 1 Let G be a finite group and N be a
normal subgroup of G. The non-commuting graph
of G can be generalized using the subgroup N is
such a way that its vertices are G \ ZN (G) where
ZN (G) = {g ∈ G : gN ∈ Z(G/N)} and two distinct
vertices are adjacent when [x , y] /∈ N . This graph is
denoted by ΓN ,G .

Notice that if N = 1 then the graph ΓN ,G is the
ordinary non-commuting graph of G. Clearly, N ⊆
ZN (G) and so the elements of N do not belong to the
vertex set of ΓN ,G . One can easily see that the graph
ΓN ,G is null whenever G is abelian or N = G. Hence,
throughout this paper, it is always assumed that G
is a non-abelian group and N is a proper normal
subgroup of G.

We also note that if [G : N] = k and {x1, . . . , xk}
is a left transversal of N in G such that [x i , x j] ∈ N
for all 1¶ i, j ¶ k, then ΓN ,G is a null graph.

Example 1 Let D12 = 〈a, b | a6 = b2 = 1; bab =
a−1〉 be the dihedral group of order 12 and put
N = Z(D12) = {e, a3}. Then ΓD12,N

is drawn as in
Fig. 1.

Lemma 1 Let G be a group and N be a normal
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G is a non-abelian group and N is a proper normal54

subgroup of G.55

We also note that if [G : N ] = k and {x1, . . . , xk}56

is a left transversal to N in G such that [xi, xj ] ∈ N57

for all 1 ⩽ i, j ⩽ k, then ΓN,G is a null graph.58

Example 1 Let D12 = ⟨a, b
∣∣a6 = b2 = 1; bab =59

a−1⟩ be a dihedral group of order 12 and put N =60

Z(D12) = {e, a3}. Then ΓD12,N is drawn as Figure61

1.62
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Now, we state the following simple lemma, which65

will be used frequently in the proof of next results.66

Lemma 1 Let G be a group and N be a normal67

subgroup of G. If x, y ∈ G, then68

[x, y] /∈ N ⇔ [xn, yn′] /∈ N69

for all n, n′ ∈ N .70

By the above lemma, it can be easily check that71

the graph ΓN,G dose not have any isolated vertex and72

is never an empty graph.73

Definition 2 Let G be a group and N be a normal74

subgroup of G. Then for every x ∈ G,75

CN
G (x) = {g ∈ G : gN ∈ CG

N
(xN)}76

It is clear that CN
G (x) is a subgroup of G and deg(x) =77

|G| − |CN
G (x)| for all x ∈ V (ΓN,G).78

Theorem 1 Let G be a finite group and N be a non-79

trivial subgroup of G. Then ΓN,G is not a complete80

graph.81

Proof : Suppose on the contrary that ΓN,G is complete.82

Then83

deg(h) = |G| − |CN
G (h)| = |G| − |ZN (G)| − 184

for all vertices h of ΓN,G. Then |CN
G (h)| =85

|ZN (G)| + 1. On the other hand, |ZN (G)| divides86

|CN
G (h)|. Thus |ZN (G)| = 1, which contradicts the 87

choice of N . 2 88

Now, we obtain diameter and girth of the graph 89

ΓN,G. 90

Theorem 2 diam(ΓN,G) = 2 and girth(ΓN,G) = 3. 91

Proof : Let a, b be two non-adjacent vertices. Then 92

there exist x, y such that [a, x] ̸∈ N and [b, y] ̸∈ N . 93

Now if a join y or b join x, then d(x, y) = 2. Suppose 94

[a, y] ∈ N and [b, x] ∈ N . It is obvious that xy is a 95

vertex and therefore xy is adjacent to both x and y. 96

Hence diam(ΓN,G) = 2. 972 98

In the following theorem, we obtain a lower 99

bound for the minimum degree of vertices of ΓN,G, 100

which is denoted by δ(ΓN,G). 101

Theorem 3 We have δ(ΓN,G) ⩾ 3|N |. 102

Proof : Let x be an arbitrary vertex of ΓN,G. Since 103

ΓN,G does not have any isolated vertex, there exists 104

a vertex y adjacent to x. Hence, x ∼ ny for all n ∈ 105

N . Since xy is a vertex of ΓN,G adjacent to x, we 106

have x ∼ nxy for all n ∈ N . As xy ̸= yx, x ∼ nyx 107

for all n ∈ N , from which it follows that δ(ΓN,G) ⩾ 108

3|N |. 2 109

Utilizing Definition 2, we show that ΓN,G is a 110

Hamiltonian graph. 111

Proposition 1 Let G be a non-abelian group and N 112

be a normal subgroup of G. Then ΓN,G is Hamilto- 113

nian. 114

Proof : One can easily see that deg(x)⩾ |V (ΓN,G)|/2 115

for all x ∈ V (ΓN,G). Now, the proof is similar to 116

Proposition 2.2 in1. 2 117

An Eulerian tour is a walk which passes every 118

edge exactly one times. A graph is Eulerian if it con- 119

tains an Eulerian tour. In the following propositions, 120

we determine some conditions for N and G when the 121

graph ΓN,G is Eulerian. 122

Proposition 2 If |N | is even, then ΓN,G is Eulerian. 123

Proof : Let V (ΓN,G) = x1N ∪ · · · ∪ xrN . Let x be 124

any vertex of ΓN,G and xi1 , . . . , xit be those vertices 125

among x1, . . . , xr adjacent to x. Hence x ∼ nxij 126

for all n ∈ N and 1 ⩽ j ⩽ t, which implies that 127

deg(x) = t|N | is even. Therefore, by Theorem 4.1 128

in11, the result follows. 2 129

Proposition 3 If |G| is odd, then ΓN,G is Eulerian. 130
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Fig. 1 Generalized non-commuting graph ΓD12,N
.

subgroup of G. If x , y ∈ G, then [x , y] /∈ N ⇔
[xn, yn′] /∈ N for all n, n′ ∈ N.

By the above lemma, it can be easily checked that
the graph ΓN ,G does not have any isolated vertex and
is never an empty graph.

Definition 2 Let G be a group and N be a normal
subgroup of G. Then for every x ∈ G,

CN
G (x) =
§

g ∈ G : gN ∈ CG/N (xN)
ª

.

It is clear that CN
G (x) is a subgroup of G and

deg(x) = |G| − |CN
G (x)| for all x ∈ V (ΓN ,G).

Theorem 1 Let G be a finite group and N be a
nontrivial subgroup of G. Then ΓN ,G is not a complete
graph.

Proof : Suppose on the contrary that ΓN ,G is com-
plete. Then

deg(h) = |G| − |CN
G (h)|= |G| − |Z

N (G)| −1

for all vertices h of ΓN ,G . Then |CN
G (h)|= |Z

N (G)|+1.
On the other hand, |ZN (G)| divides |CN

G (h)|. Thus
|ZN (G)|= 1 which contradicts the choice of N . 2

Theorem 2 diam(ΓN ,G) = 2 and girth(ΓN ,G) = 3.

Proof : Let a, b be two non-adjacent vertices. Then
there exist x , y such that [a, x] /∈ N and [b, y] /∈
N . Now if a is adjacent to y or b is adjacent to x ,
then d(x , y) = 2. Suppose [a, y] ∈ N and [b, x] ∈
N . It is obvious that x y is a vertex and therefore x y
is adjacent to both x and y . Hence diam(ΓN ,G) =
2. 2

Theorem 3 A lower bound for the minimum degree
of vertices of ΓN ,G , which we denote by δ(ΓN ,G), satis-
fies δ(ΓN ,G)¾ 3|N |.

Proof : Let x be an arbitrary vertex of ΓN ,G . Since
ΓN ,G does not have any isolated vertex, there exists
a vertex y adjacent to x . Hence x ∼ ny for all n ∈
N . Since x y is a vertex of ΓN ,G adjacent to x , we
have x ∼ nx y for all n ∈ N . As x y 6= y x , x ∼ ny x
for all n ∈ N , from which it follows that δ(ΓN ,G) ¾
3|N |. 2

Proposition 1 Let G be a non-abelian group and N
be a normal subgroup of G. Then ΓN ,G is Hamiltonian.

Proof : One can easily see that deg(x)¾ |V (ΓN ,G)|/2
for all x ∈ V (ΓN ,G). The proof is similar to that for
Proposition 2.2 in Ref. 5. 2

An Eulerian tour is a walk which passes every
edge exactly once. A graph is Eulerian if it contains
an Eulerian tour. In the following propositions, we
determine some conditions for N and G when the
graph ΓN ,G is Eulerian.

Proposition 2 If |N | is even, then ΓN ,G is Eulerian.

Proof : Let V (ΓN ,G) = x1N ∪ · · · ∪ x r N . Let x be
any vertex of ΓN ,G and x i1 , . . . , x it

be those vertices
among x1, . . . , x r adjacent to x . Hence x ∼ nx i j

for all n ∈ N and 1 ¶ j ¶ t, which implies that
deg(x) = t|N | is even. Hence by Theorem 4.1 in
Ref. 7 the result follows. 2

Proposition 3 If |G| is odd, then ΓN ,G is Eulerian.

Proof : Let x ∈ V (ΓN ,G) be an arbitrary vertex. We
know that deg(x) = |G| − |CN

G (x)|. Since CN
G (x)

is a subgroup of G, its order is odd and hence
deg(x) is even. The result follows by Theorem 4.1
in Ref. 8. 2

In the following theorem, we give a lower bound
for the chromatic number χ(ΓN ,G) of the graph ΓN ,G .

Theorem 4 Suppose [G : N] = k+1 and G = x0N ∪
x1N ∪ · · · ∪ xkN. Then

χ(ΓN ,G)¾ 1+max{|A| : A⊆ {x0, . . . , xk},
x i , x j ∈ A, [x i , x j] /∈ N , }.

Proof : Put t1 = |{x i : [x i , x1] /∈ N}|. Then it is
clear that χ(ΓN ,G) ¾ t1 + 1. Similarly, if t j = |{x i :
[x i , x j] /∈ N}|, then we need at least t j + 1 colours
in order to colour ΓN ,G and again χ(ΓN ,G) ¾ t j + 1.
Now, if t =max{t j : 1¶ j ¶ k}, then χ(ΓN ,G)¾ t+1,
as required. 2

We now may state some results for the dominat-
ing number of the graph ΓN ,G . A subset of the graph
is a dominating set if every vertex which is not in
the subset is adjacent to at least one member of the
subset. The size of the minimum dominating set is
called the dominating number.
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Theorem 5 Let G be a non-abelian group and N be a
normal subgroup of G such that xN is a dominating
set for ΓN ,G for every vertex x of ΓN ,G . Then ZN (G) =
N, x2 = 1, and CG/N = 〈xN〉.

Proof : To prove ZN (G) = N , assume on the contrary
that ZN (G) 6= N . Then there exists an element a ∈
ZN (G)−N and so [a, g] ∈ N for all g ∈ G. Since x
is a vertex, x /∈ ZN (G) which implies that [x , b] /∈ N
for some b ∈ G. Thus [xa, b] /∈ N . Consequently, xa
is a vertex. We now have [xa, x] = [a, x]∈ N and so
xa is not adjacent to x which is a contradiction. If
x2 6= 1, then x−1 6= x and again x−1 is not adjacent
to x is a contradiction. The last part directly follows
from the point that x is a vertex in the dominating
set and x2 = 1. 2

One can easily see that a subset S of V (ΓN ,G) is
a dominating set if and only if CN

G (S) ⊆ ZN (G)∪ S.
Also, if X is a generating set for G, then X N\ZN (G)N
is a dominating set for ΓN ,G .

A cut-set of ΓN ,G is a set of edges of the graph
which, if removed, disconnects the graph. The
vertex connectivity of ΓN ,G , denoted by κ(ΓN ,G), is
the minimum size of all cut sets. In the following
proposition we determine the vertex connectivity of
ΓN ,G .

Proposition 4 Let G be a non-abelian group and S be
a cut set of ΓN ,G . If x , y ∈ V (ΓN ,G)\S belong to distinct
components of ΓN ,G\S then S can be written as a union
of double cosets of the subgroup CN

G (x)∩CN
G (y). Also,

if G is finite then κ(ΓN ,G) = t|ZN (G)|, in which t is an
integer greater that 1.

Proof : It is similar to the proof of Proposition 2.4
in Ref. 5. Put H = CN

G (x)∩ CN
G (y). Since x and y

are vertices, x , y /∈ ZN (G) and consequently, H 6= G.
We now prove that S =

⋃

a∈G HaH. Firstly, we show
that for every a ∈ G, if HaH∩S 6=∅, then HaH ⊆ S.
On the contrary, assume that HaH * S. Then there
exist elements h1, h2 ∈ H such that h1ah2 /∈ S. It
can be easily seen that x ∼ h1ah2 ∼ y which is
a contradiction. Hence

⋃

a∈G HaH ⊆ S and S ⊆
G =
⋃

a∈G HaH which imply that S =
⋃

a∈G HaH
whenever HaH ∩ S 6= ∅. Secondly, assume that
k(ΓN ,G) = |S|, where S is a minimum cut set of ΓN ,G .
Then ZN (G) ¶ H allows as to write S as the union
of cosets of ZN (G). Thus there exists a positive
integer t such that k(ΓN ,G) = t|ZN (G)|. We claim
that t > 1. If t = 1 then S = bZN (G) for some
b /∈ ZN (G). If x1 and y1 and two vertices belong
to different connected components of ΓN ,G \ S then
[x , y] ∈ N . Since diam(ΓN ,G) = 2, we should have

a path between x1 and y1 which is a contradiction.
Hence t > 1. 2

The commutativity degree d(G) of a finite group
G is the probability that two randomly chosen el-
ements of G commute. We may extend it to the
commutativity degree of G with respect to a normal
subgroup N of G, denoted by dN (G):

dN (G) =
|{(x , y) ∈ G×G : [x , y] ∈ N}|

|G|2
.

It is obvious that if N = 1, then d(G) = dN (G).
Also, one can see that dN (G) = d(G/N). Utilizing
the above definition, we may find a formula for the
number of edges of ΓN ,G .

Lemma 2 The number of edges of ΓN ,G is 1
2 |G|

2(1−
dN (G)).

Proof : Let A= {(x , y) ∈ G×G | [x , y] ∈ N} and B =
{(x , y) ∈ G × G | [x , y] /∈ N}. It is easy to see that
dN (G) = |A|/|G|2. On the other hand,

|G|2 = |{(x , y) ∈ G×G : [x , y] ∈ N}|
+ |{(x , y) ∈ G×G : [x , y] /∈ N}|

= |A|+ |B|.

Also, as |B|= 2|E(ΓN ,G)|, we have

2|E(ΓN ,G)|= |B|= |G|2− |A|2 = |G|2(1− dN (G))

and the result follows. 2
Using the above lemma, we obtain the following

inequalities.

Proposition 5 Let G be a finite group and N be a
normal subgroup of G. Then
(i) dN (G)¾ 2|ZN (G)|/|G|+1/|G|−|ZN (G)|2/|G|2−
|ZN (G)|/|G|2;

(ii) |E(ΓN ,G)|¾
3
16 |G|

2, if G/N is not abelian.

Proof : They follow from Lemma 2 and an upper
bound 5

8 for d(G) by a result in Ref. 9. 2
A graph is k-regular if every vertex has degree

k. Also, a k-regular graph with n vertices is called
strongly regular with parameter (n, k, r, s) if it is nei-
ther empty nor complete such that any two adjacent
vertices are adjacent to r common vertices and any
two non-adjacent vertices are adjacent to s common
vertices.

Theorem 6 If ΓN ,G is a k-regular graph, then |N |
divides k.

Proof : Let x ∈ V (ΓN ,G) and y be a vertex adjacent
to x . Then x ∼ yn for all n ∈ N so that |N | divides
deg(x). Since deg(x) = k, it follows that |N | divides
k, as required. 2
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Theorem 7 If ΓN ,G is strongly regular with parame-
ters (n, k, r, s), then s = k.

Proof : Let x ∈ V (ΓN ,G) and z ∈ ZN (G) \ N . Clearly,
xz ∈ V (ΓN ,G). Since x and xz are not adjacent, s =
|G \ (CN

G (x)∪CN
G (xz))|. Since CN

G (x) = CN
G (xz) and

ΓN ,G is k-regular, the result follows. 2
To prove the next theorem, we need the follow-

ing lemma concerning AC-groups. A group is an AC-
group if its nontrivial centralizers are abelian.

Lemma 3 The following statements are equiva-
lent:
(i) G is an AC-group;
(ii) if x , y ∈ G \ Z(G) such that [x , y] = 1, then

CG(x) = CG(y);
(iii) if x , y, z ∈ G\Z(G) such that [x , y] = [y, z] = 1,

then [x , z] = 1;
(iv) if A and B are subgroups of G such that Z(G) ⊂

CG(A) ⊆ CG(B) ⊂ G, then CG(A) = CG(B).

Proof : See Lemma 3.2 in Ref. 10. 2

Corollary 1 If ΓN ,G is a strongly regular graph with
parameters (n, k, r, s), then G/N is an AC-group.

Proof : Let x , y be two non-adjacent vertices. Then
CG/N (xN) = CG/N (yN) since deg(x) = |G \ CN

G (x)|
and deg(y) = |G \ CN

G (y)| and hence |CN
G (x)| =

|CN
G (y)|. As k = |G| − |CN

G (x)| = |N(x) ∩ N(y)| =
|G \ CN

G (x) ∪ CN
G (y)|, we conclude that |CN

G (x)| =
|CN

G (x) ∪ CN
G (y)|. Hence CN

G (y) ⊆ CN
G (x) and

consequently CN
G (x) = CN

G (y). Thus CN
G (x)/N =

CN
G (y)/N . Hence CG/N (N) = CG/N (yN) and, by

Lemma 3, G/N is an AC-group. Let x , y be two
non-adjacent vertices. Then [x , y] ∈ N . Since
deg(x) = |G \ CN

G (x)| = |G \ CN
G (y)| and ΓN ,G is

regular, we have |CN
G (x)| = |C

N
G (y)|. Assume that

t ∈ G \ (CN
G (x) ∪ CN

G (y)). Then t is adjacent to x
and y . The number of common neighbours of x
and y are equal and is k, so we should have k =
|G \ (CN

G (x)∪ CN
G (y))| = |G \ CN

G (x)|. Consequently,
|CN

G (x)| = |C
N
G (x)∪ CN

G (y)| and so CN
G (x) = CN

G (y).
Hence CN G

G\N (xN) = CN
G\N (yN) and by Lemma 3,

G/N is an AC-group as required. 2

Theorem 8 If ΓN ,G is a strongly regular graph with
parameters (n, k, r, s) then r = 2k− n.

Proof : Let x , y be two adjacent vertices. Then
[x , y] /∈ N . Hence, CN

G (x) ∩ CN
G (y) = ZN (G), by

Corollary 1 and a consequence of Lemmas 4.2 and

4.3 in Ref. 5. We now have

r = |N(x)∩N(y)|

= |G \ CN
G (x)∪ CN

G (y)|

= |G| − |CN
G (x)| − |C

N
G (y)|+ |C

N
G (x)∩ CN

G (y)|

= |G| − |CN
G (x)|+ |G| − |C

N
G (y)|+ |Z

N (G)| − |G|
= 2k− n,

where N(x) is the set of neighbours of x . 2
In the following two propositions, we give a link
between this graph and the nilpotency property in
group theory.

Proposition 6 Suppose G = x1N ∪ x2N ∪ . . .∪ xkN
such that x i is a vertex in ΓN ,G , for each 2 ¶ i ¶ k.
Then G is not nilpotent.

Proof : Since all x i for 2 ¶ i ¶ k are vertices,
ZN (G) = N and therefore |Z(G/N)| = 1. Hence G
cannot be nilpotent. 2

Proposition 7 Let N be a normal subgroup of G and
G/N be non-abelian. If ΓN ,G is regular, then G/N is a
nilpotent group.

Proof : For every vertex x in ΓN ,G we have deg(x) =
|G| − |CN

G (x)|. Moreover, if y /∈ ZN (G), then
deg(x) = deg(y) which implies that |CN

G (x)| =
|CN

G (y)|. On the other hand, if zN ∈ Z(G/N), then
CG/N (zN) = G/N and consequently, the size of all
conjugacy classes of G/N has only two values: 1 and
a positive integer n 6= 1. Hence G/N is a nilpotent
by a theorem of Ito11. 2

Recall that a graph is planar if it can be drawn in
the plane such that edges intersect only at vertices.
The planarity of ΓN ,G is investigated in Ref. 5 when
N = 1 is the trivial subgroup. In the following
theorem, we show that ΓN ,G is not planar when
N 6= 1.

Theorem 9 The graph ΓN ,G is never planar for every
nontrivial normal subgroup N of G.

Proof : Let N 6= 1 and ΓN ,G be planar. Then δ(ΓN ,G)¶
5 (see Corollary 3.5.9 in Ref. 8). On the other hand,
δ(ΓN ,G) ¾ 3|N | by Theorem 3. Hence 3|N | ¶ 5,
which is a contradiction. 2

A graph is called 1-planar if it can be drawn in
the plane in such a way that each edge is crossed by
no more than one other edge. Note that graphs K7,
K3,7 and K4,5 are not 1-planar in Ref. 12.

Lemma 4 There is a vertex in ΓN ,G whose order in G
is greater than 2.
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Proof : Since all xi, 2 ⩽ i ⩽ k are vertices, so 305

ZN (G) = N and therefore |Z(GN )| = 1. Hence G 306

can not be nilpotent. 2 307

Proposition 7 Let N be a normal subgroup of G and 308
G
N be non-abelian. If ΓN,G is regular, then G

N is a 309

nilpotent group. 310

Proof : For every vertex x in ΓN,G we have deg(x) = 311

|G| − |CN
G (x)|. Moreover, if y /∈ ZN (G), then 312

deg(x) = deg(y) which implies that |CN
G (x)| = 313

|CN
G (y)|. On the other hand, if zN ∈ Z(GN ), then 314

CG
N
(zN) = G

N and consequently, size of all conjugacy 315

classes of G
N are only 1 and a positive integer n. Hence 316

G
N is a nilpotent, by a theorem of Ito? 2 317

At the end of this section, we study on the 318

planarity and 1-planarity of the graph ΓN,G. Recall 319

that a graph is planar if it can be drawn in the plane 320

such that edge intersect only at the end vertices. The 321

planarity of ΓN,G is investigated in? when N = 1 322

is the trivial subgroup. In the following theorem, we 323

show that ΓN,G is not planar when N ̸= 1. 324

Theorem 9 The graph ΓN,G is never planar for every 325

non-trivial normal subgroup N of G, 326

Proof : Let N ̸= 1 and ΓN,G is planar. Then 327

δ(ΓN,G) ⩽ 5 (see Corollary 3.5.9 in? ). In other hand, 328

δ(ΓN,G) ⩾ 3|N | by Theorem 3. Hence 3|N | ⩽ 5, 329

which is a contradiction. 2 330

A graph is called 1-planar if it can be drawn in the 331

plane such that each edge is crossed by no more than 332

one other edge. Note that graphs K7, K3,7 and K4,5 333

are not 1-planar by? . 334

Lemma 4 There is a vertex in ΓN,G whose order in 335

G is greater than 2. 336

Proof : Suppose on the contrary that x2 = 1 for all 337

x ∈ V (ΓN,G). Let x and y be two adjacent vertices. 338

Then [x, y] /∈ N and hence 1 = (xy)2 /∈ N , which is 339

a contradiction. 2 340

Theorem 10 The graph ΓN,G is 1-planar if and only 341

if it is planar and hence G ∼= S3, D8, Q8 and N = 1. 342

Proof : If |N | ⩾ 4 then ΓN,G has a subgraph iso- 343

morphic to K4,5 and hence it is not a 1-planar graph. 344

Also, if N = {n1, n2, n3} and x, y are two adjacent 345

vertices, then ΓN,G has a subgraph isomorphic to K3,7 346

as drawn in Figure ??, hence ΓN,G is not 1-planar. 347

Fig. 2 Induced subgraph K3,7 of ΓN,G.
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If |N | = 2 then, by the previous lemma, the graph 350

ΓN,G has a vertex a satisfying |a| > 2. Let b be a 351

vertex adjacent to a. If N = {n1, n2}, then ΓN,G has 352

a subgraph isomorphic to K4,5 as drawn in Figure ??, 353

hence ΓN,G is not 1-planar.

Fig. 3 Induced subgraph K4,5 of ΓN,G.
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Finally, if |N | = 1, then we show that ΓN,G is not 357

a 1-planar graph. Suppose on the contrary that ΓN,G 358

is 1-planar. Since the complete graph with 7 vertices 359

is not a 1-planar graph, we must have w(ΓN,G) ⩽ 6. 360

The same as Proposition 2.3 in? , one can show that 361

|G| ⩽ 14. Hence, it remains to consider non-abelian 362

groups of order less or equal 14, that are S3, D8, Q8, 363

D10, A4, D12, T = ⟨x, y : x4 = y3 = 1, yx = y−1⟩ 364

and D14. If G ∼= S3, D8 or Q8, then ΓN,G is planar so 365

that it is 1-planar. Now, if G ∼= D10, A4 or D12, then 366

ΓN,G has a subgraph isomorphic to K4,5, hence it is 367

not a 1-planar graph. Also, if G ∼= T , then ΓN,G has 368

a subgraph isomorphic to K4,5 as drawn in Figure ??, 369

hence it is not 1-planar. 370

Fig. 4 Induced subgraph K4,5 of ΓN,T .
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Finally, if G ∼= D14, then ΓN,G has a subgraph 373

isomorphic to K7 so that it is not a 1-planar graph. 2 374

A graph is called outer-planar if it can be drawn in 375

the plane without crossing edges in such a way that all 376

vertices belong to the unbounded face of the drawing. 377

378

Theorem 11 The graph ΓN,G is never an outer- 379

planar graph. 380

Proof : If |N | ⩾ 2, then clearly ΓN,G is not planar 381

by Theorem ?? and consequently is not outer-planar. 382

Thus, we may assume that N = 1 and that ΓN,G is 383

outer-planar. Hence, w(ΓN,G) ⩽ 3. The same as 384

Proposition 2.3 in? , one can show that |G| ⩽ 8. The 385

only non-abelian groups of order less or equal 8 are 386

S3, D8 and Q8 for which the graph ΓN,G has a sub- 387

graph isomorphic to K2,3, which is a contradiction. 388

Therefore, ΓN,G is not a outer-planar graph. 2 389
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Fig. 3 Induced subgraphs of ΓN ,G isomorphic to K4,5.

Proof : Suppose on the contrary that x2 = 1 for all
x ∈ V (ΓN ,G). Let x and y be two adjacent vertices.
Then [x , y] /∈ N and hence 1 = (x y)2 /∈ N which is
a contradiction. 2

Theorem 10 The graph ΓN ,G is 1-planar if and only
if it is planar and hence G ∼= S3, D8, Q8, and N = 1.

Proof : If |N | ¾ 4 then ΓN ,G has a subgraph isomor-
phic to K4,5 and hence it is not a 1-planar graph.
Also, if N = {n1, n2, n3} and x , y are two adjacent
vertices, then ΓN ,G has a subgraph isomorphic to K3,7
as drawn in Fig. 2. Hence ΓN ,G is not 1-planar.

If |N |= 2 then, by Lemma 4, the graph ΓN ,G has a
vertex a satisfying |a|> 2. Let b be a vertex adjacent
to a. If N = {n1, n2}, then ΓN ,G has a subgraph
isomorphic to K4,5 as shown in the left of Fig. 3.
Hence ΓN ,G is not 1-planar.

Finally, if |N |= 1, then we show that ΓN ,G is not
a 1-planar graph. Suppose on the contrary that ΓN ,G
is 1-planar. Since the complete graph with 7 vertices
is not a 1-planar graph, we must have w(ΓN ,G) ¶ 6.
As in the proof of Proposition 2.3 in Ref. 5, one can
show that |G|¶ 14. Hence we only need to consider
non-abelian groups of order less than or equal to 14,
i.e., S3, D8, Q8, D10, A4, D12, T = 〈x , y : x4 = y3 =
1, y x = y−1〉 and D14. If G ∼= S3, D8 or Q8, then ΓN ,G
is planar so that it is 1-planar. Now, if G ∼= D10, A4
or D12, then ΓN ,G has a subgraph isomorphic to K4,5.

Hence it is not a 1-planar graph. Also, if G ∼= T , then
ΓN ,G has a subgraph isomorphic to K4,5 as drawn in
the right of Fig. 3. Hence it is not 1-planar.

Finally, if G ∼= D14, then ΓN ,G has a subgraph iso-
morphic to K7 so that it is not a 1-planar graph. 2

A graph is called outer planar if it can be drawn
in the plane without crossing edges in such a way
that all vertices belong to the unbounded face of the
drawing.

Theorem 11 The graph ΓN ,G is never an outer-planar
graph.

Proof : If |N | ¾ 2, then clearly ΓN ,G is not planar
by Theorem 9 and consequently is not outer planar.
Thus we may assume that N = 1 and that ΓN ,G is
outer planar. Hence w(ΓN ,G) ¶ 3. As in the proof of
Proposition 2.3 in Ref. 5, one can show that |G| ¶
8. The only non-abelian groups of order less or
equal to 8 are S3, D8 and Q8 for which the graph
ΓN ,G has a subgraph isomorphic to K2,3, which is a
contradiction. Hence ΓN ,G is not an outer planar
graph. 2
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