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INTRODUCTION

Let B(H) be the C∗-algebra of all bounded linear
operators on a Hilbert space H equipped with the
operator norm, S(H) the set of all bounded self-
adjoint operators, and P = P(H) the open convex
cone of all positive invertible operators. For X , Y ∈
S(H), we write X ¶ Y if Y −X is positive, and X < Y
if Y − X is positive invertible.

The unitarily invariant norm ‖·‖ is defined on
the matrix algebra Mn of all n × n matrices with
entries in the complex field C. For A= (ai j) ∈Mn,
the Hilbert-Schmidt norm of A is defined by ‖A‖2 =
(Σn

j=1s2
j (A))

1/2, where s1(A), s2(A), . . . , sn(A) are the
singular values of A, i.e., the eigenvalues of the
positive matrix |A| = (A∗A)1/2 where A∗ = (A)T), ar-
ranged in decreasing order and repeated according
to multiplicity. It is known that the Hilbert-Schmidt
norm is unitarily invariant.

Let a, b > 0 be two positive real numbers and
v ∈ [0,1]. The v-weighted arithmetic and geometric
means of a and b, denoted by Av(a, b) and Gv(a, b),
respectively, are defined as

Av(a, b) = (1− v)a+ vb, Gv(a, b) = a1−v bv .

Note that Av(a, b) ¾ Gv(a, b) for all v ∈ [0, 1]. This
is the well-known Young inequality. In particular, if
v = 1

2 then A1/2(a, b) = 1
2 (a + b) and G1/2(a, b) =p

ab are the arithmetic and geometric means, re-
spectively. The Heinz mean of a and b is defined
as

Hv(a, b) =
av b1−v + a1−v bv

2

for v ∈ [0,1]. For v = 0, 1, this is equal to arithmetic
mean and for v = 1

2 it is the geometric mean.

Let A, B ∈ B(H) be two positive operators and
v ∈ [0, 1]. The v-weighted arithmetic mean of A and
B, denoted by A∇vB, is defined as

A∇vB = (1− v)A+ vB.

If A is invertible, the v-weighted geometric
mean of A and B, denoted by A]vB, is defined as

A]vB = A1/2(A−1/2BA−1/2)vA1/2.

For more details, see Ref. 1. When v = 1
2 , we write

A∇B and A]B for brevity, respectively.
The operator version of the Heinz mean, de-

noted by Hv(A, B), is defined as

Hv(A, B) =
A]vB+A]1−vB

2
, 0¶ v ¶ 1.

It is well known that if A and B are positive invertible
operators, then

A∇vB ¾ A]vB, 0¶ v ¶ 1.

The Specht ratio2, 3 is defined by

S(t) =
t1/(t−1)

elog t1/(t−1)
for t > 0, t 6= 1,

and
S(1) = lim

t→1
S(t) = 1.

Furuichi4 gave the following refined version:

A∇vB ¾ S(hr)A]vB ¾ A]vB,

where r = min{v, 1− v}. Zuo et al5 gave another
one:

K(h, 2)rA]vB ¶ A∇vB,
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where K(t, 2) = (t + 1)2/4t for t > 0 is the Kan-
torovich constant. In Ref. 6, Furuichi gave another
refined version:

A∇vB ¾ A]vB+2r(A∇B−A]B)¾ A]vB.

Recently there have been a number of other studies
on similar topics and various improvement ver-
sions7–11.

The Heinz norm inequality, which is one of the
essential inequalities in operator theory, states that
for any positive operators A, B ∈ Mn, any operator
X ∈ Mn and v ∈ [0, 1], the following double inequal-
ity holds:

2


A1/2X B1/2


¶


AvX B1−v +A1−vX Bv




¶ ‖AX + X B‖ . (1)

Kittaneh and Manasrah12 showed a refinement
of the right-hand side of inequality (1) for the
Hilbert-Schmidt norm as follows:


AvX B1−v +A1−vX Bv




2
2+2r0 ‖AX − X B‖2

2

¶ ‖AX + X B‖2
2 , (2)

in which A, B, X ∈ Mn such that A, B are positive
semidefinite, v ∈ [0,1] and r0 =min{v, 1− v}. Kaur
et al13, using the convexity of the function f (v) =
�

�



AvX B1−v +A1−vX Bv




�

� with v ∈ [0,1], presented
more refinements of the Heinz inequality.

It was shown in Ref. 14 that a reverse of in-
equality (2) is

‖AX + X B‖2
2 ¶



AvX B1−v +A1−vX Bv




2
2

+2r0 ‖AX − X B‖2
2 , (3)

where A, B, X ∈ Mn such that A, B are positive
semidefinite, v ∈ [0, 1], and r0 =max{v, 1− v}.

In this paper, we extend the range of the
weighted operator means for v /∈ [0,1] and obtain
some corresponding operator inequalities. We also
present a reverse of (2) and some other operator
inequalities.

SOME OPERATOR INEQUALITIES FOR v /∈ [0, 1]

For A, B ∈ P and v ∈ [0, 1], the v-weighted geometric
operator mean is defined as

A]vB = A1/2(A−1/2BA−1/2)vA1/2.

For convenience, we use the notation \v and H\v for
the binary operation

A\vB = A1/2(A−1/2BA−1/2)vA1/2,

H\v(A, B) =
A\vB+A\1−vB

2
,

for v /∈ [0,1]. We use the notation ♦v and H♦v for
the binary operation

A♦vB = A1/2(A−1/2BA−1/2)vA1/2,

H♦v (A, B) =
A\vB+A\1−vB

2
,

for v /∈ [ 1
2 , 1], whose formulae are the same as ]v and

Hv(A, B). Note that A]vB for v ∈ [0, 1] is monotonic,
but A\vB and A♦vB are not.

In this section, we extend the range of the
definition of the weighted operator. We also present
some operator inequalities for v /∈ [0, 1] and v /∈
[ 1

2 , 1]. To obtain the results, we need the following
lemmas.

Lemma 1 (Ref. 15) Let X ∈ B(H) be self-adjoint
and let f and g be continuous real functions such that
f (t) ¾ g(t) for all t ∈ Sp(X ) (the spectrum of X ).
Then f (X )¾ g(X ).

Lemma 2 (Ref. 16) Let a, b > 0 and v /∈ [0, 1].
Then,
(i)

va+(1− v)b+(v−1)(
p

a−
p

b)2 ¶ av b1−v ,

(ii)

(a+ b)+2(v−1)(
p

a−
p

b)2 ¶ av b1−v+ bva1−v ,

(iii)

(a+ b)2+2(v−1)(a− b)2 ¶ (av b1−v+ bva1−v)2.

Proof : Let a, b > 0 and v /∈ [0,1].
(i) Assume that f (t) = t1−v − v + (v− 1)t with t ∈
(0,∞). It is easy to see that f (t) has a minimum at
t = 1 in the interval (0,∞). Hence f (t)¾ f (1) = 0
for all t > 0. Assume that a, b > 0. Letting t = b/a,
we get

va+(1− v)b ¶ av b1−v .

So we have

va+(1− v)b+(v−1)(
p

a−
p

b)2

= (2−2v)
p

ab+(2v−1)a

¶ (
p

ab)2−2va2v−1 = av b1−v .

(ii) It can be proved in a similar fashion to (i).
(iii) It follows from (ii) by replacing a by a2 and b
by b2.

2
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Theorem 1 Let A, B ∈ P and v /∈ [0,1]. Then:

vA+(1− v)B+2(v−1)(A∇B−A]B)¶ A\1−vB.

Proof : By Lemma 2(i), we have

v+(1− v)b+(v−1)(1−
p

b)2 ¶ b1−v ,

for any b > 0. If X = A−1/2BA−1/2 and thus Sp(X ) ⊆
(0,+∞), then we have

v+(1− v)t +(v−1)(1−
p

t)2 ¶ t1−v ,

for any t ∈ Sp(X ). This is the same as

vI +(1− v)X +(v−1)(I − X 1/2)2 ¶ X 1−v . (4)

Multiplying both sides of (4) by A1/2, we get

vA+(1− v)B+(v−1)(A+ B−2A1/2X 1/2A1/2)

¶ A1/2X 1−vA1/2. (5)

If v /∈ [0, 1], then

vA+(1− v)B+2(v−1)(A∇B−A]B)¶ A\1−vB.

2

Remark 1 In Ref. 12, the authors showed that if v ∈
(0, 1

2 ), then

vA+(1− v)B+2(v−1)(A∇B−A]B)¶ A]1−vB.

It is the same version of the formula (5). Hence for
all v /∈ [ 1

2 , 1],

vA+(1− v)B+2(v−1)(A∇B−A]B)¶ A♦1−vB

holds.

Remark 2 If A, B ∈ P and B ¾ A, v ∈ (1,2), then by
the monotonicity of ]v and 0< v−1< 1, B−1 ¶ A−1,

vA+(1− v)B+2(v−1)(A∇B−A]B)¶ A\1−vB

= A1/2(A−1/2BA−1/2)1−vA1/2

= A1/2(A1/2B−1A1/2)v−1A1/2

¶ A1/2(A1/2A−1A1/2)v−1A1/2 = A.

This is the same as

0¶ A∇B−A]B ¶
B−A

2
.

By Lemma 2 (ii), (iii) and using the same processing
technique as in Theorem 1, we can get the following
theorems and the corresponding remarks.

Theorem 2 Let A, B ∈ P and v /∈ [0, 1]. Then

A∇B+2(v−1)(A∇B−A]B)¶ H\v(A, B).

Remark 3 In Ref. 14, the authors showed that if v ∈
(0, 1

2 ), then

A∇B+2(v−1)(A∇B−A]B)¶ Hv(A, B).

Hence for all v /∈ [ 1
2 , 1],

A∇B+2(v−1)(A∇B−A]B)¶ H♦v (A, B)

holds.

Remark 4 If A, B ∈ P and B ¾ A, v ∈ (1,2), then

B+4(v−1)(A∇B−A]B)¶ A\vB.

Theorem 3 Let A, B ∈ P and v /∈ [0, 1]. Then

(2v−1)(A+A\2B)−4(v−1)B ¶ A\2−2vB+A\2vB.

Remark 5 If A, B ∈ P and B ¾ A, v ∈ (1,2), then

2(v−1)(A−2B)+ (2v−1)A\2B ¶ A\2vB.

A REVERSE OF THE HEINZ INEQUALITY FOR
MATRICES

In this section, we present a reverse of the Heinz
inequality for matrices. To obtain the result, we
need the following lemma.

Lemma 3 (Ref. 17) Let a, b > 0. If 0¶ v ¶ 1
2 , then

v2a+(1− v)2 b ¶ (1− v)2(
p

a−
p

b)2

+ av[(1− v)2 b]1−v . (6)

If 1
2 ¶ v ¶ 1, then

v2a+(1− v)2 b ¶ v2(
p

a−
p

b)2+(v2a)v b1−v . (7)

Based on Lemma 3, the following corollaries can
be easily obtained.

Corollary 1 Let a, b > 0. If 0¶ v ¶ 1
2 , then

2v(a+ b)¶ 2(1− v)(
p

a−
p

b)2

+(1− v)1−2v[av b1−v + bva1−v]. (8)

If 1
2 ¶ v ¶ 1, then

2(1− v)(a+ b)¶ 2v(
p

a−
p

b)2

+ v2v−1[av b1−v + bva1−v]. (9)
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Corollary 2 Let a, b > 0. If 0¶ v ¶ 1
2 , then

2v(a+ b)2 ¶ 2(1− v)(a− b)2

+(1− v)1−2v(av b1−v + bva1−v)2. (10)

If 1
2 ¶ v ¶ 1, then

2(1− v)(a+ b)2 ¶ 2v(a− b)2

+ v2v−1(av b1−v + bva1−v)2. (11)

Theorem 4 Let A, B, X ∈Mn with A, B are positive,
and v ∈ [0, 1]. Then

2v ‖AX + X B‖2
2 ¶ 2(1− v)‖AX − X B‖2

2

+(1− v)1−2v


AvX B1−v +A1−vX Bv




2
2

for 0¶ v ¶ 1
2 , and

2(1− v)‖AX + X B‖2
2 ¶ 2v ‖AX − X B‖2

2

+ v2v−1


AvX B1−v +A1−vX Bv




2
2

for 1
2 ¶ v ¶ 1.

Proof : By spectral decomposition, there are unitary
matrices U , V ∈Mn such that A= UΛ1U∗ and B =
VΛ2V ∗, where

Λ1 = diag(λ1,λ2, . . . ,λn)

and

Λ2 = diag(µ1,µ2, . . . ,µn)

where λi and µi for i = 1, 2, . . . , n are the eigenval-
ues of A and B, respectively. Let Y = U∗X V = [yi j],
then

AX + X B = U(Λ1Y + YΛ2)V
∗

= U[(λi +µi)yi j]V
∗,

AX − X B = U(Λ1Y − YΛ2)V
∗

= U[(λi −µi)yi j]V
∗,

AvX B1−v +A1−vX Bv

= UΛv
1U∗X VΛ1−v

2 V ∗+UΛ1−v
1 U∗X VΛv

2V ∗

= UΛv
1YΛ1−v

2 V ∗+UΛ1−v
1 YΛv

2V ∗

= U
�

Λv
1YΛ1−v

2 +Λ1−v
1 YΛv

2

�

V ∗

= U
��

λv
i µ

1−v
i +λ1−v

i µv
i

�

yi j

�

V ∗.

If 0¶ v ¶ 1
2 , then by (10) and the unitary invariance

of the Hilbert-Schmidt norm, we have

2v ‖AX + X B‖2
2 = 2v

n
∑

i, j=1

(λi +µi)
2
�

�yi j

�

�

2

¶ 2(1− v)
n
∑

i, j=1

(λi −µi)
2
�

�yi j

�

�

2

+(1− v)1−2v
n
∑

i, j=1

(λv
i µ

1−v
i +λ1−v

i µv
i )

2
�

�yi j

�

�

2

= 2(1− v)‖AX − X B‖2
2

+(1− v)1−2v


AvX B1−v +A1−vX Bv




2
2 .

If 1
2 ¶ v ¶ 1, then by (11) and using the same tech-

nique in the first part we get the other result. 2

SOME REVERSES OF THE YOUNG-TYPE
INEQUALITY FOR OPERATORS

In this section, we obtain some reverses of the
Young-type inequality for two positive invertible
operators.

Theorem 5 Let A, B ∈ P and v ∈ [0, 1]. Then

v2A+(1− v)2B ¶ 2(v−1)2(A∇B−A]B)

+ (1− v)2(1−v)A]1−vB,

for 0¶ v ¶ 1
2 , and

v2A+(1− v)2B ¶ 2v2(A∇B−A]B)+ v2vA]1−vB,

for 1
2 ¶ v ¶ 1.

Proof : For 0¶ v ¶ 1
2 , by (6) we have

v2a+(1−v)2 b¶ (1−v)2(
p

a−
p

b)2+av[(1−v)2 b]1−v ,

for any b > 0. If X = A−1/2BA−1/2 and thus Sp(X ) ⊆
(0,+∞), then we have

v2+(1− v)2 b ¶ (1− v)2(1−
p

b)2+[(1− v)2 b]1−v ,

for any t ∈ Sp(X ). This is the same as

v2 I+(1−v)2X ¶ (1−v)2(I−X 1/2)2+[(1−v)2X ]1−v .
(12)

Multiplying both sides of (12) by A1/2, we get

v2A+(1− v)2B ¶ 2(v−1)2(A∇B−A]B)

+ (1− v)2(1−v)A]1−vB.

2

www.scienceasia.org

http://www.scienceasia.org/2016.html
www.scienceasia.org


ScienceAsia 42 (2016) 65

Theorem 6 Let A, B ∈ P and v ∈ [0,1]. Then

2vA∇B ¶ 2(1− v)(A∇B−A]B)+(1− v)1−2vHv(A, B),

for 0¶ v ¶ 1
2 , and

2(1− v)A∇B ¶ 2v(A∇B−A]B)+ v2v−1Hv(A, B),

for 1
2 ¶ v ¶ 1.

Proof : By Corollary 2 and the same processing
technique as in Theorem 5, we can easily obtain the
result. 2
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