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ABSTRACT: Given an integer λ 6= 2, we establish the general solution of an alternative functional equation of Jensen
type on certain groups. First, we give a criterion for the existence of the general solution for the functional equation
f (x y−1)−2 f (x)+ f (x y) = 0 or f (x y−1)−λ f (x)+ f (x y) = 0, where f is a mapping from a group (G, ·) to a uniquely
divisible abelian group (H,+). Then we show that, for λ /∈ {0,−1,−2}, the above alternative functional equation is
equivalent to the classical Jensen’s functional equation. We also find the general solution in the case when G is a cyclic
group and λ 6= 2 is an integer.
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INTRODUCTION

The alternative functional equation has been
widely investigated. For instance, Kannappan and
Kuczma1 studied the solutions of the alternative
Cauchy functional equation

( f (x + y)− a f (x)− b f (y))
( f (x + y)− f (x)− f (y)) = 0 (1)

on an abelian group. Ger2 extended the results
in Ref. 1 with the same domain to the alternative
functional equation

( f (x + y)− a f (x)− b f (y))
( f (x + y)− c f (x)− d f (y)) = 0.

Kuczma3 proved that the alternative Cauchy func-
tional equation (1) on a semigroup is equivalent
to the classical Cauchy functional equation in the
case when a = b = −1. Forti4 then successfully
established the general solution of (1) in a more
general setting, finding the general solution to the
alternative functional equation

(c f (x + y)− a f (x)− b f (y)− d)
( f (x + y)− f (x)− f (y)) = 0

on an abelian group by extending the work of Kan-
nappan and Kuczma1.

Motivated by the work on the alternative
Cauchy functional equation and many extensive
studies on Jensen’s functional equation on different
kinds of groups (see, e.g., Refs. 5–9) Nakmahacha-
lasint10 has investigated the alternative Jensen’s
functional equation of the form

f (x)±2 f (x y)+ f (x y2) = 0 (2)

on a semigroup. His work is a significant general-
ization of the work in Refs. 11, 12 on the classical
Jensen’s functional equation on a group. Note that
one of the results in Ref. 10 is that if the domain of
the alternative Jensen’s functional equation (2) is a
2-divisible group, then (2) is equivalent to the clas-
sical Jensen’s functional equation in the sense that
the solution f satisfies Jensen’s functional equation

f (x)−2 f (x y)+ f (x y2) = 0,

for all x , y in the domain.
Inspired by the work of Nakmahachalasint10

and Forti4, we will investigate the alternative
Jensen’s functional equation in an even more gen-
eral setting. Namely, given an integer λ 6= 2, we find
a criterion of the existence of the general solution of
the alternative Jensen’s functional equation

f (x y−1)−2 f (x)+ f (x y) = 0 or

f (x y−1)−λ f (x)+ f (x y) = 0, (3)
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where f is a mapping from a group (G, ·) to a
uniquely divisible abelian group (H,+). Note that
when λ = −2, we recover the results in Ref. 10 in
the case when the domain is a group. Furthermore,
if λ /∈ {0,−1,−2}, then we show that (3) is equiva-
lent to the classical Jensen’s functional equation

f (x y−1)−2 f (x)+ f (x y) = 0. (4)

We also give the general solution in the case when
the domain is a cyclic group.

NOTATION AND DEFINITIONS

Throughout the paper, we let (G, ·) be a group and
let (H,+) be a uniquely divisible abelian group.
Recall that (H,+) is uniquely divisible provided that
(H,+) has the following properties.
(i) For all a ∈ H and n ∈ Z+, there exists b ∈ H such

that nb = a.
(ii) For all a, b ∈ H and n ∈ Z+, if na = nb, then

a = b.
We introduce the following notation for sequences
(ak)k∈Z in H. We say that (ak)k∈Z = (α,β) when
there exists k0 ∈ Z with ai = α for all i < k0 and
aj = β for all i ¾ k0, i.e.,

(. . . ,α,α, β ,β , . . .) = (α,β).

We say that (ak)k∈Z = (α,β ,γ) when there exists
k0 ∈ Z with ai = α for all i < k0, ak0

= β , and
ai = γ for all i > k0, i.e.,

(. . . ,α,α, β , γ,γ, . . .) = (α,β ,γ).

Let p be a positive integer. We say that (ak)k∈Z =
(α0, . . . ,αp−1) when there exists k0 ∈ Z such that
ai = αk0+i (mod p) for all i ∈ Z. In other words,
(α0, . . . ,αp−1) is a periodic sequence of a period p,
i.e.,

(. . . , α0, . . . ,αp−1, α0, . . . ,αp−1, . . .)

= (α0, . . . ,αp−1).

Given an integer λ and a function f : G → H,
for every pair of x , y ∈ G, we define

F (λ)y (x) := f (x y−1)−λ f (x)+ f (x y).

For λ 6= 2, we write

P f (λ)y (x) :=
�

F (2)y (x) = 0 or F (λ)y (x) = 0
�

.

LetA (λ)
(G,H) be the set of all solutions of (3), i.e.,

A (λ)
(G,H) := { f : G→ H | P f (λ)y (x) for all x , y ∈ G},

whereas the set of solutions of Jensen’s functional
equation will be denoted by

J(G,H) := { f : G→ H | F (2)y (x) = 0 for all x , y ∈ G}.

Remark 1 Let f ∈ A (λ)
(G,H). Given x ∈ G, it should

be noted that if f (x) = 0, then both alternatives
in P f (λ)y (x) are equivalent, and we can infer that

F (2)y (x) = 0 and F (λ)y (x) = 0 for all y ∈ G. However,
if f (x) 6= 0, then for each y ∈ G, only one alternative
in P f (λ)y (x) will hold.

The above remark is an important fact that will
be used extensively later on and should be kept in
mind when reading the proofs below.

FUNDAMENTAL LEMMAS

We will now prove some fundamental lemmas
concerning the relation between P f (λ)y (x y−1),
P f (λ)y (x), and P f (λ)y (x y).

Lemma 1 Let f ∈A (λ)
(G,H) and let x , y ∈ G.

(i) If F (2)y (x y−1) = 0 and F (2)y (x y) = 0, then

F (2)y (x) = 0.

(ii) If F (λ)y (x y−1) = 0 and F (λ)y (x y) = 0, then

F (λ)y (x) = 0.

Proof : Suppose that all the assumptions in the
lemma hold.
(i) If F (2)y (x) 6= 0, then F (λ)y (x) = 0. Hence

F (2)y (x y−1)+2F (λ)y (x)+ F (2)y (x y) = 0, i.e,

f (x y−2)+2(1−λ) f (x)+ f (x y2) = 0. (5)

Consider P f (λ)y2 (x). The alternative

f (x y−2)−2 f (x)+ f (x y2) = 0

and (5) gives (2−λ) f (x) = 0, while the alternative

f (x y−2)−λ f (x)+ f (x y2) = 0

and (5) also gives (2−λ) f (x) = 0. Since λ 6= 2, we
get f (x) = 0. Hence F (2)y (x) = 0 by Remark 1.

(ii) If F (λ)y (x) 6= 0, then F (2)y (x) = 0. Hence

F (λ)y (x y−1)+λF (2)y (x y)+ F (λ)y (x) = 0, i.e.,

f (x y−2)+2(1−λ) f (x)+ f (x y2) = 0.

By a similar argument to the above, we will have
f (x) = 0. Hence F (λ)y (x) = 0 by Remark 1.

2
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Lemma 2 Let f ∈ A (λ)
(G,H) and let x , y ∈ G. If

F (2)y (x y−1) = 0, F (2)y (x) 6= 0 and F (λ)y (x y2) 6= 0, then
λ= 0 and

f (x yn) =

¨

− f (x), if n ∈ Z+,

f (x), if n ∈ Z−.

Proof : Suppose that all the assumptions in the
lemma hold. By Remark 1, F (2)y (x) 6= 0 implies

that f (x) 6= 0. From F (2)y (x) 6= 0 and P f (λ)y (x),
we obtain F (λ)y (x) = 0. From F (λ)y (x y2) 6= 0

and P f (λ)y (x y2), we get F (2)y (x y2) = 0. From

F (2)y (x y−1) = 0 and F (2)y (x) 6= 0, Lemma 1 gives

F (2)y (x y) 6= 0. By the alternatives in P f (λ)y (x y),
we obtain F (λ)y (x y) = 0. If F (λ)y (x y3) = 0, then by

Lemma 1, we must have F (λ)y (x y2) = 0, a contradic-

tion. Hence F (λ)y (x y3) 6= 0 and the alternatives in

P f (λ)y (x y3) gives F (2)y (x y3) = 0.

Eliminating f (x y−1) from F (2)y (x y−1) = 0 and

F (λ)y (x) = 0, we get

f (x y−2)+ (1−2λ) f (x)+2 f (x y) = 0. (6)

We consider each alternative in P f (λ)y2 (x) as fol-
lows.
(i) Assume that F (2)y2 (x) = 0. Solving F (λ)y (x y) = 0,

F (2)y2 (x) = 0 and (6), we have

f (x y)+2 f (x) = 0 and

f (x y2)+ (1+2λ) f (x) = 0. (7)

From F (2)y (x y2) = 0 and (7), we obtain f (x y3)+
4λ f (x) = 0. Considering the alternatives in
P f (λ)y2 (x y), we conclude that (λ − 2) f (x) =
0. Since λ 6= 2, we must have f (x) = 0, a
contradiction. Thus this case does not exist.

(ii) Assume that F (λ)y2 (x) = 0. Solving F (λ)y (x y) = 0,

F (λ)y2 (x) = 0 and (6), we have

f (x)+ f (x y) = 0 and

f (x y2)+ (1+λ) f (x) = 0. (8)

Eliminating f (x y2) and f (x y3) from
F (2)y (x y2) = 0, F (2)y (x y3) = 0 and (8), we
get

f (x y4)+ (1+3λ) f (x) = 0. (9)

We will consider the alternative in P f (λ)y2 (x y2)

as follows. If F (2)y2 (x y2) = 0, then from (8),

(9) and F (2)y2 (x y2) = 0, we conclude that (λ−
2) f (x) = 0. Since λ 6= 2, we have f (x) = 0, a
contradiction. Thus we must get F (λ)y2 (x y2) = 0.

Solving (8), (9) and F (λ)y2 (x y2) = 0, we conclude
that (λ−2)λ f (x) = 0. Since λ 6= 2 and f (x) 6=
0, we must have λ= 0 and so F (0)y2 (x) = 0.

We already have λ = 0. From (8), (9) and
F (2)y (x y2) = 0, we obtain

f (x yn) = − f (x) for all n= 1, . . . , 4. (10)

We will prove that (10) also holds for all n ∈ Z+. It
is only left to prove that F (2)y (x yn) = 0 for all n¾ 4.
We will show this by contradiction. Suppose that
m¾ 4 is the smallest integer satisfying F (2)y (x ym) 6=
0. Thus the alternatives in P f (0)y (x y i) for each n=
3, . . . , m−1 give F (2)y (x y i) = 0, i.e.,

f (x y i−1)−2 f (x y i)+ f (x y i+1) = 0 (11)

for all n = 3, . . . , m− 1. From (11) and f (x y3) =
f (x y4) = − f (x) in (10), we have

f (x yn) = − f (x) for all n= 1, . . . , m. (12)

The alternatives in P f (0)y (x ym) and F (2)y (x ym) 6=
0 gives F (0)y (x ym) = 0. By F (0)y (x ym) = 0 and
f (x ym−1) = − f (x) in (12), we get f (x ym+1) =
f (x).
(i) If m = 2k for some k ¾ 2, then f (x y2k+1) =

f (x ym+1) = f (x). From F (0)y (x) = 0 and
f (x y) = − f (x) in (12), we obtain f (x y−1) =
f (x). Since 2 ¶ k < m, f (x yk) = − f (x) by
(12). The alternatives in P f (0)yk+1(x yk) gives
f (x) = 0, a contradiction.

(ii) If m = 2k + 1 for some k ¾ 2, then
f (x y2k+2) = f (x ym+1) = f (x). Since
2 ¶ k < m, f (x yk+1) = − f (x) by (12). The
alternatives in P f (0)yk+1(x yk+1) gives f (x) = 0, a
contradiction.

Thus f (x yn) = − f (x) for all n ∈ Z+, as desired.
Since F (0)y (x) = 0, F (0)y2 (x) = 0 and f (x y) =

f (x y2) = − f (x) in (10), we have f (x y−2) =
f (x y−1) = f (x). We can repeat the above process
to show that f (x yn) = f (x) for all n ∈ Z− by
replacing x by x y−2 and y by y−1 in the previous
arguments. 2

Lemma 3 Let f ∈A (λ)
(G,H) and let x , y ∈ G.

(i) If F (λ)y (x y−1) = 0, and F (2)y (x) 6= 0 and

F (λ)y (x y) = 0, then λ ∈ {−1,−2}.
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(ii) If F (λ)y (x y−1) 6= 0 and F (2)y (x) 6= 0, then λ 6=−2.

Proof : Suppose that all the assumptions in the
lemma hold.
(i) From F (2)y (x) 6= 0 and P f (λ)y (x), we have

F (λ)y (x) = 0. Hence f (x) 6= 0 by Remark 1. Observe

that F (λ)y (x y−1) + λF (λ)y (x) + F (λ)y (x y) = 0 reduces
to

f (x y−2)+ (2−λ2) f (x)+ f (x y2) = 0. (13)

We will now consider each alternative in P f (λ)y2 (x).
The alternative f (x y−2)− 2 f (x) + f (x y2) = 0 and
(13) gives (4− λ2) f (x) = 0, while the alternative
f (x y−2)−λ f (x)+ f (x y2) = 0 and (13) gives (2+
λ−λ2) f (x) = 0. Since f (x) 6= 0 and λ 6= 2, we must
have λ ∈ {−1,−2}.
(ii) We will prove λ 6= −2 by contradiction. Sup-
pose that λ = −2. From F (−2)

y (x y−1) 6= 0 and

P f (−2)
y (x y−1), we obtain F (2)y (x y−1) = 0. From

F (2)y (x) 6= 0 andP f (−2)
y (x), we get F (−2)

y (x) = 0 and

thus f (x) 6= 0 by Remark 1. Since F (−2)
y (x y−1) 6= 0

and F (−2)
y (x) = 0, Lemma 1 gives F (−2)

y (x y−2) 6=
0. Thus by the alternatives in P f (−2)

y (x y−2), we

have F (2)y (x y−2) = 0. From F (2)y (x y−1) = 0 and

F (2)y (x) 6= 0, Lemma 1 gives F (2)y (x y) 6= 0. By the

alternatives in P f (−2)
y (x y), we obtain F (−2)

y (x y) =
0. Eliminating f (x y−1) from F (2)y (x y−1) = 0 and

F (−2)
y (x) = 0, we get

f (x y−2)+5 f (x)+2 f (x y) = 0. (14)

Eliminating f (x y−2) and f (x y2) from F (−2)
y (x y) =

0, (14) and each alternative in P f (2)y2 (x), we obtain

2 f (x)+ f (x y) = 0 or f (x)+ f (x y) = 0. (15)

From F (2)y (x y−2) = 0, F (2)y (x y−1) = 0 and

F (−2)
y (x) = 0, we have F (2)y (x y−2) + 2F (2)y (x y−1) +

3F (−2)
y (x) = 0, i.e.,

f (x y−3)+8 f (x)+3 f (x y) = 0. (16)

Eliminating f (x y−3) from (16) and each alterna-
tives in P f (−2)

y2 (x y−1), we get

4 f (x)+ f (x y)+ f (x y−1) = 0 or

4 f (x)+ f (x y)− f (x y−1) = 0. (17)

Solving F (−2)
y (x) = 0 and (17), we conclude that

f (x) = 0 or 3 f (x)+ f (x y) = 0. (18)

Combining (15) and (18), we have f (x) = 0, a
contradiction. Hence we must get λ 6= −2, as
desired.

2

Lemma 4 Let f ∈ A (λ)
(G,H) and let x , y ∈ G. If

F (λ)y (x y−1) 6= 0, F (2)y (x) 6= 0 and F (λ)y (x y2) = 0, then
λ= −1 and
(i) ( f (x yn))n∈Z = (a,−2a, a) for some a ∈ H, or
(ii) ( f (x yn))n∈Z = (−2a, a, . . . , a), a periodic se-

quence of an odd period p ¾ 5, for some a ∈ H.

Proof : Suppose that all the assumptions in the
lemma hold. Thus λ 6= −2 by Lemma 3.
From F (λ)y (x y−1) 6= 0 and P f (λ)y (x y−1), we get

F (2)y (x y−1) = 0. From F (2)y (x) 6= 0 and P f (λ)y (x),
we have F (λ)y (x) = 0. Hence f (x y−1) 6= 0 and

f (x) 6= 0 by Remark 1. Since F (2)y (x) 6= 0 and

F (2)y (x y−1) = 0, Lemma 1 gives F (2)y (x y) 6= 0. By

the alternatives in P f (λ)y (x y), we get F (λ)y (x y) =
0. From F (λ)y (x) = 0, F (2)y (x y) 6= 0, F (λ)y (x y2) = 0
and λ 6= −2, Lemma 3 gives λ = −1. Eliminating
f (x y−1) from F (2)y (x y−1) = 0 and F (−1)

y (x) = 0, we
obtain

f (x y−2)+3 f (x)+2 f (x y) = 0. (19)

Consider the alternatives in P f (−1)
y2 (x) as follows.

Solving F (2)y2 (x) = 0, F (−1)
y (x y) = 0 and (19) gives

2 f (x) + f (x y) = 0, while solving F (−1)
y2 (x) = 0,

F (−1)
y (x y) = 0 and (19) gives f (x) + f (x y) = 0.

If f (x) + f (x y) = 0, then F (−1)
y (x) = 0 simpli-

fies to f (x y−1) = 0, a contradiction. Thus we
must have 2 f (x) + f (x y) = 0. Let f (x) = a.
From F (2)y (x y−1) = 0, F (−1)

y (x) = 0, F (−1)
y (x y) = 0,

F (−1)
y (x y2) = 0 and 2 f (x)+ f (x y) = 0, we conclude

that

( f (x y−2), f (x y−1), f (x), f (x y), f (x y2), f (x y3))
= (a, a, a,−2a, a, a). (20)

If F (−1)
y (x y3) = 0, then by f (x y2) = f (x y3) = a

in (20), we get f (x y4) = −2a. From f (x y−2) =
a and f (x y) = −2a in (20), the alternatives in
P f (−1)

y3 (x y) gives a = 0, a contradiction. Hence

F (−1)
y (x y3) 6= 0. By the alternatives inP f (−1)

y (x y3),
we have F (2)y (x y3) = 0, i.e., f (x y4) = a. From

the alternatives in P f (−1)
y (x yn) for each n ¾ 4, we

consider two possible cases as follows.
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(i) Assume that F (2)y (x yn) = 0 for all n¾ 4, i.e.,

f (x yn−1)−2 f (x yn)+ f (x yn+1) = 0 (21)

for all n¾ 4. From (21), f (x y4) = a and f (x y2) =
f (x y3) = a in (20), we conclude that

f (x yn) = a for all n¾ 2. (22)

Next, we show that (22) also holds for all n ¶ 0. It
is only left to prove that f (x yn) = a for all n ¶ −3.
Let m ¶ −3 be an integer. We consider the alter-
natives in P f (−1)

ym−1 (x y) as follows. From f (x y) =
−2a in (20) and f (x y−m+2) = a in (22), the al-
ternative F (−1)

ym−1(x y) = 0 and (22) gives f (x ym) =

−5a, while the alternative F (−1)
ym−1(x y) = 0 and (22)

gives f (x ym) = a. First, assume that f (x ym) =
−5a. From f (x) = a in (20) and f (x y−m) = a
in (22), the alternatives in P f (−1)

ym (x) give a = 0,
a contradiction. Thus we must have f (x ym) = a.
Hence we get that (22) holds for all n ¶ 0 and so
( f (x yn))n∈Z = (a,−2a, a).
(ii) Assume that m ¾ 4 is the smallest integer sat-
isfying F (2)y (x ym) 6= 0. From the alternatives in

P f (−1)
y (x yn) for each 3 ¶ n ¶ m − 1, we have

F (2)y (x yn) = 0, i.e.,

f (x yn−1)−2 f (x yn)+ f (x yn+1) = 0 (23)

for all 3 ¶ n ¶ m − 1. Since (23) and f (x y2) =
f (x y3) = a in (20), we obtain

f (x yn) = a for all 2¶ n¶ m. (24)

From F (2)y (x ym) 6= 0 and P f (−1)
y (x ym), we get

F (−1)
y (x ym) = 0. Since f (x ym−1) = f (x ym) = a in

(24), F (−1)
y (x ym) = 0 reduces to f (x ym+1) = −2a.

Next, we show that m must be odd by contradiction.
Suppose that m = 2k for some k ∈ Z. We have
f (x y2k+1) = f (x ym+1) = −2a. From f (x y) = −2a
in (20) and f (x yk+1) = a in (24), the alternatives
in P f (−1)

yk (x yk+1) give a = 0, a contradiction. Thus
m must be odd. Next, we show that

( f (x ym+2), f (x ym+3), . . . , f (x y2m),

f (x y2m+1)) = (a, a, . . . , a,−2a). (25)

Let p be an integer with 1 ¶ p ¶ m − 1. From
f (x ym−p+1) = a in (24) and f (x ym+1) = −2a, the
alternatives in P f (−1)

y p (x ym+1) give f (x ym+p+1) =
−5a or f (x ym+p+1) = a. First, assume that

f (x ym+p+1) = −5a. Since 0 ¶ m− p − 1 ¶ m− 2,
by (20) and (24), we have f (x ym−p−1) = −2a or
f (x ym−p−1) = a. From f (x ym) = a in (24), the
alternatives in P f (−1)

y p+1 (x ym) give a = 0, a con-

tradiction. Thus we must have f (x ym+p+1) = a.
Hence f (x yn) = a for all m + 2 ¶ n ¶ 2m. Con-
sidering the alternatives in P f (−1)

y (x y2m), we get
f (x y2m+1) = a or f (x y2m+1) = −2a. First, assume
that f (x y2m+1) = a. From f (x y) = f (x ym+1) =
−2a, the alternatives in P f (−1)

ym (x ym+1) give a = 0
and therefore a contradiction. Thus we must have
f (x y2m+1) = −2a.

Similarly, by repeating the process of (25), we
obtain

( f (x y2m+2), f (x y2m+3), . . . , f (x y3m),

f (x y3m+1)) = (a, a, . . . , a,−2a)

and so on. Eventually, we arrive at

( f (x y im+2), f (x y im+3), . . . , f (x y (i+1)m),

f (x y (i+1)m+1)) = (a, a, . . . , a,−2a)

for all i ¾ 0. Moreover, we can similarly repeat the
process of (25) for each f (x yk) with k ¶ −3 to get
( f (x yn))n∈Z = (−2a, a, . . . , a), a periodic sequence
of an odd period p ¾ 5 as desired.

2

MAIN RESULTS AND SOME EXAMPLES

In this section, all lemmas in the previous section
will be consolidated to provide three more lemmas,
which will eventually comprise our main theorem.

We will first make the following crucial observa-
tions. Let f ∈A (λ)

(G,H)\J(G,H) and let x , y ∈ G. By the

definition ofA (λ)
(G,H) and J(G,H), one of the following

properties holds.
(i) F (2)y (x yn) 6= 0 for all n ∈ Z.
(ii) There exists m ∈ Z such that

(ii.1) F (2)y (x ym) 6= 0 and F (2)y (x ym−1) = 0, or

(ii.2) F (2)y (x ym) 6= 0 and F (2)y (x ym+1) = 0.
The above observation will be used in the proof of
the following lemmas and theorem.

Lemma 5 Let f ∈ A (0)
(G,H)\J(G,H) and let x , y ∈ G.

Then ( f (x yn))n∈Z = (−a, a) for some a ∈ H.

Proof : Suppose that all the assumptions in the
lemma hold. By the above observation, we have the
following cases.
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(i) Assume that F (2)y (x yn) 6= 0 for all n ∈ Z. The

alternatives in P f (0)y (x y−1) and P f (0)y (x y) gives

F (0)y (x y−1) = 0 and F (0)y (x y) = 0, respectively. From

F (0)y (x y−1) = 0, F (2)y (x) 6= 0 and F (0)y (x y) = 0,
Lemma 3 gives a contradiction. Thus the solution
does not exist in this case.
(ii) Assume that there exists m ∈ Z such that
F (2)y (x ym) 6= 0 and F (2)y (x ym−1) = 0, or F (2)y (x ym) 6=
0 and F (2)y (x ym+1) = 0. Hence each case implies
that
(ii.1) If F (2)y (x ym) 6= 0 and F (2)y (x ym−1) = 0,

then the alternatives in P f (0)y (x ym) give

F (0)y (x ym) = 0. From F (2)y (x ym−1) = 0 and

F (2)y (x ym) 6= 0, Lemma 1 gives F (2)y (x ym+1) 6= 0.

We consider the alternatives in P f (0)y (x ym+2)
as follows. If F (0)y (x ym+2) = 0, then from

F (2)y (x ym+1) 6= 0 and F (0)y (x ym) = 0, we get
a contradiction by Lemma 3. Thus we must
have F (0)y (x ym+2) 6= 0. From F (2)y (x ym−1) = 0,

F (2)y (x ym) 6= 0 and F (0)y (x ym+2) 6= 0, we get

f (x ym+n) =

¨

− f (x ym), if n ∈ Z+,

f (x ym), if n ∈ Z−

by substituting x by x ym in Lemma 2. Hence
( f (x yn))n∈Z = ( f (x ym),− f (x ym)).

(ii.2) If F (2)y (x ym) 6= 0 and F (2)y (x ym+1) = 0,
then we conclude that ( f (x yn))n∈Z =
(− f (x ym), f (x ym)) by replacing x by x y2m

and y by y−1 in the arguments in the case (i.1).
2

Lemma 6 Let f ∈ A (−1)
(G,H)\J(G,H) and let x , y ∈ G.

Then
(i) ( f (x yn))n∈Z = (a, b,−a− b) for some a, b ∈ H,

or
(ii) ( f (x yn))n∈Z = (a,−2a, a) for some a ∈ H, or
(iii) ( f (x yn))n∈Z = (−2a, a, . . . , a), a periodic se-

quence of an odd period p ¾ 5, for some a ∈ H.

Proof : Suppose that all the assumptions in the
lemma hold. By the above observation, we have the
following cases.
(i) Assume that F (2)y (x yn) 6= 0 for all n ∈ Z. Thus

the alternatives in P f (−1)
y (x yn) give F (−1)

y (x yn) =
0, i.e., f (x yn−1)+ f (x yn)+ f (x yn+1) = 0 for all n ∈
Z. This implies the property (i).
(ii) Assume that there exists m ∈ Z such that
F (2)y (x ym) 6= 0 and F (2)y (x ym−1) = 0, or F (2)y (x ym) 6=
0 and F (2)y (x ym+1) = 0. Hence each case implies
that

(ii.1) Suppose F (2)y (x ym) 6= 0 and F (2)y (x ym−1) = 0.

In the case when F (−1)
y (x ym−1) 6= 0, we will

consider the alternatives in P f (−1)
y (x ym+2) as

follows. If F (−1)
y (x ym+2) 6= 0, then Lemma 2

gives a contradiction. Hence F (−1)
y (x ym+2) =

0. From F (−1)
y (x ym−1) 6= 0, F (2)y (x ym) 6=

0 and F (−1)
y (x ym+2) = 0, by replacing x by

x ym in Lemma 4, we get properties (ii) and
(iii). Thus we will only consider the case
when the alternatives in P f (−1)

y (x y−1) are

equivalent, i.e., we also get F (−1)
y (x ym−1) =

0. Thus f (x ym−1) = 0 by Remark 1. From
F (2)y (x ym−1) = 0 and F (2)y (x ym) 6= 0, we get

F (2)y (x ym+1) 6= 0 by Lemma 1. Thus the alter-

natives in P f (−1)
y (x ym+1) give F (−1)

y (x ym+1) =
0. From F (2)y (x ym) 6= 0 and P f (−1)

y (x ym), we

have F (−1)
y (x ym) = 0. Hence f (x ym) 6= 0 by

Remark 1. Let f (x ym) = a. From f (x y−1) =
0, F (−1)

y (x ym) = 0 and F (−1)
y (x ym+1) = 0, we

conclude that

( f (x ym−1), f (x ym), f (x ym+1),

f (x ym+2)) = (0, a,−a, 0). (26)

By (26), the alternatives in P f (−1)
y (x ym+2),

P f (−1)
y2 (x ym+2) and P f (−1)

y3 (x ym+2) give

( f (x ym+3), f (x ym+4), f (x ym+5))
= (a,−a, 0).

Similarly, the alternatives in P f (−1)
y (x ym+5),

P f (−1)
y2 (x ym+5) and P f (−1)

y3 (x ym+5) give

( f (x ym+6), f (x ym+7), f (x ym+8))
= (a,−a, 0)

and so on. Finally, we get

( f (x ym+3k), f (x ym+3k+1),

f (x ym+3k+2)) = (a,−a, 0), (27)

for all k ¾ 0. On the other hand, the alter-
natives in P f (−1)

y (x ym−1), P f (−1)
y2 (x ym−1) and

P f (−1)
y3 (x ym−1) give

( f (x ym−2), f (x ym−3), f (x ym−4))
= (−a, a, 0).
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Repeating a similar procedure to the proof of
(27), we have

( f (x ym−3k), f (x ym−3k−1),

f (x ym−3k−2)) = (a, 0,−a)

for all k ¾ 0. Hence we get the property (i)
when b = −a.

(ii.2) If F (2)y (x ym) 6= 0 and F (2)y (x ym+1) = 0, then
we have similar results to the case (ii.1) by
replacing x by x y2m and y by y−1.

2

Lemma 7 Let f ∈ A (−2)
(G,H)\J(G,H) and let x , y ∈ G.

Then f (x yn) = (−1)n( f (x)− n( f (x) + f (x y))) for
all n ∈ Z.

Proof : Suppose that all the assumptions in the
lemma hold. Hence F (2)y (x ym) 6= 0 for some

m ∈ Z. By the alternatives in P f (−2)
y (x ym), we

get F (−2)
y (x ym) = 0. Consider the alternatives in

P f (−2)
y (x ym−1) as follows. If F (−2)

y (x ym−1) 6= 0,
then Lemma 3 gives a contradiction. Thus we must
have F (−2)

y (x ym−1) = 0. Similarly, by Lemma 3, the

alternatives in P f (−2)
y (x ym+1) give F (−2)

y (x ym+1) =
0. First, we will show that F (−2)

y (x ym+2) = 0 by

contradiction. Suppose F (−2)
y (x ym+2) 6= 0. The

alternatives in P f (−2)
y (x ym+2) give F (2)y (x ym+2) =

0. Hence f (x ym+2) 6= 0 by Remark 1. From
F (−2)

y (x ym+1) = 0 and F (−2)
y (x ym+2) 6= 0, we get

F (−2)
y (x ym+3) 6= 0 by Lemma 1. Hence the al-

ternatives in P f (−2)
y (x ym+3) give F (2)y (x ym+3) =

0. Eliminating f (x ym) from F (−2)
y (x ym) = 0 and

F (−2)
y (x ym+1) = 0, we get

f (x ym−1)−3 f (x ym+1)−2 f (x ym+2) = 0. (28)

Eliminating f (x ym−1) and f (x ym+3) from
F (2)y (x ym+2) = 0, (28) and each alternative in

P f (−2)
y2 (x ym+1), we have

f (x ym+2) = 0 or f (x ym+1)+ f (x ym+2) = 0. (29)

On the other hand, by F (2)y (x ym+2) = 0 and

F (2)y (x ym+3) = 0, we obtain

2 f (x ym+1)−3 f (x ym+2)+ f (x ym+4) = 0. (30)

Eliminating f (x ym) and f (x ym+4) from
F (−2)

y (x ym+1) = 0, (30) and each alternative

in P f (−2)
y2 (x ym+2), we get

f (x ym+1) = 0 or f (x ym+1)− f (x ym+2) = 0. (31)

Combining (29) and (31), we conclude that
f (x ym+2) = 0, a contradiction. Hence we get
F (−2)

y (x ym+2) = 0. We can repeat the above process

to show F (−2)
y (x ym+3) = 0 by replacing x by x y and

so on. Thus we obtain

F (−2)
y (x yn) = 0 for all n¾ m+2. (32)

Similarly, we can repeat the process of (32) for each
n¶ m−2 to get F (−2)

y (x yn) = 0 for all n ∈ Z, i.e.,

f (x yn+1)+ f (x yn) = (−1)( f (x yn)+ f (x yn−1)).

Hence f (x yn) = (−1)n( f (x)−n( f (x)+ f (x y))) for
all n ∈ Z. 2

Theorem 1 If there exists f ∈ A (λ)
(G,H)\J(G,H), then

λ ∈ {0,−1,−2}. Moreover, if x , y ∈ G, then one of
the following properties must hold.
(i) λ = 0 and ( f (x yn))n∈Z = (−a, a) for some a ∈

H\{0}.
(ii) λ= −1 and

(ii.1) ( f (x yn))n∈Z = (a, b,−a− b) for some
a, b ∈ H with (a, b) 6= (0, 0), or

(ii.2) ( f (x yn))n∈Z = (a,−2a, a) for some a ∈
H\{0}, or

(ii.3) ( f (x yn))n∈Z = (−2a, a, . . . , a), a periodic
sequence of an odd period p ¾ 5, for some
a ∈ H\{0}.

(iii) λ = −2 and f (x yn) = (−1)n( f (x)− n( f (x) +
f (x y))) for all n ∈ Z.

Proof : Let f ∈A (λ)
(G,H)\J(G,H) and let x , y ∈ G. By the

above observation, we have the following cases.
(i) Assume that F (2)y (x yn) 6= 0 for all n ∈ Z. The

alternatives in P f (λ)y (x y−1) and P f (λ)y (x y) give

F (λ)y (x y−1) = 0 and F (λ)y (x y) = 0, respectively.

From F (λ)y (x y−1) = 0, F (2)y (x) 6= 0 and F (λ)y (x y) = 0,
Lemma 3 gives λ ∈ {−1,−2}.
(ii) Assume that there exists m ∈ Z such that
F (2)y (x ym) 6= 0 and F (2)y (x ym−1) = 0, or F (2)y (x ym) 6=
0 and F (2)y (x ym+1) = 0. Hence each case implies
that
(ii.1) If F (2)y (x ym) 6= 0 and F (2)y (x ym−1) = 0,

then Lemma 1 gives F (2)y (x ym+1) 6= 0. From

F (2)y (x ym) 6= 0 and P f (λ)y (x ym), we get

F (λ)y (x ym) = 0. Consider the alternatives in

P f (λ)y (x ym+2) as follows. If F (λ)y (x ym+2) 6= 0,

then Lemma 2 gives λ = 0. If F (λ)y (x ym+2) = 0,
then Lemma 3 gives λ= −1 or λ= −2.
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(ii.2) If F (2)y (x ym) 6= 0 and F (2)y (x ym+1) = 0, then
we get similar results to the case (ii.1) by re-
placing x by x y2m and y by y−1 in the previous
arguments.

Thus we must have λ ∈ {0,−1,−2}. According to
Lemma 5, Lemma 6 and Lemma 7, we have our
results corresponding to the values of the λ’s. 2

Corollary 1 Let f ∈A (λ)
(G,H). If λ /∈ {0,−1,−2}, then

f ∈ J(G,H).

Proof : If λ /∈ {0,−1,−2}, then from Theorem 1,
A (λ)
(G,H)\J(G,H) is empty. 2

In other words, Corollary 1 states that when
λ /∈ {0,−1,−2}, the alternative Jensen’s functional
equation (3) is equivalent to Jensen’s functional
equation (4) for the class of functions from (G, ·) to
(H,+). On the other hand, when λ ∈ {0,−1,−2},
(3) is not necessarily equivalent to (4) as illustrated
in the following three examples corresponding to
each value of λ.

Example 1 Given a ∈ H\{0}. Let f : R→ H be a
function such that

f (x) =

¨

−a, x < 0,

a, x ¾ 0.

By choosing x = 0 and y = 1, we have f (x − y)−
2 f (x) + f (x + y) = f (−1) − 2 f (0) + f (1) = −2a.
From a 6= 0 and the fact that H is uniquely divisible,
we get −2a 6= 0. Thus f /∈ J(R,H). Given x , y ∈ R, if
x− y ¾ 0 and x+ y ¾ 0, or x− y < 0 and x+ y < 0,
then f (x − y)− 2 f (x) + f (x + y) = 0; otherwise,
f (x − y)+ f (x + y) = 0. Hence f ∈A (0)

(R,H)\J(R,H).

Example 2 Given a ∈ H\{0}. Let f : R→ H be a
function such that

f (x) =

¨

−2a, x = 0,

a, otherwise.

By choosing x = 0 and y = 1, we obtain f (x − y)−
2 f (x)+ f (x+ y) = f (−1)−2 f (0)+ f (1) = 6a. Since
a 6= 0 and H is uniquely divisible, we have 6a 6= 0.
Thus f /∈ J(R,H). Given x , y ∈ R, if (y 6= 0 and x −
y = 0) or (y 6= 0 and x = 0) or (y 6= 0 and x+y = 0),
then f will satisfy f (x − y) + f (x) + f (x + y) = 0;
otherwise, we have f (x− y)−2 f (x)+ f (x+ y) = 0.
Thus f ∈A (−1)

(R,H)\J(R,H).

Example 3 Given a, b ∈ H with a 6=−b. Let f :Z→
H be a function such that

f (n) = (−1)n(a+ nb) for all n ∈ Z.

Note that f (0)−2 f (1)+ f (2) = 4a+4b. Since a 6=
−b and H is uniquely divisible, we have 4a+ 4b 6=
0. Thus f /∈ J(Z,H). Given n, m ∈ Z, if m is odd,
then we observe that n−m and n+m have the same
parity whereas n and n+m have the opposite. Hence
f (n−m)+2 f (n)+ f (n+m) = 0. Otherwise, if m is
even, then n−m, n, n+m all have the same parity.
Hence f (n−m)− 2 f (n) + f (n+m) = 0. Thus f ∈
A (−2)
(Z,H)\J(Z,H).

GENERAL SOLUTION ON CYCLIC GROUPS

When no additional information is provided on the
group (G, ·), Theorem 1 is probably the most general
result one can obtain regarding the solution to (3).
Nonetheless, for a certain group (G, ·), one may
employ Theorem 1 to obtain the general solution.
In this section, we will give an application of The-
orem 1 to cyclic groups. Remember that J(G,H) ⊆
A (λ)
(G,H). Hence Theorem 1 will help us identify the

elements ofA (λ)
(G,H)\J(G,H).

We will start with infinite cyclic groups, where
Theorem 1 can be applied directly with no necessary
modification as in the following theorem.

Theorem 2 Let (G, ·) be an infinite cyclic group with
G = 〈g〉. A function f ∈ A (λ)

(G,H) if and only if f ∈
J(G,H) or one of the following properties holds.
(i) λ= 0 and ( f (gn))n∈Z = (−a, a) for some a ∈ H.
(ii) λ= −1 and

(ii.1) ( f (gn))n∈Z = (a, b,−a− b) for some
a, b ∈ H, or

(ii.2) ( f (gn))n∈Z = (a,−2a, a) for some a ∈ H,
or

(ii.3) ( f (gn))n∈Z = (−2a, a, . . . , a), a periodic
sequence of an odd period p ¾ 5, for some
a ∈ H.

(iii) λ=−2 and f (gn) = (−1)n(a+nb) for all n ∈ Z
and for some a, b ∈ H.

Proof : Let f ∈ A (λ)
(G,H). If f /∈ J(G,H), then setting

x = e and y = g in Theorem 1, we can see that one
of the properties (i), (ii), and (iii) must hold. The
converse can be directly verified. 2

It now remains to apply Theorem 1 to finite
cyclic groups, where some modification must be
made to eliminate redundant possibilities. It should
be remarked that for the trivial group of order 1, we
obtain a trivial result that any function f : G → H
will satisfy both (3) and (4). For finite cyclic groups
of order at least 2, we have the following theorem.

Theorem 3 Let (G, ·) be a finite cyclic group with G =
〈g〉 and let m ¾ 2 be an order of G. A function f ∈
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A (λ)
(G,H) if and only if f ∈J(G,H) or one of the following

properties holds.
(i) λ= −1 and

(i.1) 3 | m and ( f (gn))n∈Z = (a, b,−a− b) for
some a, b ∈ H, or

(i.2) ( f (gn))n∈Z = (−2a, a, . . . , a), a periodic se-
quence of an odd period p ¾ 5 with p | m, for
some a ∈ H.

(iii) λ = −2, m is even and f (gn) = (−1)na for all
n ∈ Z and for some a ∈ H.

Proof : Given one of the above properties, it can be
directly verified that f ∈A (λ)

(G,H). Conversely, let f ∈

A (λ)
(G,H). If f /∈ J(G,H), then setting x = e and y = g

in Theorem 1, we have the following possibilities.
(i) λ= 0 and ( f (gn))n∈Z = (−a, a) for some a ∈ H.
(ii) λ= −1 and
(ii.1) ( f (gn))n∈Z = (a, b,−a− b) for some a, b ∈ H,

or
(ii.2) ( f (gn))n∈Z = (a,−2a, a) for some a ∈ H, or
(ii.3) ( f (gn))n∈Z = (−2a, a, . . . , a), a periodic se-

quence of an odd period p ¾ 5, for some a ∈ H.
(i) λ= −2 and f (gn) = (−1)n(a+nb) for all n ∈ Z
and for some a, b ∈ H.
However, not all of the above possibilities are ad-
missible when G is a finite cyclic group. We will
treat each case separately and deem case (i) and
case (ii.2) redundant, while the other cases are
admissible with some additional conditions.
(i) ( f (gn))n∈Z = (−a, a) for some a ∈ H, that is,
there exists k ∈ Z such that

f (gn) =

¨

−a, n< k,

a, n¾ k.

Hence f (gk−1) = −a and f (gk+m−1) = a. Since m is
the order of the group G, we have gk−1 = gk+m−1.
Thus a = −a, which implies that a = 0. Hence f ∈
J(G,H) which deems this case redundant.
(ii) λ= −1.
(ii.1) ( f (gn))n∈Z = (a, b,−a− b) for some a, b ∈

H. Suppose that 3 - m. Then {0, m, 2m} is a
complete residue modulo 3. Therefore

{ f (e), f (gm), f (g2m)}= {a, b,−a− b}.

But m is the order of G, thus g2m = gm = e.
Hence a = b = −a − b, which gives a = b = 0
and, in turn, f ∈ J(G,H). Hence 3 | m.

(ii.2) ( f (gn))n∈Z = (a,−2a, a) for some a ∈ H, that
is, there exists k ∈ Z such that

f (gn) =

¨

−2a, n= k,

a, otherwise.

Hence f (gk) = −2a and f (gk+m) = a. Since m
is the order of the group G, we have gk = gk+m.
Thus −2a = a, which implies that a = 0. Hence
f ∈ J(G,H) which deems this case redundant.

(ii.3) ( f (gn))n∈Z = (−2a, a, . . . , a), a periodic se-
quence of an odd period p ¾ 5, for some a ∈ H,
that is, there exists k ∈ Z such that

f (gk) = −2a.

Suppose that p - m. Since ( f (gn))n∈Z is a
periodic sequence of a period p, we must have
f (gk+m) = a. But m is the order of G, thus
gk+m = gk. Hence −2a = a, which gives a = 0,
and, in turn, f ∈ J(G,H). Hence p | m.

(i) f (gn) = (−1)n(a+nb) for all n∈Z and for some
a, b ∈ H. Since e = gm = g2m, we have

a = (−1)m(a+mb) = (−1)2m(a+2mb)

which implies that b = 0 and m is even.
2
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