Screening for hydrogen-producing strains of green microalgae in phosphorus or sulphur deprived medium under nitrogen limitation

Piyawat Pongpadung^{a,b}, Jianguo Liu^c, Kittisak Yokthongwattana^d, Sombun Techapinyawat^{b,e}, Niran Juntawong^{a,b,e,*}

- ^a Research Centre for Photosynthetic Pigments and Secondary Metabolites, Faculty of Science, Kasetsart University, Bangkok 10900 Thailand
- ^b Bioscience Program, Faculty of Science, Kasetsart University, Bangkok 10900 Thailand
- ^c Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071 China
- ^d Department of Biochemistry and Centre for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400 Thailand
- ^e Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900 Thailand

*Corresponding author, e-mail: fscinrj@ku.ac.th

Received 16 Oct 2014 Accepted 17 May 2015

ABSTRACT: Hydrogen gas, one of the best candidates for clean and renewable energy, can be produced by microalgae that can use solar energy to cause photolysis of water. This study screened H₂-producing indigenous green microalgae under sulphur (S-) deprivation, simultaneous nitrogen (N-) limitation and S-deprivation, or simultaneous N-limitation and phosphorus (P-) deprivation. Sequences of 18S rDNA and ITS in conjunction with morphological characteristics were used to identify the algae. We report that Chlorella lewinii, Micractinium sp., Coelastrella sp., and Monoraphidium sp. have the ability to produce H_2 . The increase in H_2 photoproduction when N is limited seems to be a universal phenomenon in most tested strains of Chlorella, in all strains of Chlamydomonas, but in no strain of Coelastrella, Micractinium, or Scenedesmus. Chlorella sorokiniana KU204 produced H₂ (46 ml/l) under S-deprivation. This strain exhibited the highest H₂-producing ability (1.30 ml l^{-1} h⁻¹) and accumulated up to 90 ml/l under simultaneous N-limitation and S-deprivation. Interestingly, C. sorokiniana KU204 could also produce H₂ under simultaneous N-limitation and P-starvation (69 ml/l). The induction time to reach an anoxic state by most tested strains of Chlorella, but not Chlamydomonas, was shorter under simultaneous N-limitation and S-deprivation than under S-deprivation. In addition, those strains of Chlorella exhibited high H2 photoproduction under simultaneous N-limitation and S-deprivation. A few Chlorella strains were unable to reach an anoxic state during the experiment. However, such regularity is not found in Chlamydomonas. The results indicate that the mechanism of H₂ photoproduction in Chlorella may differ from that in Chlamydomonas.

KEYWORDS: hydrogen production, green algae, sulphur deprivation, phosphorus deprivation

INTRODUCTION

Renewable energy is being actively sought worldwide to replace the declining sources of fossil fuels. Hydrogen gas is considered to be one of the best candidates for alternative clean energy¹. H₂ can be produced by microalgae that have an ability to capture solar energy and convert it into chemical energy. Hydrogen production under anaerobic conditions was first reported for the unicellular green alga *Scenedesmus obliquus*². H₂ was only produced for a few minutes and then the yield dropped. A system that maintains the capacity of evolving large amounts of H₂ for several days under S-deprivation in the green alga *Chlamydomonas reinhardtii* was later developed³. S-deprivation reduced the photosynthetic O₂-evolving machineries in the algal cells leading to intracellular anaerobiosis which would favour H₂ production. N- and P-deprivation that can also stimulate H₂ production, but with lower H₂ yields and longer induction time to reach an anoxic state^{4,5}. Currently, green algae such as *C. reinhardtii*, *Tetraspora* sp. CU2551, and *C. protothecoides* have been preferred for H₂ photoproduction^{6–9}. It is possible that other unknown green algal species may produce H₂ better than the reported strains. In addition, since the induction of H₂ photoproduction by *C. reinhardtii* was optimized under

sulphur deprivation, deprivation of other nutrients could also induce the algae cells to produce H_2 .

In the current work, the H_2 -producing capacity of green microalgae was evaluated in response to different modified tris-acetate-phosphate medium¹⁰. We collected various fresh water samples in Thailand to isolate indigenous algal strains and screened for H_2 production ability under S-deprivation, a combination of N-limitation and S-deprivation, or a combination of N-limitation and P-starvation.

MATERIALS AND METHODS

Microalgae samples collection

Freshwater samples were collected from several ponds, canals, rivers, and reservoirs in Thailand. To collect microalgae samples, 20 l of water samples were poured through a plankton net with 16 μ m pore size. The algal residue in the bucket of the plankton net was collected and then 1 ml of the algal samples was added to the tris-acetate-phosphate (TAP) or Blue-Green (BG-11) medium.

Isolation of pure cultures

Several green algae were isolated using glass Pasteur pipettes and cultured in TAP or BG-11 liquid media with combinations of ampicillin, chloramphenicol, streptomycin, kanamycin, and carbendazim. The algal isolates were then cultivated at 25 ± 1 °C under 20 µmol photons m⁻² s⁻¹ of illumination for 7-30 days. The streak plate method was then used to separate the microalgae, bacteria, and fungi on TAP agar medium. The above process was repeated several times until there was no fungal or bacterial contamination. Then, each pure, individual colony was picked and cultured on separate TAP agar plates for further study. The morphology of the collected algae was observed and photographed using a light microscope (BX 51, Olympus Imaging Corp., Japan). Morphological characteristics were identified according to John¹¹.

Culture conditions

Algae cells were cultured in standard TAP medium containing 7 mM NH₄Cl at pH 7.3±0.1 and kept at 25 ± 1 °C under a light/dark regime of 14:10 h for 4–7 days. Cool white fluorescent lamps of about 35 μ mol photons m⁻² s⁻¹ were used for illumination.

DNA extraction

DNA from algal cells was extracted using a DNAeasy Plant mini-kit (Qiagen, Germany) according to the manufacturer's instructions. The presence or absence of the extracted DNA was determined by electrophoresis in 1% agarose gel and stained with ethidium bromide. The DNA concentration was quantified using a UV-spectrophotometer (8453, Agilent Technologies, Inc., Germany) at an optical density of 260 nm.

Polymerase Chain reaction (PCR) amplification of 18S rDNA gene and ITS regions

The 18S rDNA sequences were amplified using the universal eukaryotic primers, 5'-GTCAGAGGTGAA ATTCTTGGATTTA-3' as forward and 5'-AGGGCA GGGACGTAATCAACG-3' as reverse primer. The expected amplified product size of the 18S rDNA gene was about 750 bp. The ITS regions (ITS1, 5.8S, and ITS2) of ribosome were amplified using the following primers: forward, 5'-GAAGTCGTAACAA GGTTTCC-3' and reverse, 5'-TCCTGGTTAGTTTCT TTTCC-3^{'12}. PCR amplification was carried out in a Px2 Thermal Cycler (Thermo Electron Corporation, USA). For amplifying the 18S rDNA gene, DNA was denatured at 95 °C for 4 min and followed by 30 cycles of denaturing at 95 °C for 30 s, annealing at 60 °C for 30 s, extension at 72 °C for 30 s, and a final elongation step at 72 °C for 10 min, then holding at 4 °C. For the amplification of ITS regions, a touchdown amplification program was used. DNA was denatured at 95 °C for 4 min and followed by 30 cycles of denaturation at 95 °C for 30 s, annealing at 60 °C (dropping 0.5 °C each cycle) for 30 s, and extension at 72 °C for 40 s. Amplification of ITS regions was continued using a second 30 cycles of denaturation at 95 °C for 30 s, annealing at 45 °C for 30 s, extension at 72°C for 40 s, and a final elongation step at 72 °C for 7 min, then holding at 4° C. All PCR amplifications were performed in 25 µl master mix solution containing 25 µl of total DNA, 1X Taq buffer, 1.0 µM of dNTPs, 1.5 mM MgCl₂, 0.4 µM of each primer, and 1.0 unit of Taq DNA polymerase. The PCR products were determined using electrophoresis in 1% (W/V) agarose gel in 1 × TBE buffer and visualized using ethidium bromide straining.

Sequencing and phylogenetic analysis

The PCR products were cleaned up using the QI-Aquick Gel Extraction kit (Qiagen, Germany). For sequencing, 30 ng of PCR product was used as a template with 10 pmol/ μ l of the above primers and made to a final volume of 10 μ l with distilled water. The samples were sent to the 1st base company (Malaysia) for sequencing. The sequence similarity was compared with a data set of algal sequences in the NCBI database. A neighbour joining (NJ) tree was obtained using the software MEGA 5^{13} . The credibility of the branching orders were analysed by bootstrap analysis of 1000 replicates.

Effect of nutrient deprivation on population growth and chlorophyll content

To determine the effects of nutrient deprivation, algal cultures were harvested by centrifugation (2500*g*, 5 min, 25 °C) and washed twice with different TAP media (TAP, S-deprivation (TAP-S), N-deprivation (TAP-N), and P-deprivation (TAP-P)). Then the pellets were resuspended in each TAP medium to an initial optical density of 2.0×10^6 cells/ml. The biomass production was determined by the chlorophyll content and cell density values. For cell density, cells were counted using a haemocytometer under a light microscope (CH 30, Olympus Imaging Corp., Japan).

Screening for H₂ production

To determine the H₂-producing ability, the microalgae were pre-cultured in TAP medium at 25 ± 1 °C under 35 μ mol photons m⁻² s⁻¹ of illumination using a light/dark regime of 14:10 h for 4–7 days. Three different TAP media were used to screen for the H₂-producing ability of microalgae. For the first culture medium (TAP-S medium), all isolates of the green algae were pre-cultured in TAP medium containing 7 mM NH₄Cl and the algal cultures were harvested at the late logarithmic phase using centrifugation (2500g, 5 min, 25 °C) and washed twice with TAP-S medium. The S-deprivation medium was obtained by replacing all sulphate salts with chloride salts. Then the pellets were resuspended in TAP-S medium. An optical density of $2.5-3.5 \times 10^7$ cells/ml was used for all treatments. All cell cultures were transferred into 20 ml glass vials, sealed with butyl rubber stoppers and bubbled with argon gas for 5 min to remove O2 in the head space of the vial. The sealed glass vials were shaken at 110 rpm and exposed to a continuous light intensity of 35 μ mol photons m⁻² s⁻¹. High H₂ producing strains cultured in the 20 ml glass vials were selected and transferred into 650 ml bioreactors containing TAP-S medium under continuous light (35 µmol photons $m^{-2} s^{-1}$). Each vessel was sealed with a butyl rubber stopper and fitted with an outlet tube connected to a graduated cylinder for gas collection by displacement of water³. For the second set of culture conditions (simultaneous N-limitation and S-deprivation), cells were grown in nitrogen-limited medium (TAP with 0.7 mM NH_4Cl) and then washed twice and cultured in simultaneous N-limitation and S-deprivation (TAP-S with 0.7 mM NH_4Cl) medium.

For the third set of culture conditions (simultaneous N-limitation and P-starvation), cells were grown in nitrogen-limited medium (TAP containing 0.35 mM NH₄Cl) and then washed twice and cultured in simultaneous N-limitation and P-deprivation (TAP-P with 0.35 mM NH₄Cl) medium. P-starvation medium was obtained by omitting phosphate.

Measurement of H_2 and O_2 gas

Hydrogen production was analysed using gas chromatography (GC) (GC-112A, Shanghai Phenic Optical Scientific Instrument Co. Ltd., China) equipped with a molecular sieve 5 Å column using a Thermal Conductivity Detector. To separate H₂, O₂ and N₂, argon was used as a carrier gas at a flow rate of 15 ml/min. The packed column was maintained at 40 °C and the temperature for the detector and injector was set at 100 °C. The total H_2 and O_2 volumes were calculated according to the peak area, which was pre-calibrated by injecting known concentrations of standard gases. The empirical equations for the H₂ and O₂ calculations were as follows: $H_2 (\mu l) = 0.00001 \times Area + 0.5095; O_2 (\mu l) =$ $0.0007 \times$ Area+1.1045. Area represents the value of the corresponding peak area of H₂ and O₂ detected using GC¹⁴.

Measurement of chlorophyll content

Chlorophyll in the cell cultures was extracted as described by Liu¹⁵ and total chlorophyll (mg/l) was calculated as $4.44 \times A_{666 \text{ nm}} + 19.71 \times A_{653 \text{ nm}}$, where $A_{666 \text{ nm}}$ and $A_{653 \text{ nm}}$ correspond to the absorbance of supernatant at 666 nm and 653 nm wavelength, respectively, with a 1 cm path of the cuvette.

RESULTS AND DISCUSSION

Collection of samples, isolation, and purification of microalgal strains

Among the collected samples, at least 86 isolates of axenic uniclonal cultures were obtained through a streak plate method. Among these, 43 isolates were successfully cultivated in TAP medium to densities of over 2.0×10^6 cells/ml. These 43 isolates were taken for screening of their H₂-producing ability.

Strain identification

The selected 43 isolates were morphologically identified as belonging to the following genera: *Chlamy*-

ScienceAsia 41 (2015)

Fig. 1 Observation using light microscopy of different green algal species isolated from freshwater samples. (a) *Chlamydomonas* sp. KU103, (b) *Chlamydomonas* sp. KU106, (c) *Chlamydomonas* sp. KU108, (d) *Coelastrella* sp. KU501, (e) *Monoraphidium* sp. KU401, (f) *C. sorokiniana* KU204.

domonas (10 isolates), Chlorella (15 isolates), Micractinium (2 isolates), Scenedesmus, (8 isolates), Coelastrella (7 isolates), and Monoraphidium (1 isolate). The morphology of some isolated green microalgal species observed under the light microscope is shown in Fig. 1. To confirm the genus of the algae samples, 18S rDNA gene partial sequences were subjected to a BLAST search. Analysis of the 18S rDNA gene showed that the sequence similarity of the isolated strains was closely related to Chlamydomonas sp. (98–99%), Chlorella sp. (99–100%), Coelastrella sp. (98-99%), Micractinium sp. (99-100%), Monoraphidium sp. (99%), and Scenedesmus (99-100%) (data not shown). This BLAST result from 18S rDNA correlated with the grouping from morphological characteristics.

To identify the isolates to the species level, the ITS sequences were used in alignments (CLUSTAL-X) prior to Bootstrap NJ phylogenetic tree determination (Fig. 2). The ITS sequences were aligned and compared with a data set consisting of 16 sequences retrieved from NCBI databases. From the phylogenetic analysis of the ITS sequences, the microalgae samples could be categorized into four different clades, i.e., *Chlorella*, *Chlamydomonas*,

Coelastrella, and Micractinium clades (Fig. 2). In the Chlorella clade, the isolates KU202, KU203, KU204, KU205, KU206, and KU208 formed a cluster with C. sorokiniana with 76% bootstrap support and showed 99% sequence similarity to C. sorokiniana JQ898145.1. Three Chlorella isolates (KU207, KU209, and KU211) were closely related to C. sorokiniana UTEX 1665 KJ676113.1, Chlorella sp. Iso4 JX041600.1 and C. sorokiniana UTEX 2805 KJ676109.1, respectively, (98% similarity). Moreover, the isolates KU201, KU213, KU215, KU217, and KU220 were clustered with C. lewinii CCAP 211/90 FM205861.1 (99% similarity). In the Micractinium clade, the isolates KU210 and KU212 were clustered with Micractinium sp. CCAP 248/7 (96% similarity), and Micractinium sp. JX889639.1 (93% similarity), respectively. In the Chlamydomonas clade, two Chlamydomonas sp. isolates (KU105 and KU106) were clustered with C. debaryana FR865600.1 (94% similarity). Chlamydomonas sp. isolates (KU111) were closely related to C. reinhardtii CC-620 JX839533.1. Moreover, Chlamydomonas sp. isolates (KU101, KU102, KU103, KU104, KU107, and KU108) were clustered with Chlamydomonas sp. but exhibited

Fig. 2 Phylogenetic tree of green microalgae constructed from ITS sequences (ITS1, 5.8S, and ITS2).

low similarity (85–90%). In the *Coelastrella* clade, four *Coelastrella* isolates—namely, KU501, KU503, KU504, and KU506 formed a cluster with *Coelastrella* sp. with strong bootstrap support (98%) and exhibited 99–100% sequence similarity to *Coelastrella* sp. F50 JQ867368.1. The ITS phylogenetic tree suggested a high homology

among most strains to the reference strains. ITS sequences could therefore be used to identify the genus or species of these algae strains. The result agrees with Qiao¹⁶, where the difference between genomic base composition and rDNA similarity in different strains of algae was reported.

Fig. 3 Changes in chlorophyll content and cell numbers in *C. sorokiniana* KU207 and *Chlorella* sp. KU209 exposed to various TAP media: (a) chlorophyll content and (b) cell numbers in *C. sorokiniana* KU207, (c) chlorophyll content and (d) cell numbers in *Chlorella* sp. KU209.

Effect of nutrient deprivation on chlorophyll content and cell numbers in *C. sorokiniana* KU207 and *Chlorella* sp. KU209

After growing the Chlorella sp. in N-, S-, and P-deprivation, the total chlorophyll content and cell numbers were dramatically reduced. The chlorophyll content and cell numbers in N-starved cells showed the greatest decrease, followed by S-deprived, then P-deprived cells compared to those of cells grown in normal TAP medium (Fig. 3). The chlorophyll content in C. sorokiniana KU207 and Chlorella sp. KU209 declined by approximately 85% and 80%, respectively, after 1 day of growth under the N-deprivation. In P or S-starved cells however, the chlorophyll content of C. sorokiniana KU207 and Chlorella sp. KU209 decreased by approximately 65%-70% after 2 days. The reduction in the chlorophyll content correlated with the decline in cell numbers. These results indicated that nutrient limitation led to a loss of chlorophyll content and cell numbers in these algae.

Essential macronutrients such as sulphur, nitrogen, or phosphorus have an effect on the growth of phototrophic microalgae¹⁷. A lack of these nutrients results in the arrest of cell division and the cessation of cell growth¹⁸. Nitrogen deprivation is a severe stress condition for all organisms because nitrogen is a major component of proteins and nucleic acid. A limitation of nitrogen in Chlamydomonas cells resulted in lower cellular chlorophyll contents and LHCII levels¹⁹. The differences in pigmentation and antennae composition probably have an impact on light energy transfer to the photosystems⁵. Sulphur deprivation causes reversible inhibition of photosynthetic activity in algae. In the absence of S, PSII-dependent O₂-evolving activity in algal cells was gradually inhibited due to their inability to resynthesize the D1 protein²⁰. As with S-deprivation, P-deprivation can also inhibit O2 evolution activity

in algae. The inhibition process of O₂-evolving activity in algal cells by S-deprivation is however faster than by P-deprivation²⁰. Moreover, P-deprivation in the medium also leads to the reduction of the CO₂ fixation rate due to the depletion of phosphorylated intermediates in the pentose phosphate cycle^{21,22}.

In addition to the study of S-deprivation, the results indicated that P- and N-deprivation also have an effect on the growth and photosynthetic activity of the phototrophic microalgae. Moreover, under these stress conditions, O_2 evolution was inhibited and H_2 gas was generated. The ability of green microalgae to produce H_2 under various nutrient deprivations are reported in the subsequent results (see below).

Screening for H_2 photoproduction of freshwater green algae

The H₂-producing ability of the 43 green algal isolates was tested under S-deprivation (TAP-S containing 7 mM NH₄Cl), a combination of N-limitation and S-deprivation (TAP-S with 0.7 mM NH₄Cl), and a combination of N-limitation and P-starvation (TAP-P with 0.35 mM NH₄Cl) (Table 1). Most isolated green algal strains had the ability to generate H_{2} under S-deprivation, consisting of *Chlamydomonas*, Chlorella, Micractinium, Scenedesmus, Monoraphidium, and Coelastrella. We report here, for the first time, that C. lewinii, Micractinium sp., Coelastrella sp., and Monoraphidium sp. can also produce H₂ gas. In addition, most tested strains of Chlorella and all the strains of Chlamydomonas had enhanced H₂ production when cultured on simultaneous N-limitation and S-deprivation (Table 1). This fascinating result however was not found in any strain of Coelastrella, Micractinium, or Scenedesmus. Under S-deprivation, microalgae are capable of H₂ photoproduction³. The lack of sulphur causes a gradual inhibition of PSII-dependent O2-evolving activity in algal cells. When the bioreactors were sealed, the oxygen in the headspace of the bioreactors was gradually consumed by microalgae because of cellular respiration and the bioreactor became anaerobic. Algal strains evolved different amounts of H_2 , depending upon various factors such as the ability of each strain, nutrient composition, light intensity, temperature, pH, and oxygen when incubated under nutrient deprivation conditions in the light. The hydrogenase enzyme that catalyses an H₂ production reaction in algae is sensitive oxygen. Under aerobic conditions, however, some species could produce H₂ (Table 1). These species probably are tolerant to oxygen or the activity of hydrogenase may not be totally inhibited¹⁴.

All 15 isolates of Chlorella sp. could produce H₂ under TAP-S, TAP-S with 0.7 mM NH₄Cl and TAP-P containing 0.35 mM NH₄Cl (Table 1). Five C. sorokiniana isolates (KU204, KU205, KU206, KU207, and KU208) continuously produced H₂ after transferring from standard TAP medium to stress conditions. These strains needed however an induction time of at least 24 h to reach an anoxic state under TAP-S. On the other hand, in TAP-S with 0.7 mM NH₄Cl and TAP-P containing 0.35 mM $NH_{4}Cl$, the anaerobic state was reached 3 h earlier, resulting in higher H₂ accumulation. Among these isolates, C. sorokiniana KU204 showed the highest H₂ production ability, with the total H₂ yield under TAP-S, TAP-P containing 0.35 mM NH₄Cl and TAP-S with 0.7 mM NH₄Cl being about 46.2, 69.0, and 89.6 ml/l, respectively (Fig. 4). Interestingly, besides S-deprivation, the lack of phosphorus under N-limitation can also limit O₂ evolution in the algae cells. Five C. lewinii isolates (KU201, KU213, KU215, KU217, and KU220) generated small amounts of H₂ because of the presence of oxygen in the medium or the bioreactor headspace. This oxygen inhibits H₂ production. The highest content of H₂ in C. lewinii (KU213, KU215, KU217, and KU220) was found under TAP-S followed by TAP-S with 0.7 mM NH₄Cl and TAP-P containing 0.35 mM NH₄Cl. Under these nutrient deprivation conditions, however, the strains generated large amounts of oxygen which inactivated hydrogenase and inhibited H_2 production. On the contrary, the C. lewinii strain KU201 produced H₂ yields under TAP-S with 0.7 mM NH₄Cl and under TAP-P containing 0.35 mM NH₄Cl which were more than under TAP-S. Under TAP-S with 0.7 mM NH₄Cl, the C. lewinii strain KU201 evolved less oxygen, while under TAP-P containing 0.35 mM NH₄Cl, the C. lewinii strain KU201 did not evolve oxygen after 12 h. Chlorella sp. KU209 and C. sorokiniana KU211 were also capable of producing H₂ under TAP-S, TAP-S with 0.7 mM $\rm NH_4Cl$ and TAP-P containing 0.35 mM NH₄Cl. The H₂ yield by Chlorella sp. KU209 was however the same in all medium conditions. Chlorella sorokiniana KU211 produced more H₂ under TAP-S with 0.7 mM NH₄Cl than TAP-P containing 0.35 mM NH₄Cl because the cultures under TAP-P containing 0.35 mM $NH_{4}Cl$ could generate both H_2 and O_2 . Besides S-deprivation, Chlorella sp. can generate H₂ gas under TAP-P containing 0.35 mM NH₄Cl because the starvation of phosphorus can also inhibit O₂-evolving activity. P-deprivation in algae is known to result in an anaer-

Green algae	Strain	Treatment					
		TAP-S		TAP-S (0.7 mM NH4Cl)		TAP-P (0.35 mM NH4Cl)	
		H ₂ yield (ml/l)	Time [†]	H ₂ yield (ml/l)	Time [†]	H ₂ yield (ml/l)	Time [†]
C. sorokiniana	KU202	8.87	_	13.02	_	8.15	$< 12 \text{ h}^{\ddagger}$
C. sorokiniana	KU203	9.07	_	13.86	_	8.39	$< 12 \text{ h}^{\ddagger}$
C. sorokiniana	KU204	46.20	$< 24 \ h^{\ddagger}$	89.64	$< 3 h^{\ddagger}$	69.00	$< 3 h^{\ddagger}$
C. sorokiniana	KU205	15.99	$< 24 \ h^{\ddagger}$	27.98	$< 3 h^{\ddagger}$	20.95	$< 3 h^{\ddagger}$
C. sorokiniana	KU206	10.77	$< 24 \ h^{\ddagger}$	29.16	$< 3 h^{\ddagger}$	20.13	$< 3 h^{\ddagger}$
C. sorokiniana	KU207	12.49	$< 24 \ h^{\ddagger}$	24.35	$< 3 h^{\ddagger}$	14.80	$< 3 h^{\ddagger}$
C. sorokiniana	KU208	16.78	$< 24 \ h^{\ddagger}$	30.18	$< 3 h^{\ddagger}$	17.51	$< 3 h^{\ddagger}$
C. sorokiniana	KU219	5.53	_	18.28	$< 12 \text{ h}^{\ddagger}$	11.15	$< 12 \text{ h}^{\ddagger}$
C. sorokiniana	KU211	6.74	_	14.01	$< 12 \ h^{\ddagger}$	2.74	-
C. lewinii	KU201	5.10	-	13.03	-	11.50	$< 12 \text{ h}^{\ddagger}$
C. lewinii	KU213	5.87	-	5.63	-	2.93	_
C. lewinii	KU215	6.97	-	6.93	-	2.87	_
C. lewinii	KU217	6.59	-	5.07	-	2.91	_
C. lewinii	KU220	8.20	-	6.36	-	2.71	_
Chlorella sp.	KU209	11.96	-	12.67	-	10.27	$< 12 \text{ h}^{\ddagger}$
Micractinium sp.	KU210	3.17	_	0.51	_	0.32	_
Micractinium sp.	KU212	0.90	-	0.35	-	0.32	_
Coelastrella sp.	KU501	0.32	-	0.25	-	0.31	_
Coelastrella sp.	KU502	0.47	-	1.13	-	0.41	_
Coelastrella sp.	KU503	0.38	_	0.32	_	0.27	-
Coelastrella sp.	KU504	0.43	_	0.36	_	0.33	-
Coelastrella sp.	KU505	1.95	_	1.39	_	0.72	-
Coelastrella sp.	KU506	0.36	_	0.31	_	0.26	-
Coelastrella sp.	KU507	0.40	_	1.08	_	0.38	-
Chlamydomonas sp.	KU101	1.67	_	2.97	_		
Chlamydomonas sp.	KU102	1.40	_	2.54	_		
Chlamydomonas sp.	KU103	1.78	_	2.89	_		
Chlamydomonas sp.	KU104	1.37	_	2.63	_		
Chlamydomonas sp.	KU105	7.69	< 36 h‡	16.90	< 36 h‡		
Chlamydomonas sp.	KU106	24.4	< 36 h‡	62.00	< 36 h‡		
Chlamydomonas sp.	KU107	0^{*}	-	0.30	-		
Chlamydomonas sp.	KU108	0.42	-	1.66	-		
Chlamydomonas sp.	KU109	0.58	-	2.17	-		
Chlamydomonas sp.	KU111	11.6	< 36 h‡	30.60	< 36 h‡		
Scenedesmus sp.	KU301	2.82	-	0.34	-		
Scenedesmus sp.	KU302	4.20	-	0.37	-		
Scenedesmus sp.	KU303	0.35	-	0^{*}	-		
Scenedesmus sp.	KU304	0.39	-	0^{*}	-		
Scenedesmus sp.	KU305	0.42	-	0^{*}	-		
Scenedesmus sp.	KU306	0.34	-	0*	-		
Scenedesmus sp.	KU308	2.56	_	0.32	-		
Scenedesmus sp.	KU309	0.39	-	0*	-		
Monoraphidium sp.	KU401	1.32	-	2.04	-		

Table 1 H_2 production by 43 freshwater green algae.

[†] Time to reach an anoxic state. [‡] O₂ not detected. ^{*} H₂ not detected.

0.35 mM NH₄Cl.

0 20 0 Time (h) Fig. 4 H₂ photoproduction by C. sorokiniana KU204 under TAP-S, TAP-S with 0.7 mM $\rm NH_4Cl$ and TAP-P containing under TAP-S and TAP-S with 0.7 mM NH₄Cl.

H₂ (ml/l)

obic state²⁰, and in higher plants, where P-deprivation leads to a decrease in the light-saturated rate of photosynthesis²¹⁻²⁴. Moreover, sustained H₂ photoproduction in C. reinhardtii cultures can be accomplished by inoculating the washed algae into P-deprived medium at low initial cell densities (below 2 mg Chl/l)⁴. The algal cultures under TAP-P containing 0.35 mM NH₄Cl can be further improved by optimizing the cultivation conditions to enhance the H₂ yield. Achieving sulphur deprivation in marine strains is however difficult because of the high concentration of sulphates in seawater.

Chlamydomonas strains (KU105, KU106, and KU111) were able to produce H_2 in the first 36 h under continuous illumination in TAP-S and TAP-S with 0.7 mM NH₄Cl. On the other hand, Chlamydomonas strains (KU101, KU102, KU103, KU104, KU107, KU108, and KU109) were also able to generate H₂ gas but could not shorten the time to reach an anoxic state, resulting in less H₂ accumulation than for the first three Chlamydomonas strains. Among the *Chlamydomonas* strains, the highest H₂ production was Chlamydomonas sp. KU106, and the maximum H₂ gas production under TAP-S and TAP-S with 0.7 mM NH_4 Cl was about 24.4 and 62.0 ml/l, respectively (Fig. 5).

Two Micractinium sp. strains (KU210 and KU212) produced H_2 under the test conditions but with low H₂ yield. Moreover, the H₂ production under TAP-S with 0.7 mM NH₄Cl and TAP-P containing 0.35 mM NH₄Cl was less than that for the TAP-S medium because of the nitrogen limitation in the medium and oxygen production by algae.

Time (h) Fig. 5 H₂ photoproduction by Chlamydomonas sp. KU106

Coelastrella sp. (all strains) and Scenedesmus sp. strains (KU303, KU304, KU305, KU306, and KU309) generated small amounts of H₂ and rapidly lost vitality after transferring them to the tested media. The cultures turned from a green to a yellow colour and the algae died just a few days after transfer. It appears that microelement starvation involving sulphur, phosphorous, and nitrogen plays an important role in the cell metabolism of these algae. Monoraphidium sp. KU401 evolved less H₂ under TAP-S with 0.7 mM NH₄Cl and TAP-P containing 0.35 mM NH₄Cl and generated O_2 at the same time. Our results demonstrate that different species of microalgae could produce H₂ at various levels. H₂ production ability had been found to depend on the strain, nutrient composition, pH, oxygen, light intensity, temperature, optical density and agitation^{14, 25}. In addition, this ability to produce H₂ may be related to specific anaerobic/low light habitats where the algae require the photobiological H_2 production capacity to survive¹².

Most tested Chlorella, but not Chlamydomonas, strains reached an anoxic state faster in a medium with simultaneous N-limitation and S-deprivation than in a medium with S-deprivation. In addition, when those strains of Chlorella grown in medium with simultaneous N-limitation and S-deprivation exhibited an increased H₂ production. Some could not induce an anoxic state throughout the experiment. However, such regularity was not found in Chlamydomonas (Table 1). Thus the mechanism of H₂ photoproduction in Chlorella may differ from that of Chlamydomonas.

In a previous study, the most well-known mi-

croalga with high H₂ production was C. reinhardtii, which accumulates H_2 at the rate of approximately 100-270 ml/l with 9-20 mg/l chlorophyll content^{3,8}. In this study, C. sorokiniana KU204 showed the highest H_2 -producing capacity (1.30 ml l⁻¹h⁻¹) and accumulated up to 89.64 ml/l under simultaneous N-limitation and S-deprivation containing a chlorophyll content of 5-6 mg/l. If we assume that C. sorokiniana KU204 has a chlorophyll content of 10–12 mg/l, this alga can produce 179.28 ml/l of H₂. As C. sorokiniana has strong adaptability to local growing conditions and an extremely rapid growth rate, it is widely utilized on a large scale production. The increased H₂ production of C. sorokiniana KU204 exposed to simultaneous N-limitation and S-deprivation suggests then that this microalga has the potential to become a candidate for industrial H₂ production.

In conclusion, from morphological characters and 18S rDNA sequence analysis, the six genera of the algae samples were identified as Chlamydomonas, Chlorella, Coelastrella, Micractinium, Monoraphidium, and Scenedesmus. The ITS sequences were successfully used to identify the species of the algae strains. Most tested green algal strains had the ability to generate H₂ when exposed to S-deprivation. In addition, Chlorella lewinii, Micractinium sp., Coelastrella sp., and Monoraphidium sp. were found in this work as novel H₂-producing strains. When the cells were grown under simultaneous N-limitation and S-deprivation, H₂ photoproduction increased in most tested strains of Chlorella and in all the strains of Chlamydomonas. However, this interesting result was not found in any strain of Coelastrella, Micractinium or Scenedesmus. The C. sorokiniana strain KU204 could accumulate significant H₂ under simultaneous N-limitation and S-deprivation. Thus further research efforts are required to optimize cultivation conditions. This study also suggests that conditions of simultaneous N-limitation and S-deprivation could be an alternative method for enhancing the H₂-producing ability in some microalgae such as Chlorella and Chlamydomonas.

Acknowledgements: This work was financially supported by the program Strategic Scholarships for Frontier Research Network for the Joint Ph.D. Programme Thai Doctoral degree, the Commission on Higher Education, and a research scholarship for a Ph.D. thesis from the Ministry of energy, Thailand. We would like to thank the Institute of Oceanology, Chinese Academy of Sciences for carrying out part of the research work.

REFERENCES

- Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. *Int J Hydrogen Energ* 34, 7404–16.
- Gaffron H (1939) Reduction of CO₂ with H₂ in green plants. *Nature* 143, 204–5.
- Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga *Chlamydomonas rein*hardtii. Plant Physiol **122**, 127–35.
- Batyrova KA, Tsygankov AA, Kosourov SN (2012) Sustained hydrogen photoproduction by phosphorus-deprived *Chlamydomonas reinhardtii* cultures. *Int J Hydrogen Energ* 37, 8834–9.
- Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in *Chlamydomonas reinhardtii*. *Planta* 235, 729–45.
- He ML, Li L, Zhang LT, Liu JG (2012) The enhancement of hydrogen photoproduction in *Chlorella protothecoides* exposed to nitrogen limitation and sulfur deprivation. *Int J Hydrogen Energ* **37**, 16903–15.
- Maneeruttanarungroj C, Lindblad P, Incharoensakdi A (2010) A newly isolated green alga, *Tetraspora* sp. CU2551, from Thailand with efficient hydrogen production. *Int J Hydrogen Energ* **35**, 13193–9.
- Melis A (2007) Photosynthetic H₂ metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226, 1075–86.
- Zhang LT, He ML, Liu JG (2014) The enhancement mechanism of hydrogen photoproduction in *Chlorella protothecoides* under nitrogen limitation and sulfur deprivation. *Int J Hydrogen Energ* 39, 8969–76.
- Hoober JK (1989) The Chlamydomonas sourcebook. In: Harris EH (ed) A Comprehensive Guide to Biology and Laboratory Use, Academic Press, San Diego, pp 1503–4.
- 11. John DM, Whitton BA, Brook AJ (2002) The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae, Cambridge Univ Press, Cambridge, p 702.
- Timmins M, Thomas-Hall SR, Darling A, Zhang E, Hankamer B, Marx UC, Schenk PM (2009) Phylogenetic and molecular analysis of hydrogen-producing green algae. *J Exp Bot* 60, 1691–702.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2012) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol Biol Evol* 28, 2731–9.
- He ML, Li L, Liu JG (2012) Isolation of wild microalgae from natural water bodies for high hydrogen producing strains. *Int J Hydrogen Energ* 37, 4046–56.
- 15. Liu JG, Bukatin VE, Tsygankov AA (2006) Light

energy conversion into H₂ by *Anabaena variabilis* mutant PK84 dense cultures exposed to nitrogen limitations. *Int J Hydrogen Energ* **31**, 1591–6.

- 16. Qiao H, Wang G, Zhang X (2009) Isolation and characterization of *chlorella sorokiniana* GXNN0 (Chlorophyta) with the properties of heterotrophic and microaerobic growth. *J Phycol* **45**, 1153–62.
- Grossman A, Takahashi H (2001) Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. *Annu Rev Plant Physiol* 52, 163–210.
- Hase E, Morimura Y, Mihara S, Tamiya H (1958) The role of sulfur in the cell division of *Chlorella*. Arch Mikrobiol **31**, 87–95.
- Plumley FG, Schmidt GW (1989) Nitrogen-dependent regulation of photosynthetic gene expression. *Proc Natl Acad Sci USA* 86, 2678–82.
- 20. Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in *Chlamydomonas reinhardtii*. *Plant Physiol* **117**, 129–39.
- Brooks A (1985) Effects of phosphorus nutrition on ribulose-1,5-bisphosphate carboxylase activation, photosynthetic quantum yield and amounts of some Calvin-cycle metabolites in spinach leaves. *Aust J Plant Physiol* 13, 221–37.
- 22. Jacob J, Lawlor DW (1993) In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphate deficient sunflower and maize leaves. *Plant Cell Environ* **16**, 785–95.
- 23. Dietz KJ, Heilos L (1990) Carbon metabolism in spinach leaves as affected by leaf age and phosphorus and sulfur nutrition. *Plant Physiol* **93**, 1219–25.
- Plesnicar M, Kastori R, Petrovic N, Pankovic D (1994) Photosynthesis and chlorophyll fluorescence in sunflower (*Helianthus annuus* L.) leaves is affected by phosphorus nutrition. J Exp Bot 45, 919–24.
- 25. Tamburic B, Zemichael FW, Maitland CM, Hellgardt K (2010) Parameters affecting the growth and hydrogen production of the green alga *Chlamydomonas reinhardtii*. *Int J Hydrogen Energ* **36**, 7872–6.