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ABSTRACT: The p-adic models of statistical mechanics require the investigation of the roots of polynomial equations
over p-adic fields in order to construct p-adic Gibbs measures. The most frequently asked question is that whether a
root of a polynomial equation belongs to the domains Z∗p, Zp \Z∗p, Zp, Qp \Z∗p, Qp \ (Zp \Z∗p), Qp \Zp, Qp, Spm(0) or
not. This question was open even for a quadratic equation. In this paper, by using the Newton polygon, we provide
solvability criteria for quadratic equations over the domains mentioned above for all odd primes p. We also study the
number of roots of quadratic equations over all domains given above. This study allows us to present a local description
of roots of quadratic equations over p-adic fields whenever p > 2.
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INTRODUCTION

The field of p-adic numbers

The fieldQp of p-adic numbers which was motivated
primarily by an attempt to bring the ideas and
techniques of the power series into number theory.
Their canonical representation is analogous to the
expansion of analytic functions into power series.
This is one of the manifestations of the analogy
between algebraic numbers and algebraic functions.

For a fixed prime p, the field of p-adic numbers
is denoted by Qp which is a completion of the ratio-
nal numbersQwith respect to the non-Archimedean
norm |·|p :Q→ R given by

|x |p =

¨

p−k, x 6= 0,

0, x = 0.

Here, x = pkm/n with k, m ∈ Z, n ∈ N, (m, p) =
(n, p) = 1. The number k is called a p-order of x
and it is denoted by ordp(x) = k.

Any p-adic number x ∈ Qp can be uniquely
represented in the following canonical form: x =
pordp(x)(x0 + x1 · p + x2 · p2 + · · · ) where x0 ∈
{1,2, . . . p−1} and x i ∈ {0,1, 2, . . . p−1}, i ¾ 1 1, 2.
We denote the set of all p-adic integers and units of
Qp by Zp = {x ∈ Qp : |x |p ¶ 1} and Z∗p = {x ∈ Qp :
|x |p = 1}, respectively. Any p-adic unit x ∈ Z∗p has

the unique canonical form x = x0+x1 ·p+x2 ·p2+· · ·
where x0 ∈ {1, 2, . . . p − 1} and x i ∈ {0, 1,2, . . . p −
1}, i ∈ N. Any non-zero x ∈ Qp has a unique
representation x = x∗/ |x |p, where x∗ ∈ Z∗p.

A number a ∈ Z is called a quadratic residue
modulo p if the congruent equation x2 = a (mod p)
is solvable in Z.

Proposition 1 (Ref. 3) Let p be an odd prime, a ∈
Z, and (a, p) = 1. The number a is a quadratic residue
modulo p if and only if a(p−1)/2 ≡ 1 (mod p).

Proposition 2 (Refs. 1, 4) Let p be an odd prime,
a ∈Qp be a non-zero p-adic number, and a = a∗/ |a|p
with a∗ = a0+a1p+a2p2+· · · . The quadratic equation
x2 = a is solvable in Qp if and only if logp |a|p is even

and a(p−1)/2
0 ≡ 1 (mod p).

p-adic Gibbs measures on a Cayley tree

Statistical mechanics is a mathematical theory of a
mechanical system having uncertain state systems in
which probabilistic concepts and explanation play a
fundamental role. In Ref. 5, a p-adic counterpart of
statistical mechanics is also studied in the context
of the p-adic theory of probability and stochastic
processes. More recently, numerous applications
of p-adic numbers have shown up in theoretical
physics and quantum mechanics6–9.
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By following Refs. 10–13, we briefly mention
some notions and notation from p-adic Gibbs mea-
sure theory on a Cayley tree for the sake of a self-
contained exposition. A Cayley tree Γ k of order
k ¾ 1 is an infinite tree, i.e., a graph without cycles,
such that exactly k + 1 edges originate from each
vertex. Let Γ k

+ = (V, L) be a semi-infinite Cayley
tree of order k ¾ 1 with the root Θ (each vertex
has exactly k+ 1 edges except for the root Θ which
has k edges) where V is the set of vertices and
L is the set of edges. Two vertices v1 and v2 are
called nearest neighbours if there exists an edge
l ∈ L connecting them. We shall use the notation
l = 〈v1, v2〉. A collection of nearest neighbour pairs
〈v′, v1〉, 〈v1, v2〉, . . . , 〈vd−1, v′′〉 is called a path from
v′ to v′′. The distance d(v′, v′′) on the Cayley tree
is the number of edges of the shortest path from v′

to v′′. For a fixed v0 ∈ V , called the root, we let
Wn = {v ∈ V : d(x , x0) = n}, Vn =

⋃n
m=0 Wm. The

set S(v) = {w ∈Wn+1 : d(w, v) = 1} is called a set of
direct successors of v ∈Wn.

Let Φ = {1,2, . . . , q} be a finite set. A configu-
ration (respectively, a finite volume configuration,
a boundary configuration) is a function σ : V → Φ
(respectively, σn : Vn → Φ, σ(n) : Wn → Φ). We
denote by Ω (respectively, ΩVn

, ΩWn
) a set of all

configurations (respectively, all finite volume con-
figurations, all boundary configurations). For given
configurations σn−1 ∈ ΩVn−1

and σ(n) ∈ ΩWn
, we

define their concatenation to be a finite volume
configuration σn−1 ∨σ(n) ∈ ΩVn

such that

σn−1 ∨σ(n)(v) =

¨

σn−1(v), v ∈ Vn−1,

σ(n)(v), v ∈Wn.

Let Gk be a free product of k + 1 cyclic groups
of the second order with generators a1, a2, . . . , ak+1.
It is known that there exists a one-to-one correspon-
dence between the set of vertices V of the Cayley
tree and the group Gk. Hence, without loss of
generality, we may assume that any two vertices
can be multiplied. A function f : V → Qp is called
translation invariant if f (vw) = f (v) for any v, w ∈
V . The Hamiltonian of a p-adic Potts model with the
spin value set Φ = {1,2, . . . q} on the finite volume
configuration is defined as follows:

Hn(σn) = J
∑

〈x ,y〉∈Ln

δσn(x)σn(y), (1)

for all σn ∈ ΩVn
, n ∈ N where J is a coupling con-

stant, 〈x , y〉 stands for nearest neighbour vertices,
and δ is the Kronecker delta.

Let us present a construction of a p-adic Gibbs
measure corresponding to the p-adic Potts model
with q states. We define a p-adic measure µ(n)

h̃
:

ΩVn
→ Qp associated with a boundary function h̃ :

V 3 x → h̃x = (h̃(1)x , . . . , h̃(q)x ) ∈Q
q
p by

µ
(n)
h̃
(σn)

=
1

Z (n)
h̃

expp

(

Hn(σn)+
∑

x∈Wn

h̃(σn(x))
x

)

(2)

for all σn ∈ ΩVn
, n ∈ N where expp(·) :

B(0, p−1/(p−1)) → B(1, 1) is a p-adic exponential
function and Z (n)

h̃
is a partition function defined by

Z (n)
h̃
=

∑

σn∈ΩVn

expp

(

Hn(σn)+
∑

x∈Wn

h̃(σn(x))
x

)

for all n ∈ N. The p-adic measures (2) are called
compatible if one has that

∑

σ(n)∈ΩWn

µ
(n)
h̃
(σn−1 ∨σ(n)) = µ

(n−1)
h̃
(σn−1) (3)

for all σn−1 ∈ ΩVn−1
and n ∈ N.

From the Kolmogorov extension theorem of the
p-adic measures (2)5, there exists a unique p-adic
measure µh : Ω→Qp such that

µh̃({σ |Vn
= σn}) = µ

(n)
h̃
(σn)

for all σn ∈ ΩVn
and n. Depending on choices of

a coupling constant J and a boundary function h̃ :
V →Qq

p, the extended measure µh̃ :Ω→Qp is called
a p-adic (quasi) Gibbs measure11, 13.

The following theorem provide a criterion
for an existence of a translation invariant p-adic
Gibbs measure (TIpGM) associated with the bound-
ary function hx = h = (h1, . . . , hq−1),∀ x ∈ V
where hi = h̃i − h̃q ∈ B(0, p−1/(p−1)) for all i ∈ Φ.
Let J ∈ B(0, p−1/(p−1)), θ = expp(J), expp(h) :=
(expp(h1), . . . , expp(hq−1)).

Theorem 1 (Existence of TIpGM12) There exists a
TIpGM µh : Ω → Qp associated with a boundary
function hx = h = (h1, . . . , hq−1) for all x ∈ V if and
only if z= expp(h) is a solution of

zi =

 

(θ −1)zi +
∑q−1

j=1 z j +1

θ +
∑q−1

j=1 z j

!k

, i = 1, q−1, (4)

where z= (z1, . . . , zq−1).
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In Ref. 13, a full description of all TIpGMs was
given for the case k = 2. Let M ⊂ {1, . . . , q− 1} be
a subset and |M |= m. Let us consider the quadratic
equation

m2z2+(2m(q−m)− (θ −1)2)z+(q−m)2 = 0. (5)

Theorem 2 (Description of TIpGM13) Let
µh : Ω → Qp be a TIpGM on Γ 2

+ associated with
a boundary function hx = h = (h1, . . . , hq−1), for all
x ∈ V . Then there exists Mh ⊂ {1, . . . , q − 1} such
that

hi =

¨

0, i /∈ Mh,

logp z∗, i ∈ Mh,

where z∗ ∈ Ep = {x ∈ Z∗p : |x −1|p < p−1/(p−1)} is a
solution of (5).

From Theorem 2, in order to explicitly describe
a TIpGM, we have to provide a criterion for (5) in
which at least one of the solutions should belong to
the set Ep.

Generally, we may come across the following
problem in one form or another: provide a solv-
ability criterion for the polynomial equation an xn+
an−1 xn−1 + · · · + a1 x + a0 = 0 over the given set
A⊂Qp. This problem has different solutions for the
cases A ⊂ R and A ⊂ Qp For instance, x2 + 1 = 0 is
not solvable in R but it is solvable in Qp for p ≡ 1
(mod 4). On the other hand, any cubic equation is
solvable in R but the simplest cubic equation x3 = p
is not solvable in Qp. Hence a solvability criterion
over Qp should be treated differently from the case
R. In the literature little attention was given to this
problem. Recently, in Refs. 14–17, this problem was
partially studied for the lower degree polynomial
equations over Qp. In this paper, we study the
abovementioned problem for a quadratic equation.

We know that any quadratic equation can be
written in the form

x2+ ax = b (6)

where a, b ∈ Qp. By means of completing the
square, (6) takes the form (2x + a)2 = a2 + 4b. Let
y = 2x + a and D = a2 + 4b be the discriminant.
Then y2 = D. The solvability criterion for (6) can
be given in terms of the discriminant as follows. If
D = 0 then the quadratic equation always has two
solutions x1 = x2 = −

1
2 a. Let D = a2 + 4b 6= 0.

We then have that D = D∗/ |D|p with D∗ ∈ Z∗p, i.e.,
D∗ = d0+d1p+d2p2+ · · · where d0 ∈ {1, 2, . . . p−1}
and di ∈ {0, 1,2, . . . p−1} for any i ∈ N.

Theorem 3 (Solvability criterion by D) Let p > 2.
The quadratic equation (6) is solvable in Qp if and

only if logp |D|p is even and d(p−1)/2
0 ≡ 1 (mod p).

In this case, the two solutions of the quadratic
equation (6) are formally given by x± =

1
2 (−a±

p
D).

Based on the last formula, it is quite difficult to verify
whether the solution of the quadratic equation (6)
belongs to the classical sets Z∗p, Zp \Z∗p, Zp, Qp \Z∗p,
Qp \ (Zp \Z∗p), Qp \Zp, Qp or not. For instance, in
Ref. 13, the authors have used this long and techni-
cally difficult method for the quadratic equation (5).
In this paper, we are suggesting another approach to
give the solvability criteria of the quadratic equation
(6) over the domains given above.

The main problems

Let A,B ⊂Qp be two nonempty disjoint sets.

Definition 1 We say that (6) is solvable in A if at
least one solution belongs to A. We say that (6) is
solvable inAtA if two solutions belong toA. We say
that (6) is solvable in AtB if one solution belongs
to A and another solution belongs to B.

The main problems of the paper are as follows.
Let a, b ∈Qp.
(i) Provide solvability criteria in domains Z∗p, Zp \
Z∗p, Zp,Qp\Z∗p,Qp\(Zp\Z∗p),Qp\Zp,Qp, Spm(0).

(ii) Provide the number N(x2+ax− b) of solutions
in domains Z∗p, Zp\Z∗p, Zp,Qp\Z∗p,Qp\(Zp\Z∗p),
Qp \Zp, Qp, Spm(0).

(iii) Provide solvability criteria in AtB where

A,B ∈ {Z∗p,Zp \Z∗p,Qp \Zp}.

THE MAIN RESULTS

In this section, we provide the main results of the
paper. Throughout this paper, we always assume
that p > 2 unless otherwise mentioned.

Let a, b ∈Qp and D = a2+4b. If abD 6= 0 then
we have that a = a∗/|a|p, b = b∗/|b|p, D = D∗/|D|p
with a∗, b∗, D∗ ∈ Z∗p, i.e., a∗ = a0+a1p+a2p2+ · · · ,
b∗ = b0 + b1p+ b2p2 + · · · , D∗ = d0 + d1p+ d2p2 +
· · · where a0, b0, d0 ∈ {1,2, . . . p− 1} and ai , bi , di ∈
{0, 1,2, . . . p−1} for any i ∈ N.

Let us first consider the quadratic congruent
equation x2 ≡ a0 (mod p). From Proposition 1, the
quadratic congruent equation is solvable if and only
if a(p−1)/2

0 ≡ 1 (mod p). In this case, it has two
distinct non-congruent solutions in the set {− 1

2 (p−
1), . . . ,−1,0, 1, . . . , 1

2 (p − 1)}. It is clear that one
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solution belongs to {− 1
2 (p−1), . . . ,−2,−1} and an-

other solution belongs to {1, 2, . . . , 1
2 (p−1)}.

We denote by
p

a0 (respectively, −pa0) the so-
lution of the quadratic congruent equation x2 ≡ a0
(mod p)which is in {1,2, . . . , 1

2 (p−1)} (respectively,
in {− 1

2 (p − 1), . . . ,−2,−1}). In other words, there

exists
p

a0 if and only if a(p−1)/2
0 ≡ 1 (mod p).

Let us now consider the quadratic equation x2 =
a overQp where a ∈Qp is a non-zero p-adic number.
Let a = a∗/ |a|p with a∗ = a0+a1p+a2p2+ · · · such
that a0 ∈ {1, 2, . . . , p−1}, ai ∈ {0,1, 2, . . . , p−1}, for
all i ∈ N. We know that the last quadratic equation
is solvable in Qp if and only if a(p−1)/2

0 ≡ 1 (mod p)
and logp |a|p is even. Moreover, it has two distinct
solutions x+ and x− such that x∗+ ≡

p
a0 (mod p)

and x∗− ≡ −
p

a0 (mod p).
We denote the solution x+ (respectively, x−) of

the quadratic equation x2 = a by
p

a (respectively,
−
p

a). In other words, for the given non-zero a ∈
Qp,
p

a exists if and only if a(p−1)/2
0 ≡ 1 (mod p) and

logp |a|p is even. Moreover,
p

a is the solution such
that (

p
a)∗ ≡pa0 (mod p) and −

p
a is the solution

such that (−
p

a)∗ ≡ −pa0 (mod p). We use the
notation

p
a−∃ when there exists

p
a.

Theorem 4 (Solvability domain) The quadratic
equation (6) is solvable in Qp if and only if
one the following conditions holds true: (i)
|a|2p < |b|p ,

p
b − ∃; or (ii) |a|2p = |b|p ,

p
D − ∃;

or (iii) |a|2p > |b|p.

Let us define the following set∆=∆1∪∆2∪∆3
where

∆1 = {(a, b) ∈Qp ×Qp : |a|2p < |b|p ,
p

b−∃}

∆2 = {(a, b) ∈Qp ×Qp : |a|2p = |b|p ,
p

D−∃}

∆3 = {(a, b) ∈Qp ×Qp : |a|2p > |b|p}.

The set ∆ ⊂ Qp × Qp is called a solvability
domain of the quadratic equation (6). Since Qp
is a disordered field, we could not describe the
solvability domain ∆ in the picture. However, we
can describe the p-adic absolute value of elements
of the set ∆ in Fig. 1. We refer it as the solvability
domain (6).

The following result gives a full description of
p-adic absolute values of solutions of (6) in the
solvability domain ∆.

Theorem 5 (Local Descriptions of solutions) Let
(a, b) ∈ ∆. The quadratic equation (6) is solvable
in

Fig. 1 The solvability domain of the quadratic equation.

(i) Qp \Zp tQp \Zp if and only if

|b|p > |a|p, |b|> 1;

(ii) Z∗p tZ
∗
p if and only if |a|p ¶ |b|p = 1;

(iii) Zp \Z∗ptZp \Z∗p if and only if |a|p < 1, |b|< 1;
(iv) Z∗p tZp \Z∗p if and only if |b|p < |a|p = 1;
(v) Z∗p tQp \Zp if and only if |b|p = |a|p > 1;
(vi) Zp \Z∗p tQp \Zp if and only if

|a|p > |b|p, |a|p > 1.

The graphical illustration of Theorem 5 is given
in Fig. 2. Theorem 4 is proven in the next sec-
tion (Theorem 6). Theorem 5 follows from Theo-
rem 9 which describes the number NZ∗p(x

2+ax−b),
NZp\Z∗p(x

2 + ax − b) and NQp\Zp
(x2 + ax − b) of

solutions of the quadratic equation (6) in Z∗p,Zp\Z∗p,
and Qp \ Zp. In the last section, we present the
application of our results to statistical mechanics
problems.

THE SOLVABILITY CRITERIA

In this section, we present a solvability criterion for
the quadratic equation

x2+ ax = b (7)

over the domains Z∗p, Zp \Z∗p, Zp, Qp \Z∗p, Qp \(Zp \
Z∗p), Qp \Zp, Qp, Spm(0).

Theorem 6 The quadratic equation (7) is solvable
in Qp if and only if one of the following conditions
holds:
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Fig. 2 The description of solutions of the quadratic
equation.

(i) |a|2p < |b|p,
p

b−∃;
(ii) |a|2p = |b|p,

p
D−∃;

(iii) |a|2p > |b|p.

Proof : We know that (7) is solvable inQp if and only
if there exists

p
D. Let us study the Newton polygon

of (7) under the condition that
p

D−∃.
It is clear that the Newton polygon of (7)

is the lower convex hull of points P0(0,ordp(b)),
P1(1,ordp(a)), and P2(2,0). More precisely, if
ordp(b)¶ 2ordp(a) then the Newton polygon is one
line segment with the slope m1 = −

1
2 ordp(b) and if

ordp(b)> 2ordp(a) then the Newton polygon is two
line segments with the slopes m1 = ordp(a)−ordp(b)
and m2 = −ordp(a) where m1 < m2. We study the
Newton polygon in each case.

Case I: ordp(b) < 2ordp(a). This is equivalent
to the condition |a|2p < |b|p. In this case, there exists
p

D if and only if there exists
p

b. Moreover, (7) has
two solutions x1 and x2 in Qp such that ordp(x1) =
ordp(x2) =

1
2 ordp(b) or equivalently |x1|p = |x2|p =

p

( |b|p)> |a|p.
Case II: ordp(b) = 2ordp(a). This is equiva-

lent to the condition |a|2p = |b|p. In this case, (7)

is solvable in Qp if and only if there exists
p

D.
Moreover, for two solutions x1 and x2, one has that
|x1|p = |x2|p =

p

( |b|p) = |a|p.

Case III: ordp(b)> 2ordp(a). This is equivalent
to the condition |a|2p > |b|p. In this case, there

always exists
p

D. Hence (7) is always solvable
in Qp. Moreover, (7) has two solutions x1 and
x2 in Qp such that ordp(x1) = ordp(b) − ordp(a)
and ordp(x2) = ordp(a), or equivalently |x1|p =
|b|p / |a|p and |x2|p = |a|p where |x1|p < |x2|p. 2

Theorem 7 The quadratic equation (7) is solvable
in Z∗p if and only if one of the following conditions
holds:
(i) |a|p < |b|p = 1,

p
b−∃;

(ii) |a|p = |b|p = 1,
p

D−∃;
(iii) |a|p = |b|p > 1;
(iv) |b|p < |a|p = 1.

Proof : As we already showed that (i) if |a|2p < |b|p
with

p
b − ∃ then (7) has two solutions x1, x2 in

Qp such that |x1|p = |x2|p =
p

( |b|p) > |a|p; (ii) if
|a|2p = |b|p with

p
D−∃ then (7) has two solutions x1,

x2 in Qp such that |x1|p = |x2|p =
p

( |b|p) = |a|p;
(iii) if |a|2p > |b|p then (7) has two solutions x1, x2

in Qp such that |x1|p = |b|p / |a|p and |x2|p = |a|p
where |x1|p < |x2|p.

Let |a|2p < |b|p and
p

b − ∃. The quadratic
equation (7) is solvable in Z∗p if and only if |x1|p =
|x2|p =

p

( |b|p) = 1, this is equivalent to |a|p <
|b|p = 1 and

p
b−∃. In this case, both roots of (7)

belong to Z∗p.

Let |a|2p = |b|p and
p

D − ∃. The quadratic
equation (7) is solvable in Z∗p if and only if |x1|p =
|x2|p =

p

( |b|p) = |a|p = 1. This is equivalent to
|a|p = |b|p = 1 and

p
D−∃. In this case, both roots

of (7) belong to Z∗p.

Let |a|2p > |b|p. The quadratic equation (7)
is solvable in Z∗p if and only if either one of the
conditions |x1|p = |b|p / |a|p = 1 or |x2|p = |a|p = 1
holds. Consequently, if |a|p = |b|p > 1 then |x1|p = 1
and if |b|p < |a|p = 1 then |x2|p = 1. In this case,
only one root of (7) belongs to Z∗p. 2

Similarly, one can prove the following results.

Theorem 8 The quadratic equation (7) is:

A. solvable in Zp \ Z∗p if and only if one of the
following conditions holds:

(i) |a|2p < |b|p < 1,
p

b−∃,
(ii) |a|2p = |b|p < 1,

p
D−∃,

(iii) |a|2p > |b|p, |a|p > |b|p;
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B. solvable in Qp \ Zp if and only if one of the
following conditions holds:

(i) |a|2p < |b|p, |b|p > 1,
p

b−∃,
(ii) |a|2p = |b|p > 1,

p
D−∃,

(iii) |a|2p > |b|p, |a|p > 1;

C. solvable in Zp if and only if one of the following
conditions holds:

(i) |a|2p < |b|p ¶ 1,
p

b−∃,
(ii) |a|2p = |b|p ¶ 1,

p
D−∃,

(iii) |a|2p > |b|p, |a|p ¾ |b|p;

D. solvable in Qp \(Zp \Z∗p) if and only if one of the
following conditions holds:

(i) |a|2p < |b|p , |b|p ¾ 1,
p

b−∃,
(ii) |a|2p = |b|p ¾ 1,

p
D−∃,

(iii) |a|2p > |b|p, |a|p ¾ 1;

E. Solvable in Qp \ Z∗p if and only if one of the
following conditions holds:

(i) |a|2p < |b|p 6= 1,
p

b−∃,
(ii) |a|2p = |b|p 6= 1,

p
D−∃,

(iii) |a|2p > |b|p;

F . solvable in Spm(0) if and only if one of the
following conditions holds:

(i) |a|2p < |b|p = p2m,
p

b−∃;
(ii) |a|2p = |b|p = p2m,

p
D−∃;

(iii) |b|p < |a|
2
p = p2m;

(iv) |a|2p > |b|p = pm |a|p.

THE NUMBER OF SOLUTIONS

In this section, we present the number NA(x2 +
ax − b) of solutions (including multiplicity) of a
quadratic equation, where A ∈ {Z∗p, Zp \ Z∗p, Qp \
Zp, Zp, Qp \ (Zp \Z∗p), Qp \Z∗p, Spm(0)}.

It is clear that NQp
(x2 + ax − b) = 2 (including

multiplicity) as long as (7) is solvable in Qp.
The proofs of the following results are already

covered in the proof of Theorem 7.

Theorem 9 Let the quadratic equation (7) be solv-
able in A. The following statements hold true:

NZ∗p(x
2+ ax − b)

=















2, |a|p < |b|p = 1,
p

b−∃,
2, |a|p = |b|p = 1,

p
D−∃,

1, |a|p = |b|p > 1,

1, |b|p < |a|p = 1;

NZp\Z∗p(x
2+ ax − b)

=



















2, |a|2p < |b|p < 1,
p

b−∃,
2, |a|2p = |b|p < 1,

p
D−∃,

2, |b|p < |a|
2
p < 1,

1, |a|p > |b|p , |a|p ¾ 1;

NQp\Zp
(x2+ ax − b)

=



















2, |a|2p < |b|p , |b|p > 1,
p

b−∃,
2, |a|2p = |b|p > 1,

p
D−∃,

2, |a|p < |b|p < |a|
2
p ,

1, |a|p ¾ |b|p , |a|p > 1;

NZp
(x2+ ax − b)

=



















2, |a|2p < |b|p ¶ 1,
p

b−∃,
2, |a|2p = |b|p ¶ 1,

p
D−∃,

2, |b|p < |a|
2
p ¶ 1,

1, |a|p ¾ |b|p , |a|p > 1;

NQp\(Zp\Z∗p)(x
2+ ax − b)

=



















2, |a|2p < |b|p , |b|p ¾ 1,
p

b−∃,
2, |a|2p = |b|p ¾ 1,

p
D−∃,

2, |a|p ¶ |b|p < |a|
2
p ,

1, |a|p > |b|p , |a|p > 1;

NQp\Z∗p(x
2+ ax − b)

=



























2, |a|2p < |b|p 6= 1,
p

b−∃,
2, |a|2p = |b|p 6= 1,

p
D−∃,

2, |a|2p > |b|p , |a|p 6= 1, |a|p 6= |b|p ,

1, |b|p < |a|p = 1,

1, |a|p = |b|p > 1;

NSpm (0)(x
2+ ax − b)

=



















2, |a|2p < |b|p = p2m,
p

b−∃,
2, |a|2p = |b|p = p2m,

p
D−∃,

1, |b|p < |a|
2
p = p2m,

1, |a|2p > |b|p = pm |a|p .
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Corollary 1 Let the quadratic equation (7) be solv-
able in A ∈ {Z∗p, Zp \Z∗p}. Then one has that

NZ∗p(x
2+ ax − b) =

¨

2, |b|p = 1,

1, |b|p 6= 1,

NZp\Z∗p(x
2+ ax − b) =

¨

2, |a|p < 1,

1, |a|p ¾ 1.

APPLICATIONS

In this section, we try to solve the following prob-
lem which was arisen from the construction of the
TIpGM associated with the p-adic Potts model with
q-states. Let us consider

x2+ ax = b. (8)

Let p > 2. Provide solvability criteria of (8) over the
set Ep = {x ∈ Z∗p : |x −1|p < 1}.

Let x−1= y . Then (8) takes the following form:

y2+(a+2)y = b− a−1. (9)

Consequently, the solvability of (8) over Ep is equiv-
alent to the solvability of (9) over Zp \ Z∗p. The
solvability criterion of (9) over Zp \ Z∗p was given
in Theorem 8. It is clear that x = 1 is a solution of
(8) if and only if b = a+ 1. Moreover, in this case,
x = 1 and x =−a−1 are solutions. Hence we always
suppose that b 6= a+1. By means of Theorem 8 and
Corollary 1, we get the following results.

Theorem 10 The quadratic equation (8) is solvable
over Ep if and only if one of the following conditions
holds:
(i) |a+2|2p < |b− a−1|p < 1,

p
b− a−1−∃,

(ii) |a+2|2p = |b− a−1|p < 1,
p

a2+4b−∃,
(iii) |a+2|2p > |b− a−1|p , |a+2|p > |b− a−1|p.

Theorem 11 Let the quadratic equation (8) be solv-
able over Ep. Then the following holds:

NEp
(x2+ ax − b) =

¨

2, |a+2|p < 1,

1, |a+2|p ¾ 1.

Acknowledgements: The first author (M.S.) thanks the
MOE (grant ERGS13-025-0058) for financial support.
The authors wish to express their gratitude to the anony-
mous referees for several helpful comments concerning
the presentation of the paper.

REFERENCES

1. Borevich ZI, Shafarevich IR (1966) Number Theory,
Academic Press.

2. Koblitz N (1984) p-adic Numbers, p-adic Analysis,
and Zeta Functions, Springer.

3. Rosen KH (2011) Elementary Number Theory and its
Applications, Pearson.

4. Gouvea FQ (1997) p-adic Numbers: An Introduction,
Springer-Verlag.

5. Ludkovsky S, Khrennikov A (2003) Stochastic pro-
cesses on non-Archimedean spaces with values in
non-Archimedean fields. Markov Process Relat Field
9, 131–62.

6. Beltrametti E, Cassinelli G (1972) Quantum mechan-
ics and p-adic numbers. Found Phys 2, 1–7.

7. Khrennikov AYu (1991) p-adic quantum mechanics
with p-adic valued functions. J Math Phys 32, 932–6.

8. Khrennikov AYu (1994) p-adic Valued Distributions in
Mathematical Physics, Kluwer.

9. Volovich IV (1987) p-adic strings. Class Quant Grav
4, 83–7.

10. Mukhamedov F (2013) On dynamical systems and
phase transitions for q + 1-state p-adic Potts model
on the Cayley tree. Math Phys Anal Geom 16, 49–87.

11. Mukhamedov F, Akin H (2013) Phase transitions for
p-adic Potts model on the Cayley tree of order three.
J Stat Mech 7, P07014.

12. Mukhamedov F, Rozikov U (2004) On Gibbs mea-
sures of p-adic Potts model on Cayley tree. Indagat
Math 15, 85–100.

13. Rozikov U, Khakimov O (2015) Description of all
translation-invariant p-adic Gibbs measures for the
Potts model on a Cayley tree. Markov Process Relat
Field 21, 177–204.

14. Mukhamedov F, Omirov B, Saburov M (2014) On
cubic equations over p-adic field. Int J Number Theor
10, 1171–90.

15. Mukhamedov F, Omirov B, Saburov M, Masutova
K (2013) Solvability of cubic equations in p-adic
integers, p > 3. Siberian Math J 54, 501–16.

16. Mukhamedov F, Saburov M (2013) On equation xq =
a over Qp. J Number Theor 133, 55–8.

17. Saburov M, Ahmad MAKh (2014) Solvability criteria
for cubic equations over Z∗2. AIP Conf Proc 1602,
792–7.

www.scienceasia.org

http://www.scienceasia.org/2015.html
http://dx.doi.org/10.1007/978-3-642-59058-0
http://dx.doi.org/10.1007/978-3-642-59058-0
http://dx.doi.org/10.1007/BF00708614
http://dx.doi.org/10.1007/BF00708614
http://dx.doi.org/10.1063/1.529353
http://dx.doi.org/10.1063/1.529353
http://dx.doi.org/10.1088/0264-9381/4/4/003
http://dx.doi.org/10.1088/0264-9381/4/4/003
http://dx.doi.org/10.1007/s11040-012-9120-z
http://dx.doi.org/10.1007/s11040-012-9120-z
http://dx.doi.org/10.1007/s11040-012-9120-z
http://dx.doi.org/10.1088/1742-5468/2013/07/P07014
http://dx.doi.org/10.1088/1742-5468/2013/07/P07014
http://dx.doi.org/10.1088/1742-5468/2013/07/P07014
http://dx.doi.org/10.1016/S0019-3577(04)90007-9
http://dx.doi.org/10.1016/S0019-3577(04)90007-9
http://dx.doi.org/10.1016/S0019-3577(04)90007-9
http://dx.doi.org/10.1142/S1793042114500201
http://dx.doi.org/10.1142/S1793042114500201
http://dx.doi.org/10.1142/S1793042114500201
http://dx.doi.org/10.1134/S0037446613030154
http://dx.doi.org/10.1134/S0037446613030154
http://dx.doi.org/10.1134/S0037446613030154
http://dx.doi.org/10.1016/j.jnt.2012.07.006
http://dx.doi.org/10.1016/j.jnt.2012.07.006
http://dx.doi.org/10.1063/1.4882576
http://dx.doi.org/10.1063/1.4882576
http://dx.doi.org/10.1063/1.4882576
www.scienceasia.org

