Multiple solutions for a *p*-biharmonic equation with nonlinear boundary conditions

Wen-Wu Pan*, Xu-Dong Lin

Department of Science, Sichuan University of Science and Engineering, Zigong 643000, China

*Corresponding author, e-mail: wenwupan@sohu.com

Received 18 Feb 2014 Accepted 16 Apr 2015

ABSTRACT: In this paper, we obtain a multiplicity result for the *p*-biharmonic equation with smooth boundary.

KEYWORDS: critical point, variational method

MSC2010: 35J35 35J60 47J30 58E05

INTRODUCTION AND PRELIMINARIES

Let Ω be a bounded domain in \mathbb{R}^N , $N \ge 3$ with smooth boundary $\partial \Omega$ and a constant p with 1 . In this paper, we consider the <math>p-biharmonic equation

$$\begin{cases} \Delta_p^2 u + |u|^{p-2} u = \lambda f(u), & \text{in } \Omega, \\ \frac{\partial (|\Delta u|^{p-2} \Delta u)}{\partial v} = \mu g(u), & \text{on } \partial \Omega. \end{cases}$$
(1)

The fourth-order equation with nonlinearity furnishes a model to study travelling waves in suspension bridges. Lazer and McKenna¹ give a survey of results in this direction. This fourth-order semilinear elliptic problem can be considered as an analogue of a class of second-order problems which have been studied by many authors (see Refs. 2–4 and references therein). Bonder and Rossi⁵ study the existence of nontrivial solutions of the following fourth-order problem with nonlinear boundary conditions:

$$\begin{cases} -\Delta^2 u = u, & \text{in } \Omega, \\ -\frac{\partial \Delta u}{\partial v} = f(x, u), & \text{on } \partial \Omega. \end{cases}$$

They also impose one of the following boundary conditions: $\Delta u = 0$ on $\partial \Omega$, or $\partial u/\partial v = 0$ on $\partial \Omega$. The authors find infinitely many weak solutions for the above problems under suitable assumptions on the nonlinearity of f. The more general *p*-biharmonic equation has been considered in Refs. 2, 3. Differential equations with nonlinear boundary conditions have been considered by many authors in the last twenty years⁶.

Motivated by Refs. 2–4, 7, we show that problem (1) has at least two nontrivial solutions provided that λ and μ are suitable. More precisely, we are interested in the following case: the functions f, g are (p-1)-sublinear at infinity. Our main ingredient is a recent critical point result due to Bonanno⁸.

In order to state our main result we introduce some hypotheses. We assume that the functions fand $g : \mathbb{R} \to \mathbb{R}$ satisfy the following conditions.

(H1) There exist constants $C_1, C_2 > 0$ such that for all $t \in \mathbb{R}^N$,

$$|f(t)| \leq C_1(1+|t|^{p-1}), \quad |g(t)| \leq C_2 |t|^{p-1}.$$

(H2) f is superlinear at zero, i.e.,

$$\lim_{t \to 0} \frac{f(t)}{|t|^{p-1}} = 0.$$

(H3) If we set $F(t) = \int_0^t f(s) ds$ and $G(t) = \int_0^t g(s) ds$, then there exists $t_0 \in \mathbb{R}$ such that

$$F(t_0) = \int_0^{t_0} f(s) \,\mathrm{d}s > 0$$

or

$$G(t_0) = \int_0^{t_0} g(s) \,\mathrm{d}s > 0$$

Let $W^{2,p}(\Omega)$ be the usual Sobolev space with respect to the norm

$$|u||_{2,p}^{p} = \int_{\Omega} (|\Delta u|^{p} + |u|^{p}) \mathrm{d}x$$

which is equivalent to the standard norm and $W_0^{2,p}(\Omega)$ which is the closure of $C_0^{\infty}(\Omega)$ in $W^{2,p}(\Omega)$.

Proposition 1 (see Ref. 7) For any 1 $and <math>1 \leq q \leq p^* = Np/(N-2p)$, we denote by $S_{q,\Omega}$ the best constant in the embedding $W^{2,p}(\Omega) \hookrightarrow L^q(\Omega)$ and for all $1 \leq q \leq p_* = (N-1)p/(N-2p)$, we also denote by $S_{q,\partial\Omega}$ the best constant in the embedding $W^{2,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$, *i.e.*,

$$S_{q,\partial\Omega} = \inf_{u \in W^{2,p}(\Omega) \setminus W_0^{2,p}(\Omega)} \frac{\int_{\Omega} (|\Delta u|^p + |u|^p) \, \mathrm{d}x}{\left(\int_{\partial\Omega} |u|^q \, \mathrm{d}\sigma\right)^{p/q}}$$

Moreover, if $1 \leq q < p^*$, then the embedding $W^{2,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact and if $1 \leq q < p_*$, then the embedding $W^{2,p}(\Omega) \hookrightarrow L^q(\partial \Omega)$ is compact.

Definition 1 We say that $u \in W^{2,p}(\Omega)$ is a weak solution of problem (1) if and only if

$$\int_{\Omega} (|\Delta u|^{p-2} \Delta u \Delta \varphi + |u|^{p-2} u\varphi) \, \mathrm{d}x - \lambda \int_{\Omega} f(u)\varphi \, \mathrm{d}x$$
$$-\mu \int_{\partial \Omega} g(u)\varphi \, \mathrm{d}\sigma = 0$$

for all $\varphi \in W^{2,p}(\Omega)$.

Theorem 1 Assuming hypotheses (H1)–(H3) are fulfilled then there exist an open interval Λ_{μ} and a constant $\delta_{\mu} > 0$ such that for all $\lambda \in \Lambda_{\mu}$, problem (1) has at least two weak solutions in $W^{2,p}(\Omega)$ whose $\|\cdot\|_{2,p}$ -norms are less than δ_{μ} .

We emphasize that the condition (H3) cannot be omitted. Indeed, if $f \equiv 0$ and $g \equiv 0$, then (H1) and (H2) clearly hold, but problem (1) has only the trivial solution. Theorem 1 will be proved by using a result on the existence of at least three critical points by Bonanno⁸ which is a refinement of a general principle of Ricceri^{9,10}. For the reader's convenience, we describe it as follows.

Theorem 2 (see Ref. 8) Let $(X, \|\cdot\|)$ be a separable and reflexive real Banach space, and $\Phi, \Psi : X \to \mathbb{R}$ be two continuously Gâteaux differentiable functionals. Assume that there exists $x_0 \in X$ such that $\Phi(x_0) =$ $\Psi(x_0) = 0$, $\Phi(x) \ge 0$ for all $x \in X$ and there exist $x_1 \in X$, $\rho > 0$ such that (i) $\rho < \Phi(x_1)$, (ii) $\sup_{\{\Phi(x) < \rho\}} \Psi(x) < \rho \Psi(x_1)/\Phi(x_1)$. Further, put

$$\overline{a} = \frac{\xi \rho}{\rho \frac{\Psi(x_1)}{\Phi(x_1)} - \sup_{\{\Phi(x) < \rho\}} \Psi(x)},$$

with $\xi > 1$, and assume that the functional $\Phi - \lambda \Psi$ is sequentially weakly lower semicontinuous, satisfies the Palais-Smale condition, and Then, there exist an open interval $\Lambda \subset [0,\overline{a}]$ and a positive real number δ such that for each $\lambda \in \Lambda$, the equation $\Phi'(u) - \lambda \Psi'(u) = 0$ has at least three solutions in X whose norms are less than δ .

PROOF OF THEOREM 1

For λ and $\mu \in \mathbb{R}$, we define the functional $I_{\mu,\lambda}$: $W^{2,p}(\Omega) \to \mathbb{R}$ by

$$I_{\mu,\lambda}(u) = \Phi(u) - \lambda \Psi(u)$$
 for all $u \in W^{2,p}(\Omega)$,

where

$$\Phi(u) = \int_{\Omega} (|\Delta u|^{p} + |u|^{p}) dx - \mu \int_{\partial \Omega} G(u) d\sigma, \quad (2)$$

$$\Psi(u) = \int_{\Omega} F(u) dx \qquad (3)$$

with $F(t) = \int_0^t f(t) dt$ and $G(t) = \int_0^t g(t) dt$. A simple computation implies that the functional $I_{\mu,\lambda}$ is C^1 and hence weak solutions of (1) correspond to the critical points of $I_{\mu,\lambda}$. We now check all assumptions of Theorem 2. For each $\mu \in [0, pS_{p,\partial\Omega}/C_2)$ we have $\Phi(u) \ge 0$ for all $u \in W^{2,p}(\Omega)$ and $\Phi(0) = \Psi(0) = 0$ since the assumption (H1) holds. Moreover, by the compact embeddings $W^{2,p}(\Omega) \hookrightarrow L^p(\Omega)$ and $W^{2,p}(\Omega) \hookrightarrow L^p(\partial \Omega)$, a simple computation helps us to obtain the following lemma.

Lemma 1 For every $\mu \in [0, pS_{p,\partial\Omega}/C_2)$ and all $\lambda \in \mathbb{R}$, the functional $I_{\mu,\lambda}$ is sequentially weakly lower semicontinuous on $W^{2,p}(\Omega)$.

Lemma 2 There exist two positive constants $\overline{\mu}$ and $\overline{\lambda}$ such that for all $\mu \in [0,\overline{\mu})$ and all $\lambda \in [0,\overline{\lambda})$, the functional $I_{\lambda,\mu}$ is coercive and satisfies the Palais-Smale condition in $W^{2,p}(\Omega)$.

Proof: By (H1), we have

$$I_{\mu,\lambda}(u) = \int_{\Omega} (|\Delta u|^{p} + |u|^{p}) \, \mathrm{d}x - \lambda \int_{\Omega} F(u) \, \mathrm{d}x$$
$$-\mu \int_{\partial \Omega} G(u) \, \mathrm{d}\sigma$$
$$\geqslant ||u||_{2,p}^{p} - \lambda C_{1} \int_{\Omega} \left(|u| + \frac{|u|^{p}}{p} \right) \, \mathrm{d}x$$
$$-\mu \frac{C_{2}}{p} \int_{\partial \Omega} |u|^{p} \, \mathrm{d}\sigma$$

ScienceAsia 41 (2015)

$$\geq \|u\|_{2,p}^{p} \left(1 - \lambda \frac{C_{1}}{pS_{p,\Omega}} - \mu \frac{C_{2}}{pS_{p,\partial\Omega}}\right) - \lambda \frac{C_{1}}{S_{1,\Omega}} \|u\|_{2,p}.$$

$$(4)$$

Since relation (4) holds, by choosing

$$\overline{\mu} = \overline{\lambda} = \min\left\{\frac{pS_{p,\Omega}}{2C_1}, \frac{pS_{p,\partial\Omega}}{2C_2}\right\}$$

where C_1 , C_2 are given in (H1), we conclude that for all $\lambda \in [0, \overline{\lambda})$ and all $\mu \in [0, \overline{\mu})$, the functional $I_{\mu,\lambda}$ is coercive.

Now, let $\{u_n\}$ be a Palais-Smale sequence for the functional $I_{\mu,\lambda}$ in $W^{2,p}(\Omega)$, i.e.,

$$|I_{\mu,\lambda}(u_n)| \leq \overline{c}, \quad I'_{\mu,\lambda}(u_n) \to 0 \text{ in } W^{-2,p}(\Omega), \quad (5)$$

where \overline{c} is a constant and $W^{-2,p}(\Omega)$ is the dual space of $W^{2,p}(\Omega)$. Since $I_{\mu,\lambda}$ is coercive, the sequence $\{u_n\}$ is bounded in $W^{2,p}(\Omega)$. Hence there exists a subsequence of $\{u_n\}$, still denoted by $\{u_n\}$ such that $\{u_n\}$ converges weakly to some $u \in W^{2,p}(\Omega)$ and hence converges strongly to u in $L^p(\Omega)$ and in $L^p(\partial \Omega)$. We shall prove that $\{u_n\}$ converges strongly to u in $W^{2,p}(\Omega)$. Indeed, we have

$$\begin{split} \|u_n - u\|_{2,p}^p \\ &\leqslant \int_{\Omega} (|\Delta u_n|^{p-2} \Delta u_n - |\Delta u|^{p-2} \Delta u) \\ &\times (\Delta u_n - \Delta u) \, \mathrm{d}x \\ &+ \int_{\Omega} (|u_n|^{p-2} u_n - |u|^{p-2} u) (u_n - u) \, \mathrm{d}x \\ &= [I'_{\mu,\lambda}(u_n) - I'_{\mu,\lambda}(u)] (u_n - u) \\ &+ \lambda \int_{\Omega} [f(u_n) - f(u)] (u_n - u) \, \mathrm{d}x \\ &+ \mu \int_{\partial \Omega} [g(u_n) - g(u)] (u_n - u) \, \mathrm{d}x. \end{split}$$

On the other hand, the compact embeddings and (H1) imply

$$\begin{split} \left| \int_{\Omega} [f(u_{n}) - f(u)](u_{n} - u) \, dx \right| \\ &\leq \int_{\Omega} |f(u_{n}) - f(u)| \, |u_{n} - u| \, dx \\ &\leq C_{1} \int_{\Omega} (2 + |u_{n}|^{p-1} + |u|^{p-1}) \, |u_{n} - u| \, dx \\ &\leq C_{1} \Big(2 \operatorname{meas}(\Omega)^{(p-1)/p} + ||u_{n}||_{L^{p}(\Omega)}^{p-1} + ||u||_{L^{p}(\Omega)}^{p-1} \Big) \\ &\times ||u_{n} - u||_{L^{p}(\Omega)}^{p}, \end{split}$$

where meas(Ω) denotes the Lebesgue measure of Ω , which approaches 0 as $n \to \infty$. Similarly, we obtain

$$\begin{split} \left| \int_{\partial\Omega} [g(u_n) - g(u)](u_n - u) \, \mathrm{d}x \right| \\ &\leq \int_{\partial\Omega} |g(u_n) - g(u)| \, |u_n - u| \, \mathrm{d}x \\ &\leq C_2 \int_{\partial\Omega} (|u_n|^{p-1} + |u|^{p-1}) \, |u_n - u| \, \mathrm{d}x \\ &\leq C_2 (||u_n||^{p-1}_{L^p(\partial\Omega)} + \left\| u \right\|^{p-1}_{L^p(\partial\Omega)}) \left\| u_n - u \right\|^p_{L^p(\partial\Omega)} \end{split}$$

which approaches 0 as $n \to \infty$. Hence by (5) we have $||u_n - u||_{2,p} \to 0$ as $n \to \infty$.

Lemma 3 For every $\mu \in [0, \overline{\mu})$ with $\overline{\mu}$ as in Lemma 2, we have

$$\lim_{\rho \to 0^+} \frac{\sup\{\Psi(u) : \Phi(u) < \rho\}}{\rho} = 0.$$

Proof: Let $\lambda \in [0, \overline{\lambda})$ and $\mu \in [0, \overline{\mu})$ be fixed. By (H2), for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that

$$|f(s)| < \varepsilon p S_{p,\Omega} \left(1 - \mu \frac{C_2}{p S_{p,\partial\Omega}} \right) |s|^{p-1} \, \forall \, |s| < \delta.$$

We first fix $q \in (p, p^*)$. Combining the above inequalities with (H1) we deduce that

$$|F(s)| \leq \varepsilon S_{p,\Omega} \left(1 - \mu \frac{C_2}{p S_{p,\partial\Omega}} \right) |s|^p + C_{\delta} |s|^q, \quad (6)$$

for all $s \in \mathbb{R}$, where C_{δ} is a constant depending on δ . Now, for every $\rho > 0$, we define the sets

$$\mathscr{B}^1_{\rho} = \{ u \in W^{2,p}(\Omega) : \Phi(u) < \rho \}$$

and

$$\mathscr{B}_{\rho}^{2} = \left\{ u \in W^{2,p}(\Omega) : \left(1 - \mu \frac{C_{2}}{pS_{p,\partial\Omega}} \right) \|u\|_{2,p}^{p} < \rho \right\}.$$

Then $\mathscr{B}^1_{\rho} \subset \mathscr{B}^2_{\rho}$. From (6) we get

$$|\Psi(u)| \leq \varepsilon \left(1 - \mu \frac{C_2}{pS_{p,\partial\Omega}}\right) \left\| u \right\|_{2,p}^p + \frac{C_\delta}{S_{q,\Omega}^{q/p}} \left\| u \right\|_{2,p}^q.$$
(7)

It is clear that $0 \in \mathscr{B}^{1}_{\rho}$ and $\Psi(0) = 0$. Hence, $0 \leq \sup_{u \in \mathscr{B}^{1}_{\rho}} \Psi(u)$. Using (7) we get

$$0 \leq \frac{\sup_{u \in \mathscr{B}_{\rho}^{1}} \Psi(u)}{\rho} \leq \frac{\sup_{u \in \mathscr{B}_{\rho}^{2}} \Psi(u)}{\rho}$$
(8)
$$\leq \varepsilon + \frac{C_{\delta}}{S_{q,\Omega}^{q/p}} \left(1 - \mu \frac{C_{2}}{pS_{p,\partial\Omega}} \right)^{-q/p} \rho^{q/p-1}.$$

www.scienceasia.org

We complete the proof of the lemma by letting $\rho \rightarrow 0^+$, since $\varepsilon > 0$ is arbitrary.

Proof of Theorem 1: Let s_0 be as in (H3). We choose a constant $r_0 > 0$ such that $r_0 < \text{dist}(0, \partial \Omega)$. For each $\sigma \in (0, 1)$ we define the function $u_{\sigma}(x) = 0$, if $x \in \mathbb{R}^N \setminus B_{r_0}(0)$, $u_{\sigma}(x) = s_0$, if $x \in B_{\sigma r_0}(0)$, $u_{\sigma}(x) = \frac{1}{2}s_0 \sin[(\pi/(1-\sigma)r_0)(\frac{1}{2}(1+\sigma)r_0-|x-x_0|)]+\frac{1}{2}s_0$, if $x \in B_{r_0}(0) \setminus B_{\sigma r_0}(0)$, where $B_{r_0}(0)$ denotes the open ball with centre 0 and radius $r_0 > 0$. Then it is clear that $u_{\sigma} \in W^{2,p}(\Omega)$. We have that $u_{\sigma}(x) \in W^{2,p}$ and $|u_{\sigma}(x)| \leq s_0$ for all $x \in \mathbb{R}^N$. Moreover, we have

$$\Psi(u_{\sigma}) \ge [F(s_0)\sigma^N - \max_{|t| \le |s_0|} |F(t)|(1-\sigma^N)]\omega_N r_0^N,$$
(9)

where ω_N is the volume of the unit ball in \mathbb{R}^N . From (9), there is $\sigma_0 > 0$ such that $||u_{\sigma_0}||_{2,p} > 0$ and $\Psi(u_{\sigma_0}) > 0$. Now, by Lemma 3, we can choose $\rho_0 \in (0, 1)$ such that

$$\rho_0 < \left(1 - \mu \frac{C_2}{p S_{p,\partial\Omega}}\right) \left\| u_{\sigma_0} \right\|_{2,p}^p \le \Phi(u_{\sigma_0})$$

and satisfies

$$\frac{\sup_{\Phi(u) < \rho_0} \Psi(u)}{\rho_0} < \frac{\Psi(u_{\sigma_0})}{2\Phi(u_{\sigma_0})}.$$
 (10)

To apply Theorem 2, we choose $x_1 = u_{\sigma_0}$ and $x_0 = 0$. Then the assumptions (i) and (ii) of Theorem 2 are satisfied. Next, we define

$$a_{\mu} = \frac{1 + \rho_{0}}{\frac{\Psi(u_{\sigma_{0}})}{\Phi(u_{\sigma_{0}})} - \frac{\sup\{\Psi(u) : \Phi(u) < \rho_{0}\}}{\rho_{0}}} > 0, \quad (11)$$
$$\bar{a}_{\mu} = \min\{a_{\mu}, \bar{\lambda}\}. \quad (12)$$

and a simple computation implies that (iii) is verified. Hence, there exist an open interval $\Lambda_{\mu} \subset$ $[0, \overline{a}_{\mu}]$ and a real positive number δ_{μ} such that for each $\lambda \in \Lambda_{\mu}$, the equation $I'_{\mu,\lambda}(u) = \Phi'_{\mu}(u) - \lambda \Psi'(u) = 0$ has at least three solutions in $W^{2,p}(\Omega)$ whose norms are less than δ_{μ} . By (H1) and (H2), one of them may be the trivial one. Thus (1) has at least two weak solutions in $W^{2,p}(\Omega)$. The proof is complete.

Acknowledgements: The project was supported by the Scientific Research Fund of SUSE (No. 2011KY03) and the Scientific Research Fund of Sichuan Provincial Education Department (No. 12ZB081).

REFERENCES

1. Lazer AC, McKenna PJ (1990) Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev 32, 537–78.

- 2. Candito P, Li L, Livrea R (2012) Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the *p*-biharmonic. *Nonlin Anal* **75**, 6360–9.
- Li L, Heidarkhani S (2012) Existence of three solutions to a double eigenvalue problem for the *p*biharmonic equation. *Ann Polon Math* **104**, 71–80.
- Li L, Tang CL (2010) Existence of three solutions for (*p*,*q*)-biharmonic systems. *Nonlin Anal* **73**, 796–805.
- Bonder JF, Rossi JD (2002) A fourth order elliptic equation with nonlinear boundary conditions. *Nonlin Anal* 49, 1037–47.
- Rossi JD (2005) Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem. In: Chipot M, Quittner P (eds) *Stationary Partial Differential Equations* Vol II, Elsevier, Amsterdam, pp 311–406.
- El Khalil A, Kellati S, Touzani A (2005) A nonlinear boundary problem involving the *p*-bilaplacian operator. *Int J Math Math Sci* 2005, 1525–37.
- Bonanno G (2003) Some remarks on a three critical points theorem. *Nonlin Anal* 54, 651–65.
- 9. Ricceri B (2000) On a three critical points theorem. *Arch Math* **75**, 220–6.
- Ricceri B (2000) Existence of three solutions for a class of elliptic eigenvalue problems. *Math Comput Model* 32, 1485–94.