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ABSTRACT: In this paper, we obtain a multiplicity result for the p-biharmonic equation with smooth boundary.

KEYWORDS: critical point, variational method

MSC2010: 35J35 35J60 47J30 58E05

INTRODUCTION AND PRELIMINARIES

Let Ω be a bounded domain in RN , N ¾ 3 with
smooth boundary ∂Ω and a constant p with 1< p<
N/2. In this paper, we consider the p-biharmonic
equation

¨

∆2
pu+ |u|p−2 u= λ f (u), in Ω,

∂ (|∆u|p−2∆u)
∂ ν = µg(u), on ∂Ω.

(1)

The fourth-order equation with nonlinearity fur-
nishes a model to study travelling waves in sus-
pension bridges. Lazer and McKenna1 give a sur-
vey of results in this direction. This fourth-order
semilinear elliptic problem can be considered as an
analogue of a class of second-order problems which
have been studied by many authors (see Refs. 2–4
and references therein). Bonder and Rossi5 study
the existence of nontrivial solutions of the follow-
ing fourth-order problem with nonlinear boundary
conditions:

¨

−∆2u= u, in Ω,

− ∂∆u
∂ ν = f (x , u), on ∂Ω.

They also impose one of the following boundary
conditions: ∆u = 0 on ∂Ω, or ∂ u/∂ ν = 0 on
∂Ω. The authors find infinitely many weak so-
lutions for the above problems under suitable as-
sumptions on the nonlinearity of f . The more
general p-biharmonic equation has been considered
in Refs. 2, 3. Differential equations with nonlinear
boundary conditions have been considered by many
authors in the last twenty years6.

Motivated by Refs. 2–4, 7, we show that prob-
lem (1) has at least two nontrivial solutions pro-
vided that λ and µ are suitable. More precisely, we

are interested in the following case: the functions
f , g are (p − 1)-sublinear at infinity. Our main
ingredient is a recent critical point result due to
Bonanno8.

In order to state our main result we introduce
some hypotheses. We assume that the functions f
and g : R→ R satisfy the following conditions.

(H1) There exist constants C1, C2 > 0 such that for
all t ∈ RN ,

| f (t)|¶ C1(1+ |t|
p−1), |g(t)|¶ C2 |t|

p−1 .

(H2) f is superlinear at zero, i.e.,

lim
t→0

f (t)

|t|p−1 = 0.

(H3) If we set F(t) =
∫ t

0 f (s)ds and G(t) =
∫ t

0 g(s)ds, then there exists t0 ∈ R such that

F(t0) =

∫ t0

0

f (s)ds > 0

or

G(t0) =

∫ t0

0

g(s)ds > 0.

Let W 2,p(Ω) be the usual Sobolev space with
respect to the norm

‖u‖p
2,p =

∫

Ω

(|∆u|p + |u|p)dx

which is equivalent to the standard norm and
W 2,p

0 (Ω) which is the closure of C∞0 (Ω) in W 2,p(Ω).
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Proposition 1 (see Ref. 7) For any 1 < p < N/2
and 1 ¶ q ¶ p? = N p/(N − 2p), we denote by Sq,Ω

the best constant in the embedding W 2,p(Ω) ,→ Lq(Ω)
and for all 1 ¶ q ¶ p? = (N − 1)p/(N − 2p), we also
denote by Sq,∂Ω the best constant in the embedding
W 2,p(Ω) ,→ Lq(∂Ω), i.e.,

Sq,∂Ω = inf
u∈W 2,p(Ω)\W 2,p

0 (Ω)

∫

Ω
(|∆u|p + |u|p)dx
�∫

∂Ω
|u|q dσ

�p/q
.

Moreover, if 1 ¶ q < p?, then the embedding
W 2,p(Ω) ,→ Lq(Ω) is compact and if 1¶ q < p?, then
the embedding W 2,p(Ω) ,→ Lq(∂Ω) is compact.

Definition 1 We say that u ∈ W 2,p(Ω) is a weak
solution of problem (1) if and only if
∫

Ω

(|∆u|p−2∆u∆ϕ+ |u|p−2 uϕ)dx −λ
∫

Ω

f (u)ϕ dx

−µ
∫

∂Ω

g(u)ϕ dσ = 0

for all ϕ ∈W 2,p(Ω).

Theorem 1 Assuming hypotheses (H1)–(H3) are ful-
filled then there exist an open interval Λµ and a
constant δµ > 0 such that for all λ ∈ Λµ, problem
(1) has at least two weak solutions in W 2,p(Ω) whose
‖·‖2,p-norms are less than δµ.

We emphasize that the condition (H3) cannot
be omitted. Indeed, if f ≡ 0 and g ≡ 0, then (H1)
and (H2) clearly hold, but problem (1) has only
the trivial solution. Theorem 1 will be proved by
using a result on the existence of at least three
critical points by Bonanno8 which is a refinement
of a general principle of Ricceri9, 10. For the reader’s
convenience, we describe it as follows.

Theorem 2 (see Ref. 8) Let (X ,‖·‖) be a separable
and reflexive real Banach space, and Φ, Ψ : X → R be
two continuously Gâteaux differentiable functionals.
Assume that there exists x0 ∈ X such that Φ(x0) =
Ψ(x0) = 0, Φ(x) ¾ 0 for all x ∈ X and there exist
x1 ∈ X , ρ > 0 such that
(i) ρ < Φ(x1),
(ii) sup{Φ(x)<ρ}Ψ(x)< ρΨ(x1)/Φ(x1).
Further, put

a =
ξρ

ρ
Ψ(x1)
Φ(x1)

− sup
{Φ(x)<ρ}

Ψ(x)
,

with ξ > 1, and assume that the functional Φ− λΨ
is sequentially weakly lower semicontinuous, satisfies
the Palais-Smale condition, and

(iii) lim‖x‖→∞[Φ(x)−λΨ(x)] = +∞ for every λ ∈
[0, a].

Then, there exist an open interval Λ ⊂ [0, a] and a
positive real number δ such that for each λ ∈ Λ,
the equation Φ′(u) − λΨ ′(u) = 0 has at least three
solutions in X whose norms are less than δ.

PROOF OF THEOREM 1

For λ and µ ∈ R, we define the functional Iµ,λ :
W 2,p(Ω)→ R by

Iµ,λ(u) = Φ(u)−λΨ(u) for all u ∈W 2,p(Ω),

where

Φ(u) =

∫

Ω

(|∆u|p + |u|p)dx −µ
∫

∂Ω

G(u)dσ, (2)

Ψ(u) =

∫

Ω

F(u)dx (3)

with F(t) =
∫ t

0 f (t)dt and G(t) =
∫ t

0 g(t)dt. A sim-
ple computation implies that the functional Iµ,λ is C1

and hence weak solutions of (1) correspond to the
critical points of Iµ,λ. We now check all assumptions
of Theorem 2. For each µ ∈ [0, pSp,∂Ω/C2) we have
Φ(u) ¾ 0 for all u ∈W 2,p(Ω) and Φ(0) = Ψ(0) = 0
since the assumption (H1) holds. Moreover, by
the compact embeddings W 2,p(Ω) ,→ Lp(Ω) and
W 2,p(Ω) ,→ Lp(∂Ω), a simple computation helps us
to obtain the following lemma.

Lemma 1 For every µ ∈ [0, pSp,∂Ω/C2) and all λ ∈
R, the functional Iµ,λ is sequentially weakly lower
semicontinuous on W 2,p(Ω).

Lemma 2 There exist two positive constants µ and
λ such that for all µ ∈ [0,µ) and all λ ∈ [0,λ),
the functional Iλ,µ is coercive and satisfies the Palais-
Smale condition in W 2,p(Ω).

Proof : By (H1), we have

Iµ,λ(u) =

∫

Ω

(|∆u|p + |u|p)dx −λ
∫

Ω

F(u)dx

−µ
∫

∂Ω

G(u)dσ

¾ ‖u‖p
2,p −λC1

∫

Ω

�

|u|+
|u|p

p

�

dx

−µ
C2

p

∫

∂Ω

|u|p dσ
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¾ ‖u‖p
2,p

�

1−λ
C1

pSp,Ω
−µ

C2

pSp,∂Ω

�

−λ
C1

S1,Ω
‖u‖2,p. (4)

Since relation (4) holds, by choosing

µ= λ=min
§ pSp,Ω

2C1
,

pSp,∂Ω

2C2

ª

,

where C1, C2 are given in (H1), we conclude that for
all λ ∈ [0,λ) and all µ ∈ [0,µ), the functional Iµ,λ is
coercive.

Now, let {un} be a Palais-Smale sequence for the
functional Iµ,λ in W 2,p(Ω), i.e.,
�

�Iµ,λ(un)
�

�¶ c, I ′µ,λ(un)→ 0 in W−2,p(Ω), (5)

where c is a constant and W−2,p(Ω) is the dual space
of W 2,p(Ω). Since Iµ,λ is coercive, the sequence
{un} is bounded in W 2,p(Ω). Hence there exists
a subsequence of {un}, still denoted by {un} such
that {un} converges weakly to some u ∈ W 2,p(Ω)
and hence converges strongly to u in Lp(Ω) and in
Lp(∂Ω). We shall prove that {un} converges strongly
to u in W 2,p(Ω). Indeed, we have

‖un−u‖p
2,p

¶
∫

Ω

(|∆un|
p−2∆un− |∆u|p−2∆u)

× (∆un−∆u)dx

+

∫

Ω

(|un|
p−2 un− |u|

p−2 u)(un−u)dx

= [I ′µ,λ(un)− I ′µ,λ(u)](un−u)

+λ

∫

Ω

[ f (un)− f (u)](un−u)dx

+µ

∫

∂Ω

[g(un)− g(u)](un−u)dx .

On the other hand, the compact embeddings and
(H1) imply
�

�

�

�

∫

Ω

[ f (un)− f (u)](un−u)dx

�

�

�

�

¶
∫

Ω

| f (un)− f (u)| |un−u| dx

¶ C1

∫

Ω

(2+ |un|
p−1+ |u|p−1) |un−u| dx

¶ C1

�

2meas(Ω)(p−1)/p + ‖un‖
p−1
Lp(Ω)+ ‖u‖

p−1
Lp(Ω)

�

×‖un−u‖p
Lp(Ω) ,

where meas(Ω) denotes the Lebesgue measure of Ω,
which approaches 0 as n→∞. Similarly, we obtain
�

�

�

�

∫

∂Ω

[g(un)− g(u)](un−u)dx

�

�

�

�

¶
∫

∂Ω

|g(un)− g(u)| |un−u| dx

¶ C2

∫

∂Ω

(|un|
p−1+ |u|p−1) |un−u| dx

¶ C2(‖un‖
p−1
Lp(∂Ω)+








u‖p−1
Lp(∂Ω))








un−u‖p
Lp(∂Ω)

which approaches 0 as n→∞. Hence by (5) we
have ‖un−u‖2,p → 0 as n→∞. 2

Lemma 3 For every µ∈ [0,µ) with µ as in Lemma 2,
we have

lim
ρ→0+

sup{Ψ(u) : Φ(u) < ρ}
ρ

= 0.

Proof : Let λ ∈ [0,λ) and µ ∈ [0,µ) be fixed. By
(H2), for any ε > 0, there exists δ = δ(ε) > 0 such
that

| f (s)|< εpSp,Ω

�

1−µ
C2

pSp,∂Ω

�

|s|p−1 ∀|s|< δ.

We first fix q ∈ (p, p?). Combining the above in-
equalities with (H1) we deduce that

|F(s)|¶ εSp,Ω

�

1−µ
C2

pSp,∂Ω

�

|s|p + Cδ |s|
q , (6)

for all s ∈ R, where Cδ is a constant depending on
δ. Now, for every ρ > 0, we define the sets

B1
ρ = {u ∈W 2,p(Ω) : Φ(u) < ρ}

and

B2
ρ =

�

u ∈W 2,p(Ω) :

�

1−µ
C2

pSp,∂Ω

�

‖u‖p
2,p < ρ

�

.

ThenB1
ρ ⊂B

2
ρ. From (6) we get

|Ψ(u)|¶ ε
�

1−µ
C2

pSp,∂Ω

�
















u‖p
2,p +

Cδ
Sq/p

q,Ω
















u‖q
2,p.

(7)
It is clear that 0 ∈ B1

ρ and Ψ(0) = 0. Hence, 0 ¶
supu∈B1

ρ
Ψ(u). Using (7) we get

0¶
supu∈B1

ρ
Ψ(u)

ρ
¶

supu∈B2
ρ
Ψ(u)

ρ
(8)

¶ ε+
Cδ

Sq/p
q,Ω

�

1−µ
C2

pSp,∂Ω

�−q/p

ρq/p−1.
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We complete the proof of the lemma by letting ρ→
0+, since ε > 0 is arbitrary. 2
Proof of Theorem 1: Let s0 be as in (H3). We choose
a constant r0 > 0 such that r0 < dist(0,∂Ω). For
each σ ∈ (0, 1) we define the function uσ(x) = 0, if
x ∈ RN\Br0

(0), uσ(x) = s0, if x ∈ Bσr0
(0), uσ(x) =

1
2 s0 sin[(π/(1−σ)r0)(

1
2 (1+σ)r0−|x − x0|)]+

1
2 s0, if

x ∈ Br0
(0)\Bσr0

(0), where Br0
(0) denotes the open

ball with centre 0 and radius r0 > 0. Then it is clear
that uσ ∈W 2,p(Ω). We have that uσ(x) ∈W 2,p and
|uσ(x)|¶ s0 for all x ∈ RN . Moreover, we have

Ψ(uσ)¾ [F(s0)σ
N − max

|t|¶|s0|
|F(t)| (1−σN )]ωN rN

0 ,

(9)
where ωN is the volume of the unit ball in RN .
From (9), there is σ0 > 0 such that





uσ0







2,p > 0
and Ψ(uσ0

) > 0. Now, by Lemma 3, we can choose
ρ0 ∈ (0,1) such that

ρ0 <

�

1−µ
C2

pSp,∂Ω

�





uσ0







p

2,p ¶ Φ(uσ0
)

and satisfies

supΦ(u) <ρ0
Ψ(u)

ρ0
<
Ψ(uσ0

)

2Φ(uσ0
)
. (10)

To apply Theorem 2, we choose x1 = uσ0
and x0 = 0.

Then the assumptions (i) and (ii) of Theorem 2 are
satisfied. Next, we define

aµ =
1+ρ0

Ψ(uσ0
)

Φ(uσ0
)
−

sup{Ψ(u) : Φ(u)< ρ0}
ρ0

> 0, (11)

aµ =min{aµ,λ}. (12)

and a simple computation implies that (iii) is ver-
ified. Hence, there exist an open interval Λµ ⊂
[0, aµ] and a real positive number δµ such that
for each λ ∈ Λµ, the equation I ′

µ,λ(u) = Φ
′
µ(u) −

λΨ ′(u) = 0 has at least three solutions in W 2,p(Ω)
whose norms are less than δµ. By (H1) and (H2),
one of them may be the trivial one. Thus (1) has at
least two weak solutions in W 2,p(Ω). The proof is
complete. 2
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