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ABSTRACT: The scattering number is a measure of the vulnerability of a graph. In this paper we investigate a
refinement that involves the neighbour isolated version of the parameter. The neighbour isolated scattering number of
a noncomplete graph G is defined to be NIS(G) =max{i(G/X )−|X | : i(G/X )¾ 1} where the maximum is taken over all
X , the cut strategy of G, and i(G/X ) is the number of components which are isolated vertices of G/X . Like the scattering
number itself, this is a measure of the vulnerability of a graph, but it is more sensitive. The relations between neighbour
isolated scattering number and other parameters are determined and the neighbour isolated scattering number of trees
and other families are obtained. We also give some results for the neighbour isolated scattering number of the graphs
obtained by some graph operations.
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INTRODUCTION

The problem of quantifying the vulnerability of
graphs has received much attention recently, espe-
cially in the fields of computers, communication,
and spy networks. In a network, the vulnerability
parameters measure the resistance of the network
to disruption of operation after the failure of cer-
tain stations or links. Parameters used to measure
the vulnerability include connectivity, integrity1,
scattering number2, isolated scattering number3,
toughness4, tenacity5, and rupture degree6. How-
ever, most of these parameters do not consider
the neighbourhoods of the effected vertices. On
the other hand, in spy networks, if a spy or a
station is captured, then adjacent stations are unre-
liable. Therefore neighbourhoods should be taken
into consideration in spy networks. Nevertheless,
there are very few parameters concerning neigh-
bourhoods such as vertex neighbour connectivity7,
vertex neighbour integrity8, and vertex neighbour
scattering number9.

The scattering number of an incomplete con-
nected graph G is denoted and defined2 by

s(G) =max{ω(G− S)− |S| : S ⊂ V (G),
ω(G− S)¾ 2}

whereω(G−S) denotes the number of components
in G − S. Replacing ω(G − S) with i(G − S) in
the above definition gives3 the isolated scattering

number, IS(G), as a new parameter to measure the
vulnerability of a network:

IS(G) =max{i(G− S)− |S| : S ∈ C(G)}

where G is a connected graph, i(G−S) is the number
of isolated vertices of G − S and C(G) is the set of
vertex cuts of G.

The most common vulnerability parameters
concerning with spy networks are as follows. The
vertex neighbour connectivity of a graph G is

VNC(G) = min
S⊆V (G)

{|S|}

where S is a subversion strategy of G 7. The vertex
neighbour integrity of a graph G is defined to be

VNI(G) = min
S⊆V (G)

{|S|+m(G/S)}

where S is any vertex subversion strategy of G and
m(G/S) is the order of the largest connected com-
ponent of G/S 8. The vertex neighbour scattering
number of a graph G is defined as

VNS(G) =max{ω(G/X )− |X |
: X is a cut strategy of G, ω(G/X )¾ 1},

where ω(G/S) denotes the number of connected
components in G/X 9.

Let G be a finite simple graph with vertex set
V (G) and edge set E(G). Let deg(v) denote the
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degree of the vertex v in G. The set N(v) = {v ∈
V (G) | v 6= u, v and u are adjacent} is the open
neighbourhood of v, and N[v] = {v} ∪ N(v) is the
closed neighbourhood of v. A set of vertices X ⊆
V (G) is called a vertex subversion strategy of G if
each of the vertices in X is subverted from G. By
G/X we denote the survival subgraph that remains
after each vertex of X is subverted from G. A vertex
set X is called a cut strategy of G if the survival
subgraph G/X is disconnected, or is a clique, or is
empty.

The known parameters concerning the neigh-
bourhoods do not deal with the number of the
removed vertices and the number of the components
which are isolated vertices in a disrupted network
simultaneously. In order to fill this void in the
literature, the current study proposes a definition
of neighbour isolated scattering number which is a
new parameter concerning these two values. Mo-
tivated from the concept of the isolated scattering
number and neighbour scattering number, it is nat-
ural for us to replace ω(G/X ) with i(G/X ) in the
above definition.

The neighbour isolated scattering number of a
noncomplete graph G is defined to be

NIS(G) =max{i(G/X )− |X | : i(G/X )¾ 1}

where the maximum is taken over all X , the cut
strategy of G, and i(G/X ) is the number of com-
ponents which are isolated vertices of G/X . A set
X ⊂ V (G) is said to be the NIS-set of G if NIS(G) =
i(G/X ) − |X |. For the complete graph, subverting
any one vertex will betray the entire graph, so we
define NIS(Kn) = −1.

The following examples show that the neigh-
bour isolated scattering number is better than the
vertex neighbour connectivity and the vertex neigh-
bour integrity in measuring the vulnerability of
graphs in some situations.

Example 1 It can be easily seen that the vertex
neighbour connectivity of a path P9 and a comet C6,6
are equal: VNC(P9) = VNC(C6,6) = 1.

Example 2 It can be easily seen that the vertex
neighbour integrity of a cycle C8 and a comet C6,6
are equal: VNI(C8) = VNI(C6,6) = 3. On the other
hand, the neighbour isolated scattering numbers of
a cycle C8, a comet C6,6, and a path P9 are different:
NIS(P9) = 1, NIS(C8) = 0, and NIS(C6,6) = 5.

One finds that the neighbour isolated scattering
number value of a graph is closely related to its

vertex neighbour scattering number. But graphs
with the same vertex neighbour scattering number
may have different neighbour isolated scattering
numbers.

Example 3 It can be easily seen that the vertex
neighbour scattering number of a cycle C9 and a
wheel W1,8 are equal: VNS(C9) = VNS(W1,8) = 0.
On the other hand, the neighbour isolated scattering
number of a cycle C9 and a wheel W1,8 differ:
NIS(C9) = −1 and NIS(W1,8) = 0.

The definition of the neighbour isolated scattering
number shows that the parameter measures not only
the amount of work done to damage the network
but also how badly the network is damaged. Graphs
with a large neighbour isolated scattering number
are more vulnerable.

BOUNDS FOR NEIGHBOUR ISOLATED
SCATTERING NUMBER

In this section some lower and upper bounds are
given for the neighbour isolated scattering number
of a graph using different graph parameters.

Theorem 1 Let G be a connected graph of order n.
Then NIS(G)¾ 2− n.

Proof : Let X be a cut strategy of G. We have |X | ¶
|N[X ]| and i(G/X )¾ 1. Then

n− |X |¾ n− |N[X ]|¾ i(G/X ).

If we add i(G/X ) to both sides, we have

i(G/X )+ n− |X |¾ 2i(G/X ).

Then, by the definition of neighbour isolated scat-
tering number, NIS(G)¾ 2− n. 2

Theorem 2 Let G be a connected graph of order n.
Then NIS(G)¶ n−2VNC(G).

Proof : Let X be an NIS-set of G. For any set X of
G we have VNC(G) ¶ |X | ¶ |N[X ]| and i(G/X ) ¶
n− |N[X ]|. Thus

i(G/X )− |X |¶ n− |N[X ]| − |X | .

Hence when we take the maximum of both sides,
NIS(G)¶ n−2VNC(G). 2

Theorem 3 Let G be a connected graph of order n
and δ(G) be the minimum vertex degree of G. Then

NIS(G)¶ n−VNC(G)(δ(G)+2).
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Proof : Let X be a NIS-set of G. For any set X of G
we know VNC(G)¶ |X | and we have for any vertex,
v ∈ V (G), |N[v]| ¾ δ(G) + 1, and so i(G/X ) ¶ n−
VNC(G)(δ(G)+1). Thus

i(G/X )− |X |¶ n−VNC(G)(δ(G)+1)−VNC(G).

Hence we get NIS(G)¶ n−VNC(G)(δ(G)+2). 2

Remark 1 The upper bound of NIS in Theorem 3 is
tight. This can be shown by considering star graphs.

Theorem 4 Let G be a connected graph and α(G) be
the independence number of G. Then

NIS(G)¶ α(G)−VNC(G).

Proof : Let X be a cut strategy of G. For any set X of
G, VNC(G)¶ |X | and i(G/X )¶ α(G). Hence we get
NIS(G)¶ α(G)−VNC(G). 2

Theorem 5 Let G be a connected graph. Then
NIS(G)¾ 1−VNC(G).

Proof : If X is a cut strategy of G with connectivity
VNC(G) = |X | then i(G/X )¾ 1. Thus

i(G/X )− |X |¾ 1−VNC(G).

Hence we get NIS(G)¾ 1−VNC(G). 2

Theorem 6 Let G be a connected graph and δ(G) be
the minimum vertex degree of G. Then NIS(G)¾ 1−
δ(G).

Proof : By Theorem 5 we know NIS(G) ¾ 1 −
VNC(G). We have δ(G) ¾ VNC(G) and so δ(G) ¾
VNC(G)¾ 1−NIS(G). 2

Remark 2 The lower bounds of NIS in Theorem 5
and Theorem 6 are tight. This can be shown by
considering P6 or C7.

Theorem 7 Let G be a connected graph. Then
NIS(G)¶ VNS(G).

Proof : If X is a cut strategy of G, then i(G/X ) ¶
ω(G/X ). Hence i(G/X )−|X |¶ω(G/X )−|X |. Thus
when we take the maximum of both sides, the proof
is completed. 2

Remark 3 The upper bound of NIS in Theorem 7 is
tight. This can be shown by considering P12 or W1,8.

For any graph G the integrity1 of G is denoted
and defined by I(G) = min{|S| + m(G − S) : S ⊆
V (G)} where m(G−S) denotes the maximum order
(vertex-cardinality) of a component of graph G−S.

Lemma 1 (Ref. 10) For any graph G, VNC(G) ¶
VNI(G).

Lemma 2 (Ref. 10) For any graph G, VNI(G) ¶
I(G) − r where r is the maximum degree of the
subgraph induced by an I-set of G.

The following results can be easily obtained
from Theorem 5 and Lemmas 1 and 2.

Theorem 8 For any graph G, NIS(G)¾ 1−VNI(G).

Theorem 9 For any graph G, NIS(G)¾ r+1− I(G),
where r is the maximum degree of the subgraph
induced by an I-set of G.

NEIGHBOUR ISOLATED SCATTERING NUMBER
OF SEVERAL SPECIFIC CLASSES OF GRAPHS

In this section, we consider the neighbour isolated
scattering number of trees, path graphs, complete
k-ary trees, comet graphs, cycle graphs, complete k-
partite graphs, gear graphs, and star graphs.

Theorem 10 Let T be a tree with order n. Then 0¶
NIS(T )¶ n−3.

Proof : Let X be a cut strategy of T . If |X |= r then we
have i(T/X )¾ r. Thus i(T/X )−|X |¾ r − r. Hence

NIS(T )¾ 0. (1)

For any vertex, v ∈ V (T ), |N[v]| ¾ 2, so i(T/X ) ¶
n−2. If T is connected, then for any NIS-set X , r ¾ 1
and i(T/X )¶ n−2. Hence i(T/X )−|X |¶ n−2− r.
The function f (r) = n−2−r is a decreasing function
and it takes its maximum value at r = 1. Hence we
get

NIS(T )¶ n−3. (2)

By (1) and (2), the proof is completed. 2

Theorem 11 Let Pn be a path of order n¾ 3. Then

NIS(Pn) =

¨

1, n≡ 1 (mod 4);
0, n≡ 0, 2,3 (mod 4).

Proof : Let X be a cut strategy of Pn and |X |= r. We
distinguish two cases.

Case 1. If n≡ 1 (mod 4), then i(Pn/X )¶ r +1.
Thus i(Pn/X )− |X | ¶ r + 1− r = 1. It can be easily
seen that there is a cut strategy X ∗ of Pn such that
|X ∗|= 1

4 (n−1), i(Pn/X
∗) = 1

4 (n−1)+1 and so

NIS(Pn) = 1 (3)

where n≡ 1 (mod 4).
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Case 2. If n≡ 0, 2,3 (mod 4), then i(Pn/X )¶ r.
Thus i(Pn/X )−|X |¶ r− r = 0. It can be easily seen
that there is a cut strategy X ∗ of Pn such that |X ∗|=
d 1

4 ne, i(Pn/X
∗) = d 1

4 ne and so

NIS(Pn) = 0 (4)

where n≡ 0,2, 3 (mod 4). Hence by (3) and (4),

NIS(Pn) =

¨

1, n≡ 1 (mod 4);
0, n≡ 0,2, 3 (mod 4).

2

Theorem 12 Let Tk,d be a complete k-ary tree of
depth d where k ¾ 2. Then

NIS(Tk,d)

=































kd+2+1
k2+1

, d ≡ 0 (mod 4),

kd+2−2k2+ k−2
k2+1

, d ≡ 1 (mod 4),

kd+2−1
k2+1

, d ≡ 2 (mod 4),

kd+4− kd+2− k3+ k
k4−1

, d ≡ 3 (mod 4).

Proof : Let X be a cut strategy of Tk,d and let |X | =
r be the number of removed vertices. The proof
is similar to that of neighbour rupture degree of
Tk,d

11. There are four cases according to the depth
of Tk,d .

Case 1: d ≡ 0 (mod 4). (i) If 0 ¶ r ¶ k(kd −
1)/(k4−1), then i(Tk,d/X )¶ (k2+k−1)r+1. Thus
NIS(Tk,d)¶maxr{(k2+k−1)r+1−r}=maxr{(k2+
k− 2)r + 1}. The function f (r) = (k2 + k− 2)r + 1
is an increasing function and it takes its maximum
value at r = k(kd −1)/(k4−1). Then

NIS(Tk,d)

¶
kd+3+ kd+2−2kd+1+ k4− k3− k2+2k−1

k4−1
.

(5)

(ii) If k(kd−1)/(k4−1)+1¶ r ¶ k2(kd−1)/(k4−1),
then i(Tk,d/X )¶ k2(kd −1)/(k4−1)+ r(k2−1)+1.
Then NIS(Tk,d)¶maxr{k2(kd −1)/(k4−1)+ r(k2−
1)+1−r}=maxr{k2(kd−1)/(k4−1)+r(k2−2)+1}.
The function f (r) = k2(kd−1)/(k4−1)+r(k2−2)+1
is an increasing function and it takes its maximum
value at r = k2(kd −1)/(k4−1). Hence

NIS(Tk,d)¶
kd+2+1
k2+1

. (6)

(iii) If k2(kd − 1)/(k4 − 1) + 1 ¶ r, then we have
i(Tk,d/X )¶ (kd+4−1)/(k4−1). Thus

NIS(Tk,d)¶max
r

§

kd+4−1
k4−1

− r
ª

.

The function f (r) = (kd+4 − 1)/(k4 − 1) − r is a
decreasing function and it takes its maximum value
at r = k2(kd −1)/(k4−1)+1. Then

NIS(Tk,d)¶
kd+4− kd+2− k4+ k2

k4−1
. (7)

It can be easily seen that there is a cut strategy X ∗

of Tk,d such that |X ∗|= k2(kd−1)/(k4−1) where X ∗

contains all the vertices on the 2nd, 6th, 10th, 12th,
etc, up to the (d − 2)th levels. Then i(Tk,d/X

∗) =
(kd+4−1)/(k4−1). Thus

NIS(Tk,d) =
kd+2+1
k2+1

. (8)

The proof is completed by (5), (6), (7) and (8).
Case 2: d ≡ 1 (mod 4). (i) If 1 ¶ r ¶ k(kd −

k)/(k4−1), then i(Tk,d/X )¶ (k2+k−1)r+1. Thus
NIS(Tk,d)¶maxr{(k2+k−1)r+1−r}=maxr{(k2+
k− 2)r + 1}. The function f (r) = (k2 + k− 2)r + 1
is an increasing function and it takes its maximum
value at r = k(kd − k)/(k4−1). Then

NIS(Tk,d)

¶
kd+3+ kd+2−2kd+1− k3+2k2−1

k4−1
. (9)

(ii) If k(kd − k)/(k4 − 1) < r ¶ k2(kd − k)/(k4 − 1),
then i(Tk,d/X )¶ k2(kd−k)/(k4−1)+(k2−1)(r−1).
Then

NIS(Tk,d)¶max
r

§

k2(kd − k)
k4−1

+(k2−1)(r −1)− r
ª

=max
r

§

k2(kd − k)
k4−1

+(k2−2)r − k2+1
ª

.

The function f (r) = k2(kd − k)/(k4 − 1) + (k2 −
2)r−k2+1 is an increasing function and it takes its
maximum value at r = k2(kd − k)/(k4−1). Hence

NIS(Tk,d)¶
kd+2− k4− k3+1

k2+1
. (10)

(iii) If r = k2(kd − k)/(k4−1)+1, then i(Tk,d/X )¶
(kd+4− k4− k+1)/(k4−1). Hence

NIS(Tk,d)¶
kd+2−2k2+ k−2

k2+1
. (11)
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(iv) If k2(kd − k)/(k4−1)+1< r, then i(Tk,d/X )¶
(kd+4− k4− k+1)/(k4−1). Then

NIS(Tk,d)¶max
r

§

kd+4− k4− k+1
k4−1

− r
ª

.

The function f (r) = (kd+4− k4− k+1)/(k4−1)− r
is a decreasing function and it takes its maximum
value at r = k2(kd −1)/(k4−1)+2. Hence

NIS(Tk,d)¶
kd+2−3k2+ k−3

k2+1
. (12)

It is obvious that there is a cut strategy X ∗ of Tk,d

such that |X ∗| = k2(kd − k)/(k4 − 1) + 1 where X ∗

contains all the vertices on the 3rd, 7th, 11th, etc.,
up to the (d −2)th levels and one of the vertices on
the first level. Then i(Tk,d/X

∗) = (kd+4 − k4 − k +
1)/(k4−1). Hence we get

NIS(Tk,d) =
kd+2−2k2+ k−2

k2+1
. (13)

The proof is completed by (9), (10), (11), (12) and
(13).

Case 3: d ≡ 2 (mod 4). (i) If 1 ¶ r ¶ k(kd −
k2)/(k4−1), then i(Tk,d/X )¶ (k2+k−1)r+1. Thus
NIS(Tk,d)¶maxr{(k2+k−1)r+1−r}=maxr{(k2+
k− 2)r + 1}. The function f (r) = (k2 + k− 2)r + 1
is an increasing function and it takes its maximum
value at r = k(kd − k2)/(k4−1). Then

NIS(Tk,d)

¶
kd+3+ kd+2−2kd+1− k5+2k3−1

k4−1
. (14)

(ii) If r = k(kd − k2)/(k4 − 1) + 1 then i(Tk,d/X ) ¶
(k2+ k−1)k(kd − k2)/(k4−1)+ k2. Then

NIS(Tk,d)¶ (k2+ k−1)
k(kd − k2)

k4−1
+ k2− r

and

NIS(Tk,d)

¶
kd(k3+ k2−2k)+ k6−k5−2k4+2k3−k2+1

k4−1
.

(15)

(iii) If k(kd−k2)/(k4−1)+1< r ¶ (kd+2−1)/(k4−1),
then i(Tk,d/X )¶ (kd+2−1)/(k4−1)+(k2−1)r. Thus

NIS(Tk,d)¶max
r

§

kd+2−1
k4−1

+(k2−1)r − r
ª

.

The function f (r) = (kd+2 − 1)/(k4 − 1) + (k2 − 2)r
is an increasing function and it takes its maximum
value at r = (kd+2−1)/(k4−1). Then

NIS(Tk,d)¶
kd+2−1
k2+1

. (16)

(iv) If (kd+2 − 1)/(k4 − 1) < r, then i(Tk,d/X ) ¶
k2(kd+2−1)/(k4−1). Then

NIS(Tk,d)¶max
r

§

k2(kd+2−1)
k4−1

− r
ª

.

The function f (r) = k2(kd+2 − 1)/(k4 − 1)− r is a
decreasing function and it takes its maximum value
at r = (kd+2−1)/(k4−1)+1. Hence

NIS(Tk,d)¶
kd+2− k2−2

k2+1
. (17)

It is obvious that there is a cut strategy X ∗ of
Tk,d such that |X ∗| = (kd+2 − 1)/(k4 − 1) where X ∗

contains all the vertices on the 0th, 4th, 8th, etc., up
to the (d−2)th levels. Then i(Tk,d/X

∗) = k2(kd+2−
1)/(k4−1). Hence we get

NIS(Tk,d) =
kd+2−1
k2+1

. (18)

The proof is completed by (14), (15), (16), (17),
and (18).

Case 4: d ≡ 3 (mod 4). The proof is similar to
those of Cases 1–3. 2

Theorem 13 Let Cm,n be a comet with m, n ¾ 2.
Then

NIS(Cm,n) =

¨

n, m≡ 0 (mod 4),
n−1, m≡ 1,2, 3 (mod 4).

Proof : Suppose V (Pm) = {v1, v2, . . . , vm} and
deg(v1) = n+1. Let X be a cut strategy of Cm,n and
|X |= r. We distinguish two cases.

Case 1. If m ≡ 0 (mod 4) and X =
{v2, v6, . . . , vm−2} then i(Cm,n/X ) = n + r. So
we have i(Cm,n/X )− |X |= n+ r − r. Thus

NIS(Cm,n) = n. (19)

If m ≡ 0 (mod 4) and X 6= {v2, v6, . . . , vm−2}, then
i(Cm,n/X )¶ n+ r and therefore

i(Cm,n/X )− |X |¶ n+ r − r

and
NIS(Cm,n)¶ n. (20)
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Hence by (19) and (20), NIS(Cm,n) = n where m≡ 0
(mod 4).

Case 2. If m≡ 1,2, 3 (mod 4) and X = {v2} then
Cm,n/{v2} is a graph composed of a path of order
m−3 and n isolated vertices. So we have

i(Cm,n/X )− |X |= n+ r −1− r

and
NIS(Cm,n) = n−1. (21)

If m ≡ 1,2, 3 (mod 4) and X 6= {v2}, then
i(Cm,n/X ) ¶ n + r − 1. By the definition of
neighbour isolated scattering number we have

i(Cm,n/X )− |X |¶ n+ r −1− r.

Thus
NIS(Cm,n)¶ n−1. (22)

Hence by (21) and (22), NIS(Cm,n) = n− 1 where
m≡ 1,2, 3 (mod 4). 2

Theorem 14 Let Cn be a cycle of order n¾ 4. Then

NIS(Cn) =

¨

0, n≡ 0 (mod 4),
−1, n≡ 1,2, 3 (mod 4).

Proof : Let X be a cut strategy of Cn and |X | = r
be the number of removed vertices of Cn. We have
two cases to consider: n≡ 0 (mod 4) and n≡ 1, 2,3
(mod 4).

Case 1. If n ≡ 0 (mod 4), then i(Cn/X ) ¶ r.
Hence i(Cn/X )− |X | ¶ r − r = 0. It can be easily
seen that there is a cut strategy X ∗ of Cn such that
|X ∗|= 1

4 n and i(Cn/X
∗) = 1

4 n. Thus we get

NIS(Cn) = 0 (23)

where n≡ 0 (mod 4).
Case 2. If n ≡ 1,2, 3 (mod 4), then i(Cn/X ) ¶

r−1. Thus i(Cn/X )−|X |¶ r−1− r = −1. It can be
easily seen that there is a cut strategy X ∗ of Cn such
that |X |= d 1

4 ne and i(Cn/X
∗) = d 1

4 ne−1. Therefore

NIS(Cn) = −1 (24)

where n ≡ 1,2, 3 (mod 4). The proof is completed
from (23) and (24). 2

Theorem 15 Let Kn1,n2,...,nk
be a complete k-partite

graph. Then

NIS(Kn1,n2,...,nk
) =max{n1, n2, . . . , nk}−2.

Proof : We assume V (Kn1,n2,...,nk
) = V1 ∪ V2 ∪ . . .∪ Vk

is a partition where
�

�Vj

�

� = n j for j = 1, . . . , k. Let
X be a cut strategy of Kn1,n2,...,nk

and let X contain
the elements which belongs to only one of the sets
Vi . Otherwise i(Kn1,n2,...,nk

/X ) = 0 and this contra-
dicts the definition. If X ⊆ Vi and |X | = r, then
i(Kn1,n2,...,nk

/X ) = ni − r. By the definition of the
neighbour isolated scattering number, we get

NIS(Kn1,n2,...,nk
) =max

r
{ni −2r}.

The function f (r) = ni−2r is a decreasing function
and since 1¶ r ¶ ni we have

NIS(Kn1,n2,...,nk
) = ni −2.

The proof is completed by taking ni =
max{n1, n2, . . . , nk}. 2

The following results can be easily obtained
from Theorem 15.

Corollary 1 Let Km,n be a complete bipartite graph.
Then

NIS(Km,n) =max{m, n}−2.

Corollary 2 Let K1,n−1 be a star of order n¾ 4. Then

NIS(K1,n−1) = n−3.

The gear graph12 is a wheel graph with a vertex
added between each pair of adjacent graph vertices
of the outer cycle. The gear graph Gen has 2n+ 1
vertices and 3n edges.

Theorem 16 Let Gen be a gear graph. Then

NIS(Gen) = n−1.

Proof : Let X be a cut strategy of Gen, |X | = r, and
deg(u) = n. If r ¾ 1 then we have i(Gen/X ) ¶
n. Hence i(Gen/X ) − |X | ¶ n − r. The function
f (r) = n− r is a decreasing function and it takes its
maximum value at r = 1 and we have NIS(Gen) ¶
n−1. It is obvious that there is a cut strategy X ∗ of
Gen such that X ∗ = {u}. Then we have i(Gen/X ) =
n. Hence NIS(Gen) = n−1. 2

GRAPH OPERATIONS AND NEIGHBOUR
ISOLATED SCATTERING NUMBER

In this section we consider results on the neigh-
bour isolated scattering number of the join, union,
corona, and Cartesian product of two graphs.
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Join

The join13 G = G1+G2 has graph set V (G) = V (G1)∪
V (G2) and edge set E(G) = E(G1)∪E(G2)∪{uv | u ∈
V (G1) and v ∈ V (G2)}.

Theorem 17 Let G and H be two connected graphs
of order m and n, respectively. Then

NIS(G+H) =max{NIS(G),NIS(H)}.

Proof : Let X be a cut strategy of G +H and i((G +
H)/X ) ¾ 1. Since every vertex of G is adjacent to
all vertices of H and conversely, X ⊆ V (G) and X ∩
V (H) = ∅ or X ⊆ V (H) and X ∩ V (G) = ∅. There
are two cases according to the elements of X .

Case 1. Let X = X1 ⊆ V (G) be the NIS-set of
G such that NIS(G) = i(G/X1)− |X1|. Since every
vertex of G is adjacent to all vertices of H, we have

i((G+H)/X1)− |X1|= i(G/X1)− |X1|
= NIS(G). (25)

Case 2. Let X = X2 ⊆ V (H) be the NIS-set of
H such that NIS(H) = i(H/X2)− |X2|. Since every
vertex of H is adjacent to all vertices of G, we have

i((G+H)/X2)− |X2|= i(H/X2)− |X2|= NIS(H).
(26)

Hence by (25) and (26),

NIS(G+H) =max{NIS(G),NIS(H)}.

2
The following result can be easily obtained from

Theorem 17.

Corollary 3 Let W1,n be a wheel, where n¾ 4. Then

NIS(W1,n) =

¨

0, n≡ 0 (mod 4),
−1, n≡ 1,2, 3 (mod 4).

Union

The union13 of G1 and G2 with disjoint vertex sets
V (G1) and V (G2) and edge sets E(G1) and E(G2)
is the graph G = G1 ∪ G2 with vertex set V (G) =
V (G1)∪ (G2) and edge set E(G) = E(G1)∪ E(G2).

Theorem 18 Let G1, G2, . . . , Gn be connected graphs.
Then

NIS(G1 ∪G2 ∪ . . .∪Gn)
¾ NIS(G1)+NIS(G2)+ . . .+NIS(Gn).

Proof : Let X1, X2, . . . , Xn be NIS-sets of
G1, G2, . . . , Gn, respectively, and let X =
X1∪X2∪. . .∪Xn be a cut strategy of G1∪G2∪. . .∪Gn.
By the definition of neighbour isolated scattering
number we have

NIS(G1 ∪G2 ∪ . . .∪Gn)
¾ i((G1 ∪G2 ∪ . . .∪Gn)/(X1 ∪ X2 ∪ . . .∪ Xn))
− |X1 ∪ X2 ∪ . . .∪ Xn|
= i(G1/X1)+ i(G2/X2)+ . . .+ i(Gn/Xn)
− |X1| − |X2| . . .− |Xn|
= i(G1/X1)− |X1|+ i(G2/X2)
− |X2|+ . . .+ i(Gn/Xn)− |Xn|
= NIS(G1)+NIS(G2)+ . . .+NIS(Gn).

Thus NIS(G1∪G2∪ . . .∪Gn)¾ NIS(G1)+NIS(G2)+
. . .+NIS(Gn). 2

Theorem 19 Let G and H be two disjoint connected
graphs. Then

NIS(G ∪H) =max{NIS(G)+NIS(H),
NIS(G),NIS(H)}.

Proof : The proof is similar to that of Theo-
rem 18. 2

Corona

The corona13 G1 ◦ G2 is defined as the graph G
obtained by taking one copy of G1 of order n and
n copies of G2, and then joining the ith vertex of G1
to every vertex in the ith copy of G2.

Theorem 20 Let G and H be two connected graphs
of order m and n, respectively. Then

NIS(G ◦H) =

¨

m NIS(H), NIS(H)¾ 0,

NIS(H), NIS(H)< 0.

Proof : Let X be a cut strategy of G◦H and X1 be the
NIS-set of H such that NIS(H) = i(H/X1)− |X1|.

If NIS(H) ¾ 0, then |X | = m |X1| and i((G ◦
H)/X ) = m(i(H/X1)). Thus i((G ◦ H)/X ) −
|X | = m(i(H/X1)) − m |X1| = m(i(H/X1) − |X1|) =
mNIS(H).

If NIS(H) < 0, then |X | = |X1| and i((G ◦
H)/X ) = i(H/X1). Thus i((G ◦ H)/X ) − |X | =
i(H/X1)− |X1|= NIS(H). 2

The following results can be easily obtained
from Theorem 20.
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Corollary 4 Let G be a connected graph of order m
and Pn be a path of order n¾ 3. Then

NIS(G ◦ Pn) =

¨

m, n≡ 1 (mod 4),
0, n≡ 0, 2,3 (mod 4).

Corollary 5 Let G be a connected graph of order m
and Cn be a cycle of order n¾ 4. Then

NIS(G ◦ Cn) =

¨

0, n≡ 0 (mod 4),
−1, n≡ 1,2, 3 (mod 4).

Cartesian product

The Cartesian product13 G1 × G2 of graphs G1 and
G2 has V (G1)× V (G2) as its vertex set and (u1, u2)
is adjacent to (v1, v2) if either u1 = v1 and u2 is
adjacent to v2 or u2 = v2 and u1 is adjacent to v1.

Theorem 21 Let G and H be two disjoint connected
graphs. Then

NIS(G×H)¾max{NIS(G),NIS(H)}.

Proof : The proof is similar to that of Theorem 17
and 18. 2

Corollary 6 Let G be a connected graph of order m
and Pn be a path of order n¾ 3. Then

NIS(K2× Pn) =







1
3 n, n≡ 0 (mod 3),
1
3 (n−4), n≡ 1 (mod 3),
1
3 (n−2), n≡ 2 (mod 3).

Proof : Let X be a cut strategy of K2×Pn and |X |= r.
We distinguish three cases.

Case 1: n ≡ 0 (mod 3). If 1 ¶ r ¶ 1
3 n, then

i((K2× Pn)/X )¶ 2r. Thus

i((K2× Pn)/X )− |X |¶ 2r − r = r.

The function f (r) = r is an increasing function and
it takes its maximum value at r = 1

3 n.

NIS(K2× Pn)¶
n
3

. (27)

If 1
3 n< r ¶ 2n, then i((K2×Pn)/X )¶ n−r. Thus

i((K2× Pn)/X )− |X |¶ n− r − r = n−2r.

The function f (r) = n− 2r is a decreasing function
and it takes its maximum value at r = 1

3 n+1.

NIS(K2× Pn)¶
n
3
−2. (28)

It can be easily seen that there is a cut strategy X ∗ of
(K2×Pn) such that |X ∗|= 1

3 n, i((K2×Pn)/X ∗) =
1
3 2n

and so
NIS(K2× Pn) =

n
3

. (29)

By (27), (28), and (29) we have

NIS(K2× Pn) =
n
3

, (30)

where n≡ 0 (mod 3).
Case 2: n ≡ 1 (mod 3). If 1 ¶ r ¶ 1

3 (n− 1) + 1
then i((K2× Pn)/X )¶ 2r −2. Thus

i((K2× Pn)/X )− |X |¶ 2r −2− r = r −2.

The function f (r) = r − 2 is an increasing function
and it takes its maximum value at r = 1

3 (n−1)+1.

NIS(K2× Pn)¶
n−4

3
. (31)

If 1
3 (n−1)+1< r ¶ 2n, then i((K2×Pn)/X )¶ n− r.

Thus

i((K2× Pn)/X )− |X |¶ n− r +1− r = n−2r +1.

The function f (r) = n−2r+1 is a decreasing func-
tion and it takes its maximum value at r = 1

3 (n+5).

NIS(K2× Pn)¶
n−7

3
. (32)

It is obvious that there exists X ∗ of (K2 × Pn) such
that |X ∗|= 1

3 (n−1)+1, i((K2×Pn)/X ∗) =
1
3 (2n−2)

and so
NIS(K2× Pn) =

n−4
3

. (33)

By (31), (32), and (33) we have

NIS(K2× Pn) =
n−4

3
, (34)

where n≡ 1 (mod 3).
Case 3: n≡ 2 (mod 3). If 1¶ r ¶ 1

3 (n+1) then
i((K2× Pn)/X )¶ 2r −1. Thus

i((K2× Pn)/X )− |X |¶ 2r −1− r = r −1.

The function f (r) = r is an increasing function and
it takes its maximum value at r = 1

3 (n+1).

NIS(K2× Pn)¶
n−2

3
. (35)

If 1
3 (n+1)< r ¶ 2n then i((K2× Pn)/X )¶ n− r+1.

Thus

i((K2× Pn)/X )− |X |¶ n− r +1− r = n−2r +1.
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The function f (r) = n−2r+1 is a decreasing func-
tion and it takes its maximum value at r = 1

3 (n+4).

NIS(K2× Pn)¶
n−5

3
. (36)

It can be easily seen that there is a cut strategy X ∗

of (K2 × Pn) such that |X ∗| = 1
3 n, i((K2 × Pn)/X ∗) =

1
3 (2n−1) and so

NIS(K2× Pn) =
n−2

3
. (37)

By (35), (36), and (37) we have

NIS(K2× Pn) =
n−2

3
, (38)

where n ≡ 0 (mod 3). By (30), (34), and (38) we
have

NIS(K2× Pn) =







1
3 n, n≡ 0 (mod 3),
1
3 (n−4), n≡ 1 (mod 3),
1
3 (n−2), n≡ 2 (mod 3).

2

Corollary 7 Let Pn be a path of order n¾ 3. Then

NIS(P3× Pn) =

¨

1
2 n, n≡ 0 (mod 2),
3+ 1

2 (n−3), n≡ 1 (mod 2).

CONCLUSIONS

We investigated a new measure for reliability of a
graph called the neighbour isolated scattering num-
ber. The vertex neighbour connectivity is sensitive
to the number of edges present in a graph, and
the vertex neighbour connectivity or vertex neigh-
bour integrity or vertex neighbour scattering num-
ber cannot distinguish the vulnerability of different
networks very well in some situations. If we want
to choose the more stable graph among the graphs
which have the same order and the same size, one
way is to choose the graph whose neighbour isolated
scattering number is less than those of the others.

Acknowledgements: The author is thankful to anony-
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