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ABSTRACT: We introduce the more general frame sequences and dual frames related to a linear bounded operator
K in Hilbert spaces which we call K-frame sequences and dual K-frames, respectively. We give several equivalent
characterizations for K-frame sequences. We also investigate the relationships among K-frame sequences, K-frames,
and frame sequences, and give a new perturbation result for K-frames by using the associated dual K-frames. It turns
out that in many ways K-frame sequences and dual K-frames behave completely differently from frame sequences and
dual frames, respectively.
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INTRODUCTION

LetH be a separable Hilbert space over the complex
field. A sequence { f j}∞j=1 in H is a frame (an
ordinary frame) if there exist constants 0< A¶ B <
∞ such that

A‖ f ‖2 ¶
∞
∑

j=1

|〈 f , f j〉|2 ¶ B ‖ f ‖2 , ∀ f ∈H . (1)

The sequence { f j}∞j=1 is said to be a Bessel sequence
for H if we only require the right-hand inequality
of (1). If (1) holds only for each f ∈ span{ f j}∞j=1,
then we call { f j}∞j=1 a frame sequence, where span S
denotes the closed linear span of sequence S.

One of the essential applications of frames
is that they provide basis-like but generally non-
unique decompositions for the elements of H . In
these decompositions, dual frames play a key role.
Recall that a Bessel sequence {g j}∞j=1 inH is called
a dual frame for the frame { f j}∞j=1 if

f =
∞
∑

j=1

〈 f , g j〉 f j , ∀ f ∈H .

Owing to the redundancy and flexibility, frames
have applications such as in wireless communica-
tion1, Σ∆ quantization2, sampling theory3, and
image processing4. For details and background on
frames see Refs. 5–8.

Găvruţa9 recently presented a generalization of
ordinary frames with a linear bounded operator K ,

named K-frames, when working on atomic systems
for operators. From Ref. 9 we know that K-frames
possess higher generality than ordinary frames in
the sense that the lower frame bound condition
holds only for the elements in the range of K and
that they allow the reconstruction of the elements
from the range of K in a stable way and, in general,
the range is not even a closed space. Hence K-
frames provide more flexibility and thus make the
study of them interesting. Note also that there are
many essential differences between K-frames and
ordinary frames due to the involved operator K .
For instance, we know that an important equiva-
lent characterization of ordinary frames is that the
corresponding synthesis operators are bounded and
surjective. But for K-frames, it is required that
the corresponding synthesis operators are bounded
and the range of K is included in the ranges of
the synthesis operators (see Theorem 4 in Ref. 9).
Moreover, the roles of the dual K-frame pair cannot
be interchanged in general (see Example 3.2 in
Ref. 10), and a K-frame does not admit a dual frame
in general (see Example 4 in this paper). For more
details on K-frames, see Refs. 11–13.

In the study of K-frame theory, we often need
to consider sequences which cannot form K-frames
for the whole space or we are only interested in
expansions for subspaces in some cases. Motivated
by this and the fact that the properties of K-frames
are quite different from those of ordinary frames,
we apply Găvruţa’s idea in the present paper to
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introduce the so-called K-frame sequences and in-
vestigate their properties. As mentioned above, K-
frames are a generalization of ordinary frames and
the dual frame is a very useful concept in frame
theory. Thus it is natural to extend the dual for
frames to the case of K-frames and examine its
properties.

The paper is organized in the following manner.
We continue this introductory section with a review
of some basic definitions and facts on K-frames and
operators. In the next section we study the equiva-
lent characterization of K-frame sequences and the
relationships among K-frame sequences, K-frames,
and frame sequences. The third section deals with
the stability of K-frames under perturbations.

Let H1 and H2 be two Hilbert spaces. We
denote by L(H1,H2) the set of all linear bounded
operators fromH1 toH2 and L(H1,H1) is abbrevi-
ated by L(H1). For Λ ∈ L(H1,H2), we use R(Λ) to
denote the range of Λ. Suppose that the operator
Q ∈ L(H1,H2) has a closed range. Then there
exists a unique operator Q† ∈ L(H2,H1), called the
pseudo-inverse of Q, satisfying

QQ†Q =Q, Q†QQ† =Q†,

(QQ†)∗ =QQ†, (Q†Q)∗ =Q†Q.
(2)

In the following we always assume that the
operator K ∈ L(H ) is not equal to zero and that
it has a closed range. We use Θ† to denote the
pseudo-inverse of the linear bounded operator Θ (if
it exists).

Definition 1 [Ref. 9] A sequence { f j}∞j=1 ⊂ H is
called a K-frame for H if there exist two constants
0< C ¶ D <∞ such that

C ‖K∗ f ‖2 ¶
∞
∑

j=1

|〈 f , f j〉|2

¶ D ‖ f ‖2 , ∀ f ∈H .

The numbers C , D are called K-frame bounds. If
the above inequalities hold only for each f ∈
span{ f j}∞j=1, then { f j}∞j=1 is said to be a K-frame
sequence.

Remark 1 If K is equal to IdH , the identity operator
on H , then the K-frames and K-frame sequences
are just ordinary frames and frame sequences, re-
spectively.

Lemma 1 (Ref. 8) Let { f j}∞j=1 be a Bessel sequence

forH . Then
∑∞

j=1 c j f j converges unconditionally for

each {c j}∞j=1 ∈ `
2(N) and the operators defined by

T : `2(N)→H , T{c j}∞j=1 =
∞
∑

j=1

c j f j

(synthesis operator) (3)

T ∗ :H → `2(N), T ∗ f = {〈 f , f j〉}∞j=1

(analysis operator) (4)

S :H →H , S f = T T ∗ f =
∞
∑

j=1

〈 f , f j〉 f j

(frame operator) (5)

are linear and bounded.

If { f j}∞j=1 is a Bessel sequence for span{ f j}∞j=1,
then, by replacing H in (3)–(5) with span{ f j}∞j=1,
we will still obtain the associated operators of
{ f j}∞j=1. Clearly, if { f j}∞j=1 is a frame sequence,
then the corresponding synthesis operator T and
frame operator S are, respectively, surjective and
invertible. In this case, the following reconstruction
formula is satisfied.

f =
∞
∑

j=1

〈 f , f j〉S−1 f j =
∞
∑

j=1

〈 f , S−1 f j〉 f j ,

∀ f ∈ span{ f j}∞j=1.

Later we will also need the following important
result from operator theory.

Lemma 2 (Ref. 14) Let U ∈ L(H1,H ) and V ∈
L(H2,H ). Then the following conditions are equiva-
lent:
(i) R(U) ⊂ R(V );
(ii) there exists λ > 0 such that UU∗ ¶ λV V ∗;
(iii) there exists θ ∈ L(H1,H2) such that U = Vθ .

K -FRAME SEQUENCES IN HILBERT SPACES

In general, a K-frame forH is a K-frame sequence,
but not conversely.

Example 1 Let {e j}∞j=1 be an orthonormal basis for
H . Fix N ∈ N and define K ∈ L(H ) as follows:

Ke j =

¨

je j , 1¶ j ¶ N ,

e j , j > N .
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It is easily seen that K∗e j = Ke j . For any f ∈
span{e j}∞j=N+1, we have

f =
∞
∑

j=N+1

〈 f , e j〉e j .

Thus K∗ f =
∑∞

j=N+1〈 f , e j〉e j . Hence

‖K∗ f ‖2 =
∞
∑

j=N+1

|〈 f , e j〉|2,

which implies that {e j}∞j=N+1 is a K-frame for
span{e j}∞j=N+1. If {e j}∞j=N+1 is a K-frame forH with
bounds C , D, we let e1 ∈H . Then we have

∞
∑

j=N+1

|〈e1, e j〉|2 = 0¾ C ‖K∗e1‖
2 = C ‖e1‖

2 = C .

This is impossible. Hence {e j}∞j=N+1 is not a K-frame
forH .

We now give a condition under which a K-frame
sequence is a K-frame.

Theorem 1 Let { f j}∞j=1 be a K-frame sequence inH
with bounds C , D. If R(K)⊂ span{ f j}∞j=1, then { f j}∞j=1
is a K-frame forH .

Proof : We first show that { f j}∞j=1 is a Bessel sequence
forH . Since

H = span{ f j}∞j=1⊕ (span{ f j}∞j=1)
⊥,

for every f ∈ H there exist g1 ∈ span{ f j}∞j=1, g2 ∈
(span{ f j}∞j=1)

⊥ such that f = g1 + g2. Noting
〈 f , f j〉= 〈g1, f j〉 for each j ∈ N, we obtain

∞
∑

j=1

|〈 f , f j〉|2 =
∞
∑

j=1

|〈g1, f j〉|2

¶ D ‖g1‖
2 ¶ D(‖g1‖

2+ ‖g2‖
2) = D ‖ f ‖2 .

We next prove the lower K-frame bound condition.
As mentioned before, every f ∈H has a decomposi-
tion as f = g1+g2, where g1 ∈ span{ f j}∞j=1 and g2 ∈
(span{ f j}∞j=1)

⊥. Since R(K)⊂ span{ f j}∞j=1, it follows

that g2 ∈ (R(K))⊥. It is obvious that 〈K∗g2, h〉 =
〈g2, Kh〉= 0 for all h ∈H . Thus K∗g2 = 0. Now

∞
∑

j=1

|〈 f , f j〉|2 =
∞
∑

j=1

|〈g1, f j〉|2

¾ C ‖K∗g1‖
2 = C ‖K∗(g1+ g2)‖

2 = C ‖K∗ f ‖2 .

2

The following result shows that we can obtain a
K-frame sequence from a frame sequence.

Theorem 2 Every frame sequence inH is a K-frame
sequence.

Proof : Suppose that { f j}∞j=1 is a frame sequence with
bounds C , D and the frame operator S. To prove
that { f j}∞j=1 is a K-frame sequence, it is sufficient to
prove, by Theorem 1, that the lower K-frame bound
condition holds. For each f ∈ span{ f j}∞j=1, the

reconstruction formula gives f =
∑∞

j=1〈 f , f j〉S−1 f j

and, consequently, K∗ f =
∑∞

j=1〈 f , f j〉K∗S−1 f j . De-
note by Pspan{ f j}∞j=1

the orthogonal projection on
span{ f j}∞j=1. Then

‖K∗ f ‖= sup
‖g‖=1

�

�

�

�

∞
∑

j=1

〈 f , f j〉〈K∗Pspan{ f j}∞j=1
S−1 f j , g〉

�

�

�

�

¶ sup
‖g‖=1

�∞
∑

j=1

|〈S−1Pspan{ f j}∞j=1
K g, f j〉|2

�1/2

×
�∞
∑

j=1

|〈 f , f j〉|2
�1/2

¶
p

D




S−1Pspan{ f j}∞j=1
K






�∞
∑

j=1

|〈 f , f j〉|2
�1/2

¶
p

D


S−1


‖K‖
�∞
∑

j=1

|〈 f , f j〉|2
�1/2

.

It follows that

D−1


S−1




−2 ‖K‖−2 ‖K∗ f ‖2 ¶
∞
∑

j=1

|〈 f , f j〉|2,

as desired. 2
One may wonder whether the converse of The-

orem 2 holds. In fact, the answer is negative.

Example 2 Let {e j}∞j=1 be an orthonormal basis for
H and define

K :H →H , K f =
∞
∑

j=1

〈 f , e2 j〉e2 j .

Clearly, K is a well defined, linear bounded operator
with K∗ f =

∑∞
j=1〈 f , e2 j〉e2 j . Let

f j =

¨

e j , j is even,

e j/ j, j is odd.
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For any f ∈ span{ f j}∞j=1 we have

‖K∗ f ‖2 =
∞
∑

j=1

|〈 f , e2 j〉|2 ¶
∞
∑

j=1

|〈 f , f j〉|2

=
∞
∑

j=1

|〈 f , e2 j〉|2+
∞
∑

j=1

|〈 f , e2 j−1〉|2

(2 j−1)2

¶
∞
∑

j=1

|〈 f , e j〉|2 = ‖ f ‖2 .

Thus { f j}∞j=1 is a K-frame sequence. We next prove
that { f j}∞j=1 is not a frame sequence. Assume on
the contrary that there is a constant C > 0 such that
C‖ f ‖2 ¶

∑∞
j=1|〈 f , f j〉|2 for all f ∈ span{ f j}∞j=1. Let

k ∈ N be a positive integer which is greater than
1/2
p

C + 1
2 . Taking e2k−1 ∈ span{ f j}∞j=1, we obtain

C = C ‖e2k−1‖
2 ¶

∞
∑

j=1

|〈e2k−1, f j〉|2

=
∞
∑

j=1

|〈e2k−1,
e2 j−1

2 j−1
〉|2 =

1
(2k−1)2

< C ,

which is a contradiction. Hence { f j}∞j=1 is not a
frame sequence.

We are now ready to present the result showing
that the converse of Theorem 1 remains true if we
replace “frame sequence” by “K-frame sequence”.

Theorem 3 Let { f j}∞j=1 be a frame sequence in H
with synthesis operator T . Then it is a K-frame for
H if and only if R(K) ⊂ span{ f j}∞j=1.

Proof : Assume first that R(K) ⊂ span{ f j}∞j=1. By
Theorem 2 we know that { f j}∞j=1 is a K-frame se-
quence in H . From Theorem 1 it follows that
{ f j}∞j=1 is a K-frame forH . Conversely, let us denote
the K-frame bounds of { f j}∞j=1 by C , D. Then

〈CKK∗ f , f 〉¶
∞
∑

j=1

|〈 f , f j〉|2 =




T ∗Pspan{ f j}∞j=1
f






2

= 〈(T ∗Pspan{ f j}∞j=1
)∗(T ∗Pspan{ f j}∞j=1

) f , f 〉

for any f ∈H , that is,

CKK∗ ¶ (T ∗Pspan{ f j}∞j=1
)∗(T ∗Pspan{ f j}∞j=1

).

Using Lemma 2 and the fact that R(T ) =
span{ f j}∞j=1, we obtain

R(K) ⊂ R((T ∗Pspan{ f j}∞j=1
)∗)

= R(Pspan{ f j}∞j=1
T ) = span{ f j}∞j=1.

2

Although a K-frame sequence { f j}∞j=1 in H is
not a frame for span{ f j}∞j=1 in general, we show
that it can be a frame for a closed subspace of
span{ f j}∞j=1.

Theorem 4 Let { f j}∞j=1 be a K-frame sequence inH
with bounds C , D. Suppose that K∗|span{ f j}∞j=1

6= 0 and
that it has a closed range. Then { f j}∞j=1 is a frame for
R((K∗|span{ f j}∞j=1

)∗).

Proof : We conclude first that (K∗|span{ f j}∞j=1
)∗ has

a closed range since, by assumption, K∗|span{ f j}∞j=1

has a closed range. Hence the pseudo-inverse
of (K∗|span{ f j}∞j=1

)∗ exists. By (2), every f ∈
R((K∗|span{ f j}∞j=1

)∗) can be written as

f = (K∗|span{ f j}∞j=1
)∗((K∗|span{ f j}∞j=1

)∗)† f

= [(K∗|span{ f j}∞j=1
)∗((K∗|span{ f j}∞j=1

)∗)†]∗ f

= (K∗|span{ f j}∞j=1
)†(K∗|span{ f j}∞j=1

) f .

Hence

‖ f ‖2 ¶




(K∗|span{ f j}∞j=1
)†






2 


(K∗|span{ f j}∞j=1
) f






2
.

Notice, however, that R((K∗|span{ f j}∞j=1
)∗) ⊆

span{ f j}∞j=1. We have

‖ f ‖2 ¶




(K∗|span{ f j}∞j=1
)†






2
‖K∗ f ‖2

¶
1
C





(K∗|span{ f j}∞j=1
)†






2 ∞∑

j=1

|〈 f , f j〉|2.

Since K∗|span{ f j}∞j=1
6= 0, its pseudo-inverse

(K∗|span{ f j}∞j=1
)† 6= 0. It follows that

C




(K∗|span{ f j}∞j=1
)†






−2
‖ f ‖2 ¶

∞
∑

j=1

|〈 f , f j〉|2.

It is trivial to show that

∞
∑

j=1

|〈 f , f j〉|2 ¶ D ‖ f ‖2 ∀ f ∈ R((K∗|span{ f j}∞j=1
)∗).

Thus { f j}∞j=1 is a frame for R((K∗|span{ f j}∞j=1
)∗) with

bounds C‖(K∗|span{ f j}∞j=1
)†‖−2, D. 2

At the end of this section we give several char-
acterizations for K-frame sequences.

Theorem 5 Suppose that { f j}∞j=1 is a sequence inH .
Then the following statements are equivalent:
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(i) { f j}∞j=1 is a K-frame sequence;
(ii) { f j}∞j=1 is a Bessel sequence for span{ f j}∞j=1 and

there exits a Bessel sequence {g j}∞j=1 for H such
that for any f ∈H ,

(K∗|span{ f j}∞j=1
)∗ f =

∞
∑

j=1

〈 f , g j〉 f j; (6)

(iii) { f j}∞j=1 is a Bessel sequence for span{ f j}∞j=1 and
there exits a Bessel sequence {g j}∞j=1 for H such
that for any h ∈ span{ f j}∞j=1,

K∗h=
∞
∑

j=1

〈h, f j〉g j . (7)

Proof : (i)⇒(ii). Let C , D and T be, respectively,
the bounds and synthesis operator of { f j}∞j=1. Then
for all f ∈ span{ f j}∞j=1 we have C‖K∗ f ‖2 ¶ ‖T ∗ f ‖2,
implying that

C(K∗|span{ f j}∞j=1
)∗(K∗|span{ f j}∞j=1

)¶ T T ∗.

By Lemma 2, there exists U ∈ L(H ,`2(N)) such that
(K∗|span{ f j}∞j=1

)∗ = T U . Let {δ j}∞j=1 be the canonical

orthonormal basis for `2(N). Since

〈 f , f j〉=



{〈 f , f j〉}∞j=1,δ j

�

= 〈T ∗ f ,δ j〉

= 〈 f , Tδ j〉, ∀ f ∈ span{ f j}∞j=1,

we have Tδ j = f j for all j ∈N. Taking g j = U∗δ j for
each j ∈ N,

∞
∑

j=1

|〈 f , g j〉|2 =
∞
∑

j=1

|〈U f ,δ j〉|2 = ‖U f ‖2

¶ ‖U‖2 ‖ f ‖2 , ∀ f ∈H .

Thus {g j}∞j=1 is a Bessel sequence forH . Now

(K∗|span{ f j}∞j=1
)∗ f = T U f

= T
∞
∑

j=1

〈U f ,δ j〉δ j =
∞
∑

j=1

〈U f ,δ j〉Tδ j =
∞
∑

j=1

〈 f , g j〉 f j .

(ii)⇒(iii). For any f ∈ H and any h ∈
span{ f j}∞j=1, we see from (6) that




(K∗|span{ f j}∞j=1
)∗ f , h

�

=
∞
∑

j=1

〈 f , g j〉〈 f j , h〉

=


f ,
∞
∑

j=1

〈h, f j〉g j

·

.

That is,

〈 f , K∗h〉= 〈 f , (K∗|span{ f j}∞j=1
)h〉

=


f ,
∞
∑

j=1

〈h, f j〉g j

·

,

from which we conclude that K∗h=
∑∞

j=1〈h, f j〉g j .
(iii)⇒(i). Suppose that (7) holds. To prove that

{ f j}∞j=1 is a K-frame sequence, we only need to prove
the lower bound inequality of the K-frame sequence.
For any g ∈ span{ f j}∞j=1 we have

‖K∗g‖= sup
‖h‖=1

|〈K∗g, h〉|= sup
‖h‖=1

�

�

�

�

∞
∑

j=1

〈g, f j〉〈g j , h〉
�

�

�

�

¶
�∞
∑

j=1

|〈g, f j〉|2
�1/2

sup
‖h‖=1

�∞
∑

j=1

|〈h, g j〉|2
�1/2

¶
p

D
�∞
∑

j=1

|〈h, g j〉|2
�1/2

,

where D is the Bessel bounds of {g j}∞j=1. Hence

D−1 ‖K∗g‖2 ¶
∞
∑

j=1

|〈g, f j〉|2, ∀ g ∈ span{ f j}∞j=1.

2

Theorem 6 A sequence { f j}∞j=1 ⊂ H is a K-
frame sequence if and only if there is U ∈
L(span{ f j}∞j=1,`2(N)) such that U∗δ j = f j for all j ∈
N and R((K∗|span{ f j}∞j=1

)∗) ⊂ R(U∗), where {δ j}∞j=1 is

the canonical orthonormal basis for `2(N).

Proof : Assume first that { f j}∞j=1 is a K-frame se-
quence with bounds C , D and the synthesis operator
T . The definition gives

C(K∗|span{ f j}∞j=1
)∗(K∗|span{ f j}∞j=1

)¶ T T ∗.

If we let U = T ∗, we obtain U∗δ j = Tδ j = f j for all
j ∈ N and

C(K∗|span{ f j}∞j=1
)∗(K∗|span{ f j}∞j=1

)¶ U∗U .

From Lemma 2 it follows that

R((K∗|span{ f j}∞j=1
)∗) ⊂ R(U∗).

Conversely, since U∗δ j = f j for each j ∈ N, we have

∞
∑

j=1

|〈 f , f j〉|2 =
∞
∑

j=1

|〈 f , U∗δ j〉|2 =
∞
∑

j=1

|〈U f ,δ j〉|2

= ‖U f ‖2 ¶ ‖U‖2 ‖ f ‖2 , ∀ f ∈ span{ f j}∞j=1.
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Hence { f j}∞j=1 is a Bessel sequence for span{ f j}∞j=1.
Since R((K∗|span{ f j}∞j=1

)∗) ⊂ R(U∗), by Lemma 2
we know that there exists λ > 0 such that
(K∗|span{ f j}∞j=1

)∗(K∗|span{ f j}∞j=1
)¶ λU∗U . Thus for each

f ∈ span{ f j}∞j=1,

λ−1 ‖K∗ f ‖2 = λ−1




K∗|span{ f j}∞j=1
f






2

¶ ‖U f ‖2 =
∞
∑

j=1

|〈 f , f j〉|2.

Hence { f j}∞j=1 is a K-frame sequence with bounds
λ−1,‖U‖2. 2

Corollary 1 A sequence { f j}∞j=1 ⊂ H is a K-frame
sequence for H if and only if the operator T de-
fined by (3) is well defined, linear bounded and
R((K∗|span{ f j}∞j=1

)∗) ⊂ R(T ).

Corollary 2 Let { f j}∞j=1 ⊂H be a Bessel sequence for
span{ f j}∞j=1. Then it is a K-frame sequence if and only
if R((K∗|span{ f j}∞j=1

)∗) ⊂ R(T ).

DUALS OF K -FRAMES IN HILBERT SPACES

Definition 2 Let { f j}∞j=1 be a K-frame for H . We
call a Bessel sequence {g j}∞j=1 forH a dual K-frame
of { f j}∞j=1 if

K f =
∞
∑

j=1

〈 f , g j〉 f j

holds true for all f ∈ H . In this case, we call
({ f j}∞j=1, {g j}∞j=1) a dual K-frame pair.

Remark 2 If K = IdH , then dual K-frames are just
ordinary dual frames.

Remark 3 By (2), it is easily seen that if {g j}∞j=1 is

a dual K-frame of { f j}∞j=1 then so is {(K†K)∗g j}∞j=1.

Remark 4 From Ref. 9 we know that every K-frame
forH admits a dual K-frame.

It is well known that, in classical frame theory,
the duals of a frame are necessarily frames. One
may ask whether there is an analogue for K-frames.
The answer is negative, as shown in the following
example.

Example 3 Let {e j}∞j=1 be an orthonormal basis for
H and define K ∈ L(H ) as follows:

Ke2 j = e2 j + e2 j−1, Ke2 j−1 = 0, j = 1,2, . . . .

Then for each f ∈H we have

K f = K
∞
∑

j=1

〈 f , e j〉e j

= K
�∞
∑

j=1

〈 f , e2 j〉e2 j +
∞
∑

j=1

〈 f , e2 j−1〉e2 j−1

�

=
∞
∑

j=1

〈 f , e2 j〉(e2 j + e2 j−1).

It is easy to check that the adjoint operator K∗ :H →
H is given by

K∗ f =
∞
∑

j=1

〈 f , e2 j + e2 j−1〉e2 j , ∀ f ∈H .

For f ∈H , since

‖K∗ f ‖2 =









∞
∑

j=1

〈 f , e2 j + e2 j−1〉e2 j









2

=
∞
∑

j=1

|〈 f , e2 j + e2 j−1〉|2

¶ 2
∞
∑

j=1

|〈 f , e2 j〉|2+2
∞
∑

j=1

|〈 f , e2 j−1〉|2

¶ 4‖ f ‖2 ,

it follows that { f j}∞j=1 = {e2 j + e2 j−1}∞j=1 is a K-
frame for H . Clearly, {g j}∞j=1 = {e2 j}∞j=1 is a Bessel
sequence for H . If there exists a constant C > 0
such that C‖K∗ f ‖2 ¶

∑∞
j=1|〈 f , g j〉|2 for all f ∈ H ,

then we have
∞
∑

j=1

|〈e1, g j〉|2 =
∞
∑

j=1

|〈e1, e2 j〉|2 = 0

¾ C ‖K∗e1‖
2 = C ‖e2‖

2 = C ,

a contradiction. Thus {g j}∞j=1 is not a K-frame for
H .

Remark 5 One can check that a dual K-frame is
necessarily a K∗-frame.

We now give a characterization of dual K-
frames.

Theorem 7 Let { f j}∞j=1 be a K-frame for H with
synthesis operator T , and {δ j}∞j=1 be the canonical
orthonormal basis for `2(N). The dual K-frames of
{ f j}∞j=1 are precisely the families {g j}∞j=1 = {Vδ j}∞j=1,
where V : `2(N)→H is a linear bounded operator
such that K∗ = V T ∗.
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Proof : For any f ∈H we have

∞
∑

j=1

|〈 f , g j〉|2 =
∞
∑

j=1

|〈 f , Vδ j〉|2

= ‖V ∗ f ‖2 ¶ ‖V‖2 ‖ f ‖2 ,

showing that {g j}∞j=1 = {Vδ j}∞j=1 is a Bessel se-
quence for H . It is clear that {〈 f , f j〉}∞j=1 =
∑∞

j=1〈 f , f j〉δ j for all f ∈H . Thus

K∗ f = V T ∗ f = V{〈 f , f j〉}∞j=1

= V
∞
∑

j=1

〈 f , f j〉δ j =
∞
∑

j=1

〈 f , f j〉g j .

Consequently, K f =
∑∞

j=1〈 f , g j〉 f j , meaning that
{g j}∞j=1 is a dual K-frame of { f j}∞j=1.

For the other implication, suppose that {g j}∞j=1
is a dual K-frame of { f j}∞j=1. Then the synthesis
operator U for {g j}∞j=1 satisfies the conditions. In
fact, {g j}∞j=1 = {Uδ j}∞j=1, and by the definition of a
dual K-frame, K∗ = U T ∗. 2

Proposition 3.3 in Ref. 10 shows that a K-frame
{ f j}∞j=1 for H has a dual frame on the closed
subspace R(K) which is derived from a dual K-
frame of { f j}∞j=1. It is natural to ask whether a K-
frame admits a dual frame on the whole space H .
Unfortunately, the answer is negative.

Example 4 Let {e j}∞j=1 be an orthonormal basis for
H and let { f j}∞j=1 be the same as in Example 2.
Define a linear bounded operator as follows:

K :H →H , K f =
∞
∑

j=1

〈 f , e2 j〉e2 j .

For any f ∈H we compute that

‖K∗ f ‖2 =
∞
∑

j=1

|〈 f , e2 j〉|2 ¶
∞
∑

j=1

|〈 f , f j〉|2

=
∞
∑

j=1

|〈 f , e2 j〉|2+
∞
∑

j=1

1
(2 j−1)2

|〈 f , e2 j−1〉|2

¶
∞
∑

j=1

|〈 f , e j〉|2 = ‖ f ‖2 .

Hence { f j}∞j=1 is a K-frame for H . Suppose that
{ f j}∞j=1 has a dual frame {g j}∞j=1. For any k ∈ N,

taking e2k−1 ∈H , we have

e2k−1 =
∞
∑

j=1

〈e2k−1, g j〉 f j =
∞
∑

j=1

〈e2k−1, f j〉g j

=
∞
∑

j=1

〈e2k−1, e2 j〉g2 j +
∞
∑

j=1



e2k−1,
e2 j−1

2 j−1

·

g2 j−1.

Thus e2k−1 = g2k−1/(2k − 1), and g2k−1 = (2k −
1)e2k−1 as a consequence. Now

∞
∑

j=1

|〈e2k−1, g j〉|2 ¾ |〈e2k−1, g2k−1〉|2

= (2k−1)2→∞ as k→∞,

which contradicts the fact that {g j}∞j=1 is a Bessel
sequence forH .

The converse of Proposition 3.3 in Ref. 10 still
holds, provided an additional condition is added.

Theorem 8 Let { f j}∞j=1 be a Bessel sequence for H
with frame operator S. If { f j}∞j=1 has a dual frame
on R(K) and S(R(K))⊂ R(K), then it is a K-frame for
H .

Proof : Assume that {g j}∞j=1 is a dual frame of { f j}∞j=1
on R(K). Each f ∈H can be expressed as f = d1+
d2, where d1 ∈ R(K) and d2 ∈ (R(K))⊥. Then

∞
∑

j=1

|〈 f , f j〉|2 =
∞
∑

j=1

|〈d1+ d2, f j〉|2

=
∞
∑

j=1

|〈d1, f j〉|2+
∞
∑

j=1

|〈d2, f j〉|2

+2 Re
∞
∑

j=1

〈d1, f j〉〈 f j , d2〉.

Noting
∑∞

j=1〈d1, f j〉 f j = Sd1 ∈ S(R(K)) ⊂ R(K), we

have
∑∞

j=1〈d1, f j〉〈 f j , d2〉= 0. Hence

∞
∑

j=1

|〈 f , f j〉|2 =
∞
∑

j=1

|〈d1, f j〉|2+
∞
∑

j=1

|〈d2, f j〉|2.

By Lemma 1,
∑∞

j=1〈d1, f j〉g j converges and so does
∑∞

j=1〈d1, f j〉PR(K)g j . Then for each h∈ R(K)we have

〈h, d1〉=
∞
∑

j=1

〈h, g j〉〈 f j , d1〉=


h,
∞
∑

j=1

〈d1, f j〉g j

·

=


h,
∞
∑

j=1

〈d1, f j〉PR(K)g j

·

.

www.scienceasia.org

http://www.scienceasia.org/2016.html
www.scienceasia.org


ScienceAsia 42 (2016) 229

It follows that d1 =
∑∞

j=1〈d1, f j〉PR(K)g j . Thus

‖K∗ f ‖4 = ‖K∗(d1+ d2)‖
4 = ‖K∗d1‖

4

= ‖〈K∗d1, K∗d1〉‖
2

=









∞
∑

j=1

〈d1, f j〉〈PR(K)g j , KK∗d1〉








2

¶
∞
∑

j=1

|〈d1, f j〉|2
∞
∑

j=1

|〈PR(K)KK∗d1, g j〉|2

¶ D ‖K‖2 ‖K∗d1‖
2
∞
∑

j=1

|〈d1, f j〉|2

= D ‖K‖2 ‖K∗ f ‖2
∞
∑

j=1

|〈d1, f j〉|2,

where D is the Bessel bound of {g j}∞j=1. Hence

∞
∑

j=1

|〈 f , f j〉|2 =
∞
∑

j=1

|〈d1, f j〉|2+
∞
∑

j=1

|〈d2, f j〉|2

¾
∞
∑

j=1

|〈d1, f j〉|2 ¾ D−1 ‖K‖−2 ‖K∗ f ‖2 .

2
There are two results on the perturbation of K-

frames in a Hilbert space in Refs. 10, 11. In the
following we give a new perturbation result for
K-frames where the associated dual K-frames are
involved.

Theorem 9 Let { f j}∞j=1 be a K-frame for H with
bounds C , D and {g j}∞j=1 be a dual K-frame of { f j}∞j=1

with Bessel bound D′. Assume that {h j}∞j=1 is a
sequence in H which satisfies the following two con-
ditions:
(i) λ :=

∑∞
j=1‖h j − f j‖2 <∞;

(ii) µ :=
∑∞

j=1‖K
†‖‖h j − f j‖‖g j‖< 1.

Then {h j}∞j=1 is a PL(R(K))K-frame forH with bounds

(D′)−1‖K†‖−2‖K‖−2(1−µ)2, (
p
λ+
p

D)2, where

L : R(K)→H ,

L f =
∞
∑

j=1

〈 f , PR(K)(K
†)∗g j〉h j .

(8)

Proof : Define

U : `2(N)→H , U{c j}∞j=1 =
∞
∑

j=1

c jh j .

Then (i) implies that U is well defined, linear, and
bounded with ‖U‖¶

p
λ+
p

D. Thus

∞
∑

j=1

|〈 f , h j〉|2 = ‖U∗ f ‖2 ¶ ‖U‖2 ‖ f ‖2

¶ (
p

λ+
p

D)2 ‖ f ‖2 .

L is well defined by Lemma 1. Now, for any f ∈
R(K), we obtain

‖ f − L f ‖=








∞
∑

j=1

〈K† f , g j〉 f j

−
∞
∑

j=1

〈 f , PR(K)(K
†)∗g j〉h j









=









∞
∑

j=1

〈 f , PR(K)(K
†)∗g j〉 f j

−
∞
∑

j=1

〈 f , PR(K)(K
†)∗g j〉h j









¶
∞
∑

j=1



〈 f , PR(K)(K
†)∗g j〉( f j −h j)





¶
∞
∑

j=1



K†






h j − f j







g j



 ‖ f ‖= µ‖ f ‖ .

Hence (1−µ)‖ f ‖¶ ‖L f ‖ for all f ∈ R(K). From this
we conclude that the operator L : R(K)→ L(R(K))
is invertible with ‖L−1‖ ¶ 1/(1−µ). It is trivial to
show that L(R(K)) is closed. For any h∈H we have

PL(R(K))Kh= LL−1PL(R(K))Kh

=
∞
∑

j=1

〈L−1PL(R(K))Kh, PR(K)(K
†)∗g j〉h j .

For all g ∈H , again by Lemma 1, we obtain

〈PL(R(K))Kh, g〉=
∞
∑

j=1

〈L−1PL(R(K))Kh,

PR(K)(K
†)∗g j〉h j , g

·

=


h,
∞
∑

j=1

〈g, h j〉∆g j

·

,

where

∆ := K∗PL(R(K))(L
−1)∗PR(K)(K

†)∗.

It follows that


h, K∗PL(R(K))g −
∞
∑

j=1

〈g, h j〉∆g j

·

= 0.
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Hence

K∗PL(R(K))g =
∞
∑

j=1

〈g, h j〉∆g j .

For any f ∈H we compute that



K∗PL(R(K)) f


= sup
‖x‖=1

�

�

�

�

∞
∑

j=1

〈 f , h j〉〈∆g j , x〉
�

�

�

�

¶
�∞
∑

j=1

|〈 f , h j〉|2
�1/2

× sup
‖x‖=1

�∞
∑

j=1

|〈∆∗x , g j〉|2
�1/2

¶
p

D′


K†






L−1


 ‖K‖

×
�∞
∑

j=1

|〈 f , h j〉|2
�1/2

¶

p
D′


K†


 ‖K‖
1−µ

×
�∞
∑

j=1

|〈 f , h j〉|2
�1/2

.

Thus

(D′)−1


K†




−2 ‖K‖−2 (1−µ)2


K∗PL(R(K)) f




2

¶
∞
∑

j=1

|〈 f , h j〉|2.

2

Acknowledgements: We thank the anonymous referees
for valuable suggestions and comments which have led
to a significant improvement of our manuscript. The
research was partially supported by the Natural Science
Foundation of Jiangxi, China (No. 20151BAB201007), the
Science Foundation of Jiangxi Education Department (No.
GJJ151061) and the National Natural Science Foundation
of China (Nos. 11461057 and 11561057).

REFERENCES

1. Strohmer T, Heath RW (2003) Grassmannian frames
with applications to coding and communication. Appl
Comput Harmon Anal 14, 257–75.

2. Benedetto JJ, Powell A, Yilmaz O (2006) Sigma-delta
(Σ∆) quantization and finite frames. IEEE Trans In-
form Theor 52, 1990–2005.

3. Sun WC (2010) Asymptotic properties of Gabor
frame operators as sampling density tends to infinity.
J Funct Anal 258, 913–32.

4. Candès EJ, Donoho DL (2005) Continuous curvelet
transform: II. Discretization and frames. Appl Com-
put Harmon Anal 19, 198–222.

5. Duffin RJ, Schaeffer AC (1952) A class of nonhar-
monic Fourier series. Trans Am Math Soc 72, 341–66.

6. Daubechies I, Grossmann A, Meyer Y (1986) Pain-
less nonorthogonal expansions. J Math Phys 27,
1271–83.

7. Casazza PG (2000) The art of frame theory. Taiwan J
Math 4, 129–201.

8. Christensen O (2003) An Introduction to Frames and
Riesz Bases, Birkhäuser, Boston.
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