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ABSTRACT: By combining the spectral gradient and Polak-Ribière-Polyak (PRP) methods, a new spectral PRP conjugate
gradient method is proposed to solve large-scaled unconstrained optimization problems. The method satisfies the
famous conjugacy condition: dT

k yk−1 = 0, independent of any line search. The direction at each iteration generated
by the proposed method is downward for the general objective function without any line search. Under the standard
Wolfe line search, we prove that the proposed method is globally convergent. Finally, the proposed method is compared
with the PRP method and the scaled PRP method using a classical set of problems.
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INTRODUCTION

Consider the following unconstrained optimization
problem:

find arg min
x∈Rn

f (x), (1)

where f : Rn → R is continuously differentiable.
The conjugate gradient method is one of the most
efficient iterative methods to solve problem (1) es-
pecially when n is large. When solving this problem,
the iterate is given by

xk+1 = xk +αkdk, (2)

where the step-size αk > 0 is obtained by some line
search, and dk is the search direction computed from

dk =

¨

−gk, k = 1,

−gk +βkdk−1, k ¾ 2,
(3)

where gk =∇ f (xk) and βk is known as the gradient
parameter. Plenty of conjugate gradient methods
are known and an excellent survey of these meth-
ods, with special attention on their global conver-
gence properties, is given by Hager and Zhang1.
Different conjugate gradient methods correspond to
different choices of βk. In this paper, we are inter-
ested in the Polak-Ribière-Polyak (PRP) method2, 3,
in which the parameter βk is computed from

βPRP
k =

gT
k yk−1

‖gk−1‖
2 , (4)

where yk−1 = gk − gk−1, and ‖·‖ stands for the
Euclidean norm. When the step-size αk is very
small, yk−1 in the numerator of βPRP

k tends to zero.
Then βPRP

k becomes small and the direction dk is
very close to the steepest descent direction −gk.
Thus the PRP method has a built-in restart feature
that directly addresses the jamming problem. This
feature means that the PRP method has been one
of the most efficient conjugate gradient methods in
practical computation for many years. However,
Dai4 constructed an example to indicate that the
PRP method may generate an upward direction
resulting in the iterative scheme failing even if the
objective function is uniformly convex under the
strong Wolfe line search. So far, the convergence
of the PRP method has not been completely proved
under the Wolfe-type line search.

Another popular method to solve problem (1)
is the spectral gradient method proposed originally
by Barzilai and Borwein5. The direction dk is gen-
erated by

dk = −θk gk +βksk−1, (5)

where sk−1 = αk−1dk−1 and θk is the spectral gra-
dient parameter. In Ref. 6, Raydan introduced
the spectral gradient method for large-scale un-
constrained optimization problems. An attractive
property of this method is that it only needs gra-
dient directions at each line search whereas a non-
monotone strategy guarantees the global conver-
gence. Surprisingly, the spectral gradient method
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outperforms the sophisticated conjugate gradient
method in many known problems. Birgin and
Martínez7 proposed a spectral gradient method in
which dk is computed from (5). One parameter θk
is generated by

βk =
θk gT

k yk−1

αk−1θk−1 ‖gk−1‖
2 . (6)

If θk = θk−1 = 1, this is the classical parameter
(4). Motivated by the success of spectral gradient
method, they also compute θk using

θk = sT
k−1sk−1/s

T
k−1 yk−1. (7)

Under the standard Wolfe line search, they show
that the scaled PRP method (5)–(7) is very effective.
However, the scaled PRP method cannot guarantee
the descent direction at each iteration, which may
lead to failure of the iterative scheme.

Because of the advantages of the PRP method
and the scaled PRP method, we consider a new
spectral PRP (SPRP) conjugate gradient method.
The proposed SPRP method not only processes the
sufficient descent property and global convergence
property, but also satisfies the famous conjugacy
condition.

The rest of this paper is organized as follows.
First, we introduce the SPRP method and prove
its descent property without any line search. Sec-
ond, the global convergence of the SPRP method
is established under the standard Wolfe line search.
Preliminary numerical results are then presented.

THE SPRP METHOD AND ITS DESCENT
PROPERTY

In this paper, we solve problem (1) using a new
iterative method, in which the iterative point is
generated by (2) and the direction dk is obtained
by

dk =

¨

−gk, k = 1,

−θk gk +βkdk−1, k ¾ 2,
(8)

where θk is the spectral gradient parameter, and
βk = βPRP

k . Obviously, if θk = 1, it reduces to the PRP
method. In our method, the parameter θk is selected
in such a way that at each iteration the conjugacy
condition is satisfied independent of the line search.
Multiplying (8) by yT

k−1, we have

dT
k yk−1 = −θk gT

k yk−1+βkdT
k−1 yk−1.

Hence, from the conjugacy condition: dT
k yk−1 = 0,

we obtain

θk =
dT

k−1 yk−1

‖gk−1‖
2 . (9)

So the method constructed by (8) and (9) always
satisfies the conjugacy condition, and has the struc-
ture feature of the spectral gradient method.

In the following, we give the specific iterative
algorithm, and refer to it as the SPRP method.

Algorithm 1
Step 1: Data: x1 ∈ Rn, ε ¾ 0. Set d1 = −g1, if
‖g1‖ ¶ ε, then stop.

Step 2: Compute αk > 0 using the standard Wolfe
line search:

f (xk +αkdk)¶ f (xk)+δαk gT
k dk, (10)

g(xk +αkdk)
Tdk ¾ σgT

k dk, (11)

where 0< δ < σ < 1.
Step 3: Let xk+1 = xk + αkdk, gk+1 = g(xk+1). If
‖gk+1‖ ¶ ε, then stop.

Step 4: Compute βk+1 using (4); generate θk+1 us-
ing (9).

Step 5: If dT
k+1 gk+1 > −10−3 ‖dk+1‖ · ‖gk+1‖ is sat-

isfied, we set dk+1 = −θk+1 gk+1; otherwise, we
compute dk+1 by

dk+1 = −θk+1 gk+1+βk+1dk.

Step 6: Set k = k+1, go to step 2.

Lemma 1 Let the sequences {gk} and {dk} be ob-
tained by the SPRP method in which αk satisfies any
line search. Then we have

gT
k dk < −

�

ω
‖dk−1‖
‖gk−1‖

�

‖gk‖
2 (12)

where ω> 0.

Proof : Multiplying (8) by gT
k , we have

gT
k dk = −θk ‖gk‖

2+βk gT
k dk−1. (13)

From (4), (9), and (13), we obtain

gT
k dk = −

dT
k−1 yk−1 ‖gk‖

2

‖gk−1‖
2 +

gT
k yk−1 gT

k dk−1

‖gk−1‖
2

=
‖gk‖

2 gT
k−1dk−1− gT

k gk−1 · gT
k dk−1

‖gk−1‖
2 . (14)

Denote: ϕk−1 = ∠(gk−1, dk−1), ψk−1 = ∠(gk, gk−1),
φk−1 = ∠(gk, dk−1). Obviously, ϕk−1,ψk−1,φk−1 ∈
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(0,π) and ϕk−1 =ψk−1+φk−1. By (14), we obtain

gT
k dk =

‖gk‖
2 · ‖gk−1‖ · ‖dk−1‖ cosϕk−1

‖gk−1‖
2

−
‖gk‖

2 · ‖gk−1‖ · ‖dk−1‖ cosψk−1 cosφk−1

‖gk−1‖
2

=
‖gk‖

2 · ‖dk−1‖ cos(ψk−1+φk−1)
‖gk−1‖

−
‖gk‖

2 · ‖dk−1‖ cosψk−1 cosφk−1

‖gk−1‖

= −
‖gk‖

2 · ‖dk−1‖ sinψk−1 sinφk−1

‖gk−1‖
.

Since ψk−1,φk−1 ∈ (0,π), there exists a positive
constant ω> 0 such that

sinψk−1 sinφk−1 >ω, ∀k ∈ Z+,

which implies that (12) holds. 2

GLOBAL CONVERGENCE ANALYSIS

In order to establish the global convergence of the
SPRP method, we need the following assumptions
for the objective function. Assumption H:
(i) The level set Φ= {x | f (x)¶ f (x1)} is bounded,

where x1 is the starting point.
(ii) In a neighbourhood Ω of Φ, the objective func-

tion is continuously differentiable and its gradi-
ent is Lipschitz continuous, i.e., there exists a
constant L > 0 such that

‖g(x)− g(y)‖¶ L ‖x − y‖ , ∀x , y ∈Ω. (15)

These assumptions imply that there is a positive
constant γ such that

‖g(x)‖¶ γ, ∀x , y ∈ Ω. (16)

The Zoutendijk condition8 is very important for
proving the global convergence of the conjugate
gradient method. Now we prove that the SPRP
method also satisfies the Zoutendijk condition.

Lemma 2 Suppose Assumption H holds. Let the
sequences {gk} and {dk} be obtained by the SPRP
method. Then we have

∑

k¾1

(gT
k dk)

2/‖dk‖
2 < +∞. (17)

Proof : From (11) and Assumption H(ii), we have

− (1−σ)dT
k gk ¶ dT

k (gk+1− gk)

¶ ‖dk‖ · ‖gk+1− gk‖¶ Lαk ‖dk‖
2 .

Then we have

αk ¾
σ−1

L

dT
k gk

‖dk‖
2 .

By (10), we see that

f (xk)− f (xk +αkdk)¾
δ(1−σ)

L

(dT
k gk)2

‖dk‖
2 .

By Assumption H(i), and combining this inequality,
we have

∑

k¾1

(gT
k dk)

2/‖dk‖
2 < +∞.

2

Lemma 3 Suppose Assumption H holds. Let the
sequences {gk} and {dk} be obtained by the SPRP
method. If there exists a constant r > 0 such that

‖gk‖¾ r, ∀k ¾ 1. (18)

then we have

∑

k¾1

‖dk−1‖
2

‖dk‖
2 < +∞. (19)

Proof : From (17), we know that dk 6= 0, ∀k ∈ N+.
From (17), (12), (16), and (18), we have

ω2r4

γ2

∑

k¾1

‖dk−1‖
2

‖dk‖
2 =ω2

∑

k¾1

r4 ‖dk−1‖
2

γ2 ‖dk‖
2

¶ω2
∑

k¾1

‖gk‖
4 · ‖dk−1‖

2

‖dk‖
2 · ‖gk−1‖

2 ¶
∑

k¾1

(gT
k dk)

2/‖dk‖
2

which is finite. 2

Theorem 1 Suppose Assumption H holds. Let the
sequences {gk} and {dk} be obtained by the SPRP
method. Then we obtain

lim inf
k→+∞

‖gk‖= 0. (20)

Proof : Suppose that (20) does not hold. We have
(18). Obviously, (19) also holds. From (9), (15),
and (18), we get

‖θk‖=

�

�dT
k−1 yk−1

�

�

‖gk−1‖
2 ¶

‖dk−1‖ · L ‖sk−1‖
r2

. (21)

By (4), (15), (16), and (18), we also have

�

�βPRP
k

�

�=

�

�gT
k yk−1

�

�

‖gk−1‖
2 ¶

‖gk‖ · ‖yk−1‖
‖gk−1‖

2
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¶
γ · L
r2
· ‖sk−1‖= A‖sk−1‖ , (22)

where A= γL/r2. From (8), (15), (21), and (22),
we obtain

‖dk‖
2 = ‖−θk gk +βk · dk−1‖

2

¶ 2θ 2
k ‖gk‖

2+2βk
2 ‖dk−1‖

2

¶
2‖dk−1‖

2 · L2 ‖sk−1‖
2

r4
·γ2

+2A2 ‖sk−1‖
2 · ‖dk−1‖

2

¶
�

2L2D2γ2

r4
+2A2D2

�

‖dk−1‖
2

¶ ρ ‖dk−1‖
2 ,

where ρ = (2L2D2γ2/r4) + 2A2D2, and D is the
diameter of Ω. Then we have

‖dk−1‖
2

‖dk‖
2 ¾

1
ρ

, (23)

which means that ‖dk−1‖
2 /‖dk‖

2 is not bounded
and contradicts (19). Hence the assumption does
not hold and the claim (20) is proved. 2

NUMERICAL RESULTS

In this section, we compare the performance of the
SPRP method with that of the PRP method and the
scaled PRP method on a set of 640 unconstrained
optimization problems under the standard Wolfe
line search. From the CUTE library9 and Ref. 10,
we selected 64 large-scaled problems in extended or
generalized form. Each problem is tested 10 times
for a gradually increasing number of variables: n=
1000,2000, . . . 10000. All codes were written in
double precision FORTRAN and run on a PC with
2.0 GHz CPU and 512 MB memory under Windows
XP.

All methods implement the standard Wolfe line
search with σ = 0.5 and δ = 10−4, and the initial
step-size α is computed from

α=

¨

1, k = 1,

αk−1 ‖dk−1‖/‖dk‖ , k ¾ 2.

If ‖gk‖ ¶ 10−6 max{1, | f (xk)|} is satisfied, we ter-
minate the iteration; if this condition is not satisfied
after 30 000 iterations, we terminate the iteration.

Let f M1
i and f M2

i be the optimal value found
by the M1 and M2 methods for the ith problem,
respectively. We say that for the particular the ith
problem, the performance of M1 is better than the
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Fig. 1 SPRP method versus PRP method on CPU time.
In this and remaining figures, solid line: SPRP method;
dash-dot line: PRP method.
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Fig. 2 SPRP method versus PRP method on the number
of iterations.

performance of M2 if f M1
i < f M2

i +10−3, and the CPU
time, or the number of iterations of M1 was less than
the number of iterations, or the CPU time of M2,
respectively.

In order to overall evaluate these methods in
the CPU time, we also use the profiles of Dolan
and Moré11. That is, the performance profiles with
respect to CPU time mean that for each method we
plot the fraction of problems for which the method
is within a factor of the best time. The left side of
the figure gives the percentage of the test problems
out of 640 for which the method is the fastest; the
right side gives the percentage of the test problems
that are successfully solved by each of the methods.
The top curve is the method that solved the most
problems in a time that was within a factor of the
best time.

From the profiles of Dolan and Moré11, Figs. 1
and 2 show that the SPRP method is more efficient
than the PRP method in terms of CPU time and
the number of iterations. Fig. 3 shows that the
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Fig. 3 SPRP method versus the scaled PRP method on
CPU time.
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Fig. 4 SPRP method versus the scaled PRP method on the
number of iterations.

SPRP method is similar to the scaled PRP method
in terms of CPU time, and Fig. 4 indicates that the
SPRP method is more efficient than the scaled PRP
method in terms of the number of iterations.

CONCLUSIONS

In this paper we propose a new spectral PRP con-
jugate gradient method in which the direction dk is
computed from dk = −θk gk + βPRP

k dk−1. Applying
the conjugacy condition, we obtain the spectral
parameter θk as θk = dT

k−1 yk−1/‖gk−1‖
2. The new

method overcomes the drawbacks of PRP and scaled
PRP methods, and has stable descent and conver-
gence properties. What is more, numerical results
also show that the new method outperforms PRP
method and the scaled PRP method. In view of the
SPRP method’s advantages, by applying the same
technique to the LS method12, we also consider
a spectral LS conjugate gradient method in which
the spectral parameter θk is computed from θk =
dT

k−1 yk−1/d
T
k−1 gk−1.
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