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ABSTRACT: Let G be a finite group and N be a normal subgroup of G. We define an undirected simple graph I} ; to
be a graph whose vertex set is all elements in G \ Z¥(G) and two vertices x and y are adjacent iff [x,y] ¢ N, where
Z¥(G)={g € G:[x,g] €N for all x € G}. If N =1, then we obtain the known non-commuting graph of G. We
give some basic results about connectivity, regularity, planarity, 1-planarity and some numerical invariants of the graph
which are mostly improvements of the results given for non-commuting graphs. Also, a probability related to this graph
is defined and a formula for the number of edges of the graph in terms of this probability is given.
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INTRODUCTION

There are many graphs which are associated with
groups: for instance, prime graphs!, non-cyclic
graphs?, and conjugate graphs®. An important one
is the non-commuting graph. Let G be a group.
Then the non-commuting graph of G, denoted by I,
is a graph whose vertices are elements of G \ Z(G)
and two distinct vertices x and y are adjacent if
xy # yx. Neumann* obtained the first remarkable
result on the non-commuting graphs by answering
a problem of Erd6s. From that time on, non-
commuting graphs have been studied extensively in
the literature > ®.

The aim of this paper is to give a generalization
of the non-commuting graph of a group G with
respect to a given normal subgroup N of G. In
the next section, we introduce the generalized non-
commuting graph G through a normal subgroup N
of G denoted by Ty ; and state some of the basic
graph theoretical properties of this graph which are
mostly new or a generalization of some results in
Ref. 5. We also give a connection between Iy ; and
the probability that the commutator of two arbitrary
elements of G belongs to the normal subgroup N of
G. We also state some conditions under which the
graph is regular or strongly regular.

GENERALIZED NON-COMMUTING GRAPH

Definition 1 Let G be a finite group and N be a
normal subgroup of G. The non-commuting graph
of G can be generalized using the subgroup N is
such a way that its vertices are G \ Z¥(G) where
ZN(G)={g € G: gN € Z(G/N)} and two distinct
vertices are adjacent when [x, y] ¢ N. This graph is
denoted by Ty ;.

Notice that if N = 1 then the graph I}y ; is the
ordinary non-commuting graph of G. Clearly, N C
ZN(G) and so the elements of N do not belong to the
vertex set of Iy ;. One can easily see that the graph
Iy g is null whenever G is abelian or N = G. Hence,
throughout this paper, it is always assumed that G
is a non-abelian group and N is a proper normal
subgroup of G.

We also note that if [G : N] =k and {xq,...,x;}
is a left transversal of N in G such that [x;,x;] € N
forall 1 <i,j <k, then Iy ; is a null graph.

Example 1 Let D;, = (a,b | a® = b? = 1;bab =
a™') be the dihedral group of order 12 and put
N = Z(Dy,) = {e,a®}. Then Tp,, is drawn as in
Fig. 1.

Lemma 1 Let G be a group and N be a normal
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Fig. 1 Generalized non-commuting graph Iy , .

subgroup of G. If x,y € G, then [x,y] ¢ N &
[xn,yn’]¢ N foralln,n’ €N.

By the above lemma, it can be easily checked that
the graph I'y ; does not have any isolated vertex and
is never an empty graph.

Definition 2 Let G be a group and N be a normal
subgroup of G. Then for every x € G,

Cl(x)= {g €G:gNe CG/N(xN)}.

It is clear that Cg(x) is a subgroup of G and
deg(x) = |G| —|CY (x)| for all x € V(Iy ¢).

Theorem 1 Let G be a finite group and N be a
nontrivial subgroup of G. Then Ty  is not a complete
graph.

Proof: Suppose on the contrary that Iy ; is com-
plete. Then

deg(h) =G| —|c5 (W =1G|-1z"(G)| -1

for all vertices h of Iyy ;. Then |CY (h)| = |ZN(G)|+1.
On the other hand, |ZV(G)| divides |C} (h)|. Thus
|ZN(G)| = 1 which contradicts the choice of N. O

Theorem 2 diam(Iy ;) = 2 and girth(Iy ) = 3.

Proof: Let a, b be two non-adjacent vertices. Then
there exist x,y such that [a,x] ¢ N and [b,y] ¢
N. Now if a is adjacent to y or b is adjacent to x,
then d(x,y) = 2. Suppose [a,y] €N and [b,x] €
N. Itis obvious that xy is a vertex and therefore xy
is adjacent to both x and y. Hence diam(Ty ;) =
2. O

Theorem 3 A lower bound for the minimum degree

of vertices of Ty g, which we denote by 6(Ty ), satis-
fies 6(Ty ) = 3IN]|.
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Proof: Let x be an arbitrary vertex of Iy ;. Since
Iy ¢ does not have any isolated vertex, there exists
a vertex y adjacent to x. Hence x ~ ny for all n €
N. Since xy is a vertex of I)y ; adjacent to x, we
have x ~nxy foralln € N. As xy # yx, x ~nyx
for all n € N, from which it follows that 6(Ty ) =
3|N]|. ]

Proposition 1 Let G be a non-abelian group and N
be a normal subgroup of G. Then Ty ¢ is Hamiltonian.

Proof: One can easily see that deg(x) = V(I ¢)|/2
for all x € V(Iy ¢). The proof is similar to that for
Proposition 2.2 in Ref. 5. |

An Eulerian tour is a walk which passes every
edge exactly once. A graph is Eulerian if it contains
an Eulerian tour. In the following propositions, we
determine some conditions for N and G when the
graph T}y ; is Eulerian.

Proposition 2 If |N| is even, then Ty ; is Eulerian.

Proof: Let V(Iyg) = x;NU---Ux,N. Let x be
any vertex of Ty ; and x; ,...,x; be those vertices
among Xi,...,x, adjacent to x. Hence x ~ nx;
for all n € N and 1 < j < t, which implies that
deg(x) = t|N| is even. Hence by Theorem 4.1 in
Ref. 7 the result follows. m]

Proposition 3 If |G| is odd, then Iy ; is Eulerian.

Proof: Let x € V(Iy ¢) be an arbitrary vertex. We
know that deg(x) = |G| —|CJ(x)|. Since CJ(x)
is a subgroup of G, its order is odd and hence
deg(x) is even. The result follows by Theorem 4.1
in Ref. 8. m|

In the following theorem, we give a lower bound
for the chromatic number y (T ;) of the graph Iy ;.

Theorem 4 Suppose [G:N]=k+1and G =x,NU
x;NU---UxN. Then

2Ty g) = 1+max{|A| : A C {xo,..., X},
xi:xj EA> [xi:xj] ¢N’}

Proof: Put t; = |{x; : [x;,x;] € N}|. Then it is
clear that y(Iy ) = t; + 1. Similarly, if t; = [{x; :
[x;,x;] ¢ N}|, then we need at least t; + 1 colours
in order to colour Ty ; and again y(Tyg) > t; + 1.
Now, if t = max{t; : 1 <j <k}, then y(Iy ) = t+1,
as required. |

We now may state some results for the dominat-
ing number of the graph Ty ;. A subset of the graph
is a dominating set if every vertex which is not in
the subset is adjacent to at least one member of the
subset. The size of the minimum dominating set is
called the dominating number.
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Theorem 5 Let G be a non-abelian group and N be a
normal subgroup of G such that xN is a dominating
set for T ¢ for every vertex x of Ty g. Then ZN(G) =
N, x* =1, and Cg/y = (xN).

Proof: To prove ZV(G) = N, assume on the contrary
that ZV(G) # N. Then there exists an element a €
ZN(G)—N and so [a,g] €N for all g € G. Since x
is a vertex, x ¢ Z"(G) which implies that [x,b] ¢ N
for some b € G. Thus[xa, b] ¢ N. Consequently, xa
is a vertex. We now have [xa,x]=[a,x] €N and so
xa is not adjacent to x which is a contradiction. If
x%#1, then x! # x and again x~ is not adjacent
to x is a contradiction. The last part directly follows
from the point that x is a vertex in the dominating
set and x? = 1. O

One can easily see that a subset S of V(Iyy ;) is
a dominating set if and only if Cg(S) c ZN(G)us.
Also, if X is a generating set for G, then XN\ZN (G)N
is a dominating set for Ty ;.

A cut-set of Iy ; is a set of edges of the graph
which, if removed, disconnects the graph. The
vertex connectivity of Iy ;, denoted by x(Iy ), is
the minimum size of all cut sets. In the following
proposition we determine the vertex connectivity of

FN,G'

Proposition 4 Let G be a non-abelian group and S be
acutset of Ty 6. If x,y € V(Iy ¢)\S belong to distinct
components of Iy \S then S can be written as a union
of double cosets of the subgroup Cg (x)ﬁCIGV (¥). Also,
if G is finite then k(Ty ) = t|1ZN(G)|, in which t is an
integer greater that 1.

Proof: It is similar to the proof of Proposition 2.4
in Ref. 5. Put H = C(x)N C}(y). Since x and y
are vertices, x, y ¢ Z" (G) and consequently, H # G.
We now prove that S = ., HaH. Firstly, we show
that for every a € G, if HaHNS # &, then HaH C S.
On the contrary, assume that HaH ¢ S. Then there
exist elements h;,h, € H such that hyah, ¢ S. It
can be easily seen that x ~ hyah, ~ y which is
a contradiction. Hence | J,.,HaH €S and S C
G = J,ec HaH which imply that § = | J,., HaH
whenever HaH NS # @. Secondly, assume that
k(Ty ) =IS|, where S is a minimum cut set of Iy ;.
Then ZV(G) < H allows as to write S as the union
of cosets of ZN(G). Thus there exists a positive
integer t such that k(Ty ) = t|ZN(G)|. We claim
that t > 1. If t =1 then S = bZY(G) for some
b ¢ ZN(G). If x; and y; and two vertices belong
to different connected components of Iy ; \ S then
[x,y] €N. Since diam(Ty ;) = 2, we should have
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a path between x; and y; which is a contradiction.
Hence t > 1. O

The commutativity degree d(G) of a finite group
G is the probability that two randomly chosen el-
ements of G commute. We may extend it to the
commutativity degree of G with respect to a normal
subgroup N of G, denoted by d¥(G):

H{(x,y)€GxG:[x,y] €N}

|G| '
It is obvious that if N = 1, then d(G) = d"(G).
Also, one can see that dV(G) = d(G/N). Utilizing

the above definition, we may find a formula for the
number of edges of Iy ;.

dN(G) =

Lemma 2 The number of edges of Ty ; is %|G|2(1 -
d"(G)).

Proof: LetA={(x,y)€GxG|[x,y]eN}and B=
{{x,y)€GxG|[x,y] ¢ N}. Itis easy to see that
d¥(G) = |A|/|G|?. On the other hand,

IGI* =1{(x,y) €GxG:[x,y]€N}|

+H{G,y)€GxG:[x,y] ¢ N}
=|Al+[B|.

Also, as |B| = 2|E(Ty ;)l, we have
2|E(Iy)l = Bl =G —|A* = |G*(1 - d"(G))

and the result follows. |
Using the above lemma, we obtain the following
inequalities.

Proposition 5 Let G be a finite group and N be a

normal subgroup of G. Then

M dV(G)>2IzN(6)I/IGI+1/IGI-1ZN(G)I* /|G~
1ZN(G)/IGI;

(i) [E(Iyg)l = 1%|G|2: if G/N is not abelian.

Proof: They follow from Lemma 2 and an upper
bound g for d(G) by a result in Ref. 9. ]

A graph is k-regular if every vertex has degree
k. Also, a k-regular graph with n vertices is called
strongly regular with parameter (n, k, r, s) if it is nei-
ther empty nor complete such that any two adjacent
vertices are adjacent to r common vertices and any
two non-adjacent vertices are adjacent to s common
vertices.

Theorem 6 If Iy ; is a k-regular graph, then |N|
divides k.

Proof: Let x € V(Iy ) and y be a vertex adjacent
to x. Then x ~ yn for all n € N so that |N| divides
deg(x). Since deg(x) = k, it follows that |N| divides
k, as required. |
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Theorem 7 If Ty ¢ is strongly regular with parame-
ters (n,k,r,s), then s = k.

Proof: Let x € V(Iy ) and z € ZV(G) \N. Clearly,
xz € V(Iy ). Since x and xz are not adjacent, s =
|G\ (CY (x)UCf(x2))|. Since C(x) = CY (xz) and
Iy ¢ is k-regular, the result follows. a
To prove the next theorem, we need the follow-
ing lemma concerning AC-groups. A group is an AC-
group if its nontrivial centralizers are abelian.

Lemma 3 The following statements are equiva-

lent:

(i) G isan AC-group;

(i) if x,y € G\ Z(G) such that [x,y] = 1, then
Co(x) =Cgs(y);

(iii) ifx,y,z2€ G\Z(G)suchthat[x,y]=[y,z]=1,
then [x,z]=1;

(iv) if Aand B are subgroups of G such that Z(G) C
Co(A) € C4(B) C G, then Cyx(A) = Cy(B).

Proof: See Lemma 3.2 in Ref. 10. a

Corollary 1 If Ty ; is a strongly regular graph with
parameters (n, k,r,s), then G/N is an AC-group.

Proof: Let x,y be two non-adjacent vertices. Then
Co/n(XN) = Cg/n(yN) since deg(x) = |G\ CJ (x)|
and deg(y) = |G\ CY(y)| and hence |C}(x)| =
ICE ()] As k=G| —|C{(x)| = IN(x)NN(y)| =
|G\ CY(x) U CY(y)l, we conclude that |C} (x)| =
IcY(x) u Ccl(y)l. Hence CJ(y) € CJ(x) and
consequently CY(x) = CY(y). Thus C}(x)/N =
CY(y)/N. Hence Cq/y(N) = C4n(¥N) and, by
Lemma 3, G/N is an AC-group. Let x, y be two
non-adjacent vertices. Then [x,y] € N. Since
deg(x) = |G \ CY(x)| = 16 \ CY¥(y)| and Ty is
regular, we have |CY(x)| = |CJ(y)|. Assume that
t € G\ (CJ(x)UCl(y)). Then t is adjacent to x
and y. The number of common neighbours of x
and y are equal and is k, so we should have k =
IG\ (CJ(x)uCY(y)l =G\ CJ(x)|. Consequently,
IG5 ()l =1Cg (x) U CE (y)] and so CF (x) = Cg ().

Hence CIGV\GN(XN) = Cg\N(yN) and by Lemma 3,
G/N is an AC-group as required. ]

Theorem 8 If Ty ; is a strongly regular graph with
parameters (n, k,r,s) then r = 2k —n.

Proof: Let x,y be two adjacent vertices. Then
[x,y] ¢ N. Hence, C}(x)NCJ(y) = ZN(G), by

Corollary 1 and a consequence of Lemmas 4.2 and
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4.3 in Ref. 5. We now have

r=IN(x)NN(y)I
=G\ C5(x)ucil
=G| =I5 ()| =ICg (NI +1c5 (x)nCF (x)
=G| =I5 ()| +1Gl=Icg (NI +127(G) G|
=2k —n,

where N(x) is the set of neighbours of x. ]
In the following two propositions, we give a link
between this graph and the nilpotency property in
group theory.

Proposition 6 Suppose G = x;N Ux,N U...Ux; N
such that x; is a vertex in Iy g, for each 2 <i < k.
Then G is not nilpotent.

Proof: Since all x; for 2 < i < k are vertices,
ZN(G) = N and therefore [Z(G/N)| = 1. Hence G
cannot be nilpotent. O

Proposition 7 Let N be a normal subgroup of G and
G/N be non-abelian. If Ty ; is regular, then G/N is a
nilpotent group.

Proof: For every vertex x in Iy ; we have deg(x) =
|G| — |CY(x)].  Moreover, if y ¢ Z"(G), then
deg(x) = deg(y) which implies that |C}(x)| =
|ICJ(¥)|. On the other hand, if zN € Z(G/N), then
Cg/n(zN) = G/N and consequently, the size of all
conjugacy classes of G/N has only two values: 1 and
a positive integer n # 1. Hence G/N is a nilpotent
by a theorem of Ito . m|

Recall that a graph is planar if it can be drawn in
the plane such that edges intersect only at vertices.
The planarity of Iy ; is investigated in Ref. 5 when
N =1 is the trivial subgroup. In the following
theorem, we show that Iy ; is not planar when
N #1.

Theorem 9 The graph Ty ; is never planar for every
nontrivial normal subgroup N of G.

Proof: Let N # 1 and Iy ; be planar. Then 6(T}y ;) <
5 (see Corollary 3.5.9 in Ref. 8). On the other hand,
0(Tyg) = 3|N| by Theorem 3. Hence 3|N| < 5,
which is a contradiction. O

A graph is called 1-planar if it can be drawn in
the plane in such a way that each edge is crossed by
no more than one other edge. Note that graphs K,
K37 and K, 5 are not 1-planar in Ref. 12.

Lemma 4 There is a vertex in Ty ¢ whose order in G
is greater than 2.
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Fig. 2 Induced subgraph of Iy ; isomorphic to Kj ;.

Fig. 3 Induced subgraphs of Iy ; isomorphic to K, 5.

Proof: Suppose on the contrary that x2 = 1 for all
x € V(Iy ). Let x and y be two adjacent vertices.
Then [x,y] ¢ N and hence 1 = (xy)? ¢ N which is
a contradiction. O

Theorem 10 The graph Ty  is 1-planar if and only
if it is planar and hence G = S3, Dg, Qg, and N = 1.

Proof: If [N| > 4 then T}y ; has a subgraph isomor-
phic to K, 5 and hence it is not a 1-planar graph.
Also, if N = {n;,ny,n3} and x,y are two adjacent
vertices, then Iy ; has a subgraph isomorphic to Kj ;
as drawn in Fig. 2. Hence Iy ; is not 1-planar.

If IN| = 2 then, by Lemma 4, the graph Ty ; hasa
vertex a satisfying |a| > 2. Let b be a vertex adjacent
to a. If N = {nj,n,}, then Ty ; has a subgraph
isomorphic to K45 as shown in the left of Fig. 3.
Hence Ty ¢ is not 1-planar.

Finally, if [N| = 1, then we show that Iy ; is not
a 1-planar graph. Suppose on the contrary that Iy 5
is 1-planar. Since the complete graph with 7 vertices
is not a 1-planar graph, we must have w(Iy ;) < 6.
As in the proof of Proposition 2.3 in Ref. 5, one can
show that |G| < 14. Hence we only need to consider
non-abelian groups of order less than or equal to 14,
i.e., S3, Dg, Qg, D19, As, D1p, T={x,y :x*=y> =
1,y*=y7") and Dy,. If G= S3, Dg or Qg, then Ty ¢
is planar so that it is 1-planar. Now, if G = D, A4
or Dy,, then Iy ; has a subgraph isomorphic to Ky 5.
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Hence itis not a 1-planar graph. Also, if G = T, then
Iy ¢ has a subgraph isomorphic to K, 5 as drawn in
the right of Fig. 3. Hence it is not 1-planar.

Finally, if G = Dy, then Iy ; has a subgraph iso-
morphic to K, so that it is not a 1-planar graph. O

A graph is called outer planar if it can be drawn
in the plane without crossing edges in such a way
that all vertices belong to the unbounded face of the
drawing.

Theorem 11 The graph Iy ; is never an outer-planar
graph.

Proof: If [N| > 2, then clearly Ty ; is not planar
by Theorem 9 and consequently is not outer planar.
Thus we may assume that N =1 and that Iy is
outer planar. Hence w(Iy ;) < 3. As in the proof of
Proposition 2.3 in Ref. 5, one can show that |G| <
8. The only non-abelian groups of order less or
equal to 8 are S;, Dg and Qg for which the graph
Iy ¢ has a subgraph isomorphic to K, 3, which is a
contradiction. Hence Iy is not an outer planar
graph. |
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