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ABSTRACT: Let (G, ·) be a 2-divisible group and let (G∗,+) be a uniquely divisible abelian group. We show that the
alternative quadratic functional equation f (x y−1)+ f (x y) =±2( f (x)+ f (y)) is equivalent to the quadratic functional
equation f (x y−1)+ f (x y) = 2 f (x)+2 f (y) for the class of functions f : G→ G∗.
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INTRODUCTION

The well-known alternative Cauchy functional equa-
tion

‖ f (x + y)‖= ‖ f (x)+ f (y)‖

has been studied by several authors1, 2. A general
alternative form,

{c f (x + y)− a f (x)− b f (y)− d}
× { f (x + y)− f (x)− f (y)}= 0,

has been solved by Forti3 by extending the work of
Ger4 as well as that of Forti and Paganoni5, 6. Read-
ers who are interested in recent work on alternative
Cauchy functional equations, should refer to, e.g.,
Refs. 7, 8 and references therein.

Skof9 took the classical quadratic functional
equation

f (x + y)+ f (x − y) = 2 f (x)+2 f (y) (1)

and derived the following four alternative forms of
(1):

| f (x + y)|= |2 f (x)+2 f (y)− f (x − y)| ,
| f (x − y)|= |2 f (x)+2 f (y)− f (x + y)| ,
|2 f (y)|= | f (x + y)+ f (x − y)−2 f (x)| ,
|2 f (x)|= | f (x + y)+ f (x − y)−2 f (y)| .

Skof proved that for the class of functions f : X →R,
where X is a real linear space, each of the above
functional equations is equivalent to (1). Neverthe-
less, there remains another alternative form of (1),

that is

| f (x + y)+ f (x − y)|= |2 f (x)+2 f (y)| , (2)

for which Skof only proved that f is rationally
homogeneous of degree 2, i.e., f (r x) = r2 f (x) for
all rational numbers r and for all x ∈ X . However,
the equivalence of (1) and (2) can be established for
the case when X =R and f is a continuous function.

Let (G, ·) be a 2-divisible group, i.e., for every
x ∈ G, there exists y ∈ G such that y2 = x . Let
(G∗,+) be a uniquely divisible abelian group, i.e.,
for every positive integer n and every x ∈ G, there
exists a unique y ∈ G such that ny = x . We will
complete and generalize the remaining work of Skof
by showing that the alternative quadratic functional
equation

f (x y−1)+ f (x y) = ±2( f (x)+2 f (y)) (3)

is equivalent to the quadratic functional equation

f (x y−1)+ f (x y) = 2 f (x)+2 f (y) (4)

for the more general class of functions f : G → G∗

with no additional condition.

SOME BASIC RESULTS

In the proofs presented in this paper, there will be
many substitutions into the alternative quadratic
functional equation (3). Therefore it is convenient
to denote the statement

P f (x , y) := ( f (x y−1)+ f (x y) = ±2( f (x)+ f (y)))
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for any function f : G→ G∗. The set of all solutions
of (3) will be denoted by

A (G, G∗) := { f : G→ G∗ | P f (x , y) for all x , y ∈ G}.

In this section, we aim to prove a basic theorem
that embodies the quadratic nature of the alterna-
tive quadratic functional equation (3) on groups.
We will begin by first proving some fundamental
lemmas that will finally lead to the proof of that
basic theorem. It should be noted that the 2-
divisibility of G will not be used in this section.

Lemma 1 Let e be the identity of (G, ·). If f ∈
A (G, G∗), then f (e) = 0.

Proof : Let f ∈ A (G, G∗). Considering P f (e, e), we
conclude that f (e) = 0. 2

Lemma 2 If f ∈A (G, G∗), then f (x2) = 4 f (x) for
every x ∈ G.

Proof : Let f ∈A (G, G∗). Considering P f (x , x) and
using Lemma 1, we have

f (x2) = ±4 f (x) (5)

for every x ∈ G. Suppose there exist a ∈ G such that

f (a2) 6= 4 f (a). (6)

Setting x = a in (5) and noting (6), we have

f (a2) = −4 f (a). (7)

From (6) and (7), we observe that

f (a) 6= 0. (8)

Setting x = a2 in (5) and using (7), we have

f (a4) = ±16 f (a). (9)

Considering P f (a2, a) and using (7), we have

f (a3) ∈ {5 f (a),−7 f (a)}. (10)

Considering P f (a3, a), then using (7) and (10), we
have

f (a4) ∈ {16 f (a),−8 f (a)}. (11)

Comparing (9) and (11), while keeping (8) in mind,
we infer that

f (a4) = 16 f (a). (12)

Consider P f (a3, a2), then using (7) and (10), we
have

f (a5) ∈ { f (a),−3 f (a), 21 f (a),−23 f (a)}. (13)

Consider P f (a4, a), then using (10), and (12), we
have

f (a5) ∈ {29 f (a), 41 f (a),−39 f (a),−27 f (a)}.
(14)

Comparing (13) and (14), we must have f (a) = 0,
which contradicts (8). Hence we have the desired
result. 2

Corollary 1 If f ∈ A (G, G∗), then f (x4) = 16 f (x)
for every x ∈ G.

Proof : Apply Lemma 2 twice. 2

Lemma 3 If f ∈A (G, G∗), then f (x3) = 9 f (x) for
every x ∈ G.

Proof : Let f ∈A (G, G∗). Suppose there exists a ∈ G
such that

f (a3) 6= 9 f (a). (15)

From Lemma 2, we have f (a2) = 4 f (a). Consider-
ing P f (a2, a) and (15), we have

f (a3) = −11 f (a). (16)

Considering P f (a3, a2) and (16), we have

f (a5) ∈ {13 f (a),−15 f (a)}. (17)

ConsideringP f (a4, a), then using (16) and f (a4) =
16 f (a) from Corollary 1, we have

f (a5) ∈ {45 f (a),−23 f (a)}. (18)

Comparing (17) and (18), we conclude that f (a) =
0. Then (16) gives f (a3) = 0. So we have f (a3) =
9 f (a) = 0, which contradicts (15). 2

Lemma 4 If f ∈ A (G, G∗), then f (x−1) = f (x) for
every x ∈ G.

Proof : Let f ∈A (G, G∗) and let e be the identity of
(G, ·). Considering P f (e, x) and f (e) = 0, we get

f (x−1) ∈ { f (x),−3 f (x)} (19)

for every x ∈ G. Suppose there exists a ∈ G such
that

f (a−1) 6= f (a). (20)

Setting x = a in (19) and noting (20), we have
f (a−1) = −3 f (a). Setting x = a−1 in (19) and
noting (20) again, we have f (a) = −3 f (a−1). Thus
f (a−1) = f (a) = 0, which contradicts (20). 2

Having all the lemmas, we are now ready to
prove the following theorem by induction.
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Theorem 1 If f ∈ A (G, G∗), then f (xn) = n2 f (x)
for every x ∈ G, n ∈ Z.

Proof : Let f ∈ A (G, G∗) and let x ∈ G. Let
P(n) denote the statement f (xn) = n2 f (x). From
Lemma 2, Lemma 3 and Corollary 1, we can see
that P(n) already holds for n = 1,2, 3,4. Let k ¾
4 be an integer, and suppose that P(n) holds for
n= 1, 2, . . . , k. Suppose that P(n) does not hold for
n= k+1, that is

f (x k+1) 6= (k+1)2 f (x). (21)

Considering P f (x k, x), then using P(k − 1), P(k)
and (21), we have

f (x k+1) = (−3k2+2k−3) f (x). (22)

ConsideringP f (x k−1, x2), then using P(k−3), P(k−
1), P(2) and (21), we have

f (x k+1) = (−3k2+10k−19) f (x). (23)

From (22), (23) and that k ¾ 4, we conclude
that f (x) = 0. Now (23) gives f (x k+1) = 0. So
f (x k+1) = (k+1)2 f (x) = 0, which contradicts (21).
Hence P(n) holds for n= k+1.

By induction, P(n) now holds for every n ∈ N
where N is the set of positive integers. That is
f (xn) = n2 f (x) for every x ∈ G, n ∈ N. For f (xn)
with n¶ 0, we can apply Lemma 1 and Lemma 4 to
complete the proof. 2

The following theorem shows that for a fi-
nite group (G, ·), the only function satisfying the
quadratic functional equation (3) is the zero func-
tion.

Theorem 2 If (G, ·) is a finite group, then f ∈
A (G, G∗) if and only if f (x) = 0 for every x ∈ G.

Proof : If (G, ·) is a finite group with the identity e,
then, for every x ∈ G, there exists n ∈ N such that
xn = e. Therefore f (xn) = f (e). From Theorem 1,
we know that f (xn) = n2 f (x) and f (e) = 0. Hence
f (x) = 0. 2

For an infinite cyclic group G = 〈a〉, Theorem 1
yields f (an) = n2 f (a) for every n∈Z, which suffices
to define the general solution. The next theorem
demonstrates that for the additive group on rational
numbers, we can still apply Theorem 1 to determine
the general solution.

Theorem 3 A function f :Q→ R satisfies

f (x − y)+ f (x + y) = ±2( f (x)+ f (y))

for every x , y ∈ Q if and only if there exists a real
constant k such that f (x) = kx2 for every x ∈Q.

Proof : By Theorem 1, we have f (nx) = n2 f (x) for
every x ∈ Q, n ∈ Z. For a rational number x = p/q
with p ∈ Z and q ∈ Z\{0},

f (x) = f
�

p
q

�

= p2 f
�

1
q

�

=
p2

q2
· q2 f
�

1
q

�

=
p2

q2
f (1) = kx2,

where k = f (1).
The sufficiency of the theorem is obvious. 2

AUXILIARY THEOREM AND LEMMAS

This section provides some lemmas and a theorem
that will be required in the main results. Let us start
with the following lemma which states a necessary
condition for function values taken at four consecu-
tive points in a sequence.

Lemma 5 Let f ∈ A (G, G∗). For every x , y ∈ G,
there exist ε1,ε2 ∈ {−1, 1} such that

f (x y−1)+ f (x y2) = ε1( f (x)+ f (x y))+4ε2 f (y).

Proof : Let f ∈ A (G, G∗) and let x , y ∈ G. Since
(G, ·) is 2-divisible, there exists z ∈ G such that y =
z2.

Eliminating f (xz) from P f (xz, z) and
P f (xz, z3), then using f (z3) = 9 f (z), we get
the desired result. 2

The following three lemmas give some neces-
sary conditions when some alternatives in P f (x , y)
and P f (x y, y) are decided.

Lemma 6 Let f ∈A (G, G∗) and let x , y ∈ G. If

f (x y−1)+ f (x y) = −2 f (x)−2 f (y),

f (x)+ f (x y2) = −2 f (x y)−2 f (y),

then f (x)+ f (x y) ∈ {0,−2 f (y),−4 f (y)}.

Proof : Assuming the hypotheses in the lemma, and
adding up the two equations therein, we have

( f (x y−1)+ f (x y2))+3( f (x)+ f (x y)) = −4 f (y),

which yields the desired result when combined with
Lemma 5. 2

Lemma 7 Let f ∈A (G, G∗) and let x , y ∈ G. If

f (x y−1)+ f (x y) = −2 f (x)−2 f (y),

f (x)+ f (x y2) = 2 f (x y)+2 f (y),

then f (x) = ± f (y) or f (x y) = f (x)±2 f (y).
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Proof : Assuming the hypotheses in the lemma, and
adding up the two equations therein, we have

f (x y−1)+ f (x y2) = f (x y)−3 f (x),

which yields the desired result when combined with
Lemma 5. 2

Lemma 8 Let f ∈A (G, G∗) and let x , y ∈ G. If

f (x y−1)+ f (x y) = −2 f (x)−2 f (y),

f (x)+ f (x y−2) = 2 f (x y)+2 f (y),

then f (x) = ± f (y) or f (x y−1) = f (x)±2 f (y).

Proof : Replacing y in Lemma 7 with its inverse and
using f (y−1) = f (y) from Theorem 1, we get the
desired result. 2

The following theorem gives a partial result
towards the equivalence of the alternative quadratic
functional equation (3) and the quadratic functional
equation (4) when the function values at some
points vanish.

Theorem 4 Let f ∈ A (G, G∗) and let x , y ∈ G. If
f (y) = 0, then f (x y−1)+ f (x y) = 2 f (x).

Proof : Let f ∈A (G, G∗). Suppose there exist x , y ∈
G such that f (y) = 0 but

f (x y−1)+ f (x y) 6= 2 f (x). (24)

From P f (x , y), we will have

f (x y−1)+ f (x y) = −2 f (x). (25)

Observe from (24) and (25) that f (x) 6= 0. Consider
the two possibilities on P f (x y, y).

We first consider the case when

f (x)+ f (x y2) = 2 f (x y). (26)

Applying Lemma 7 to (25) and (26), then noting
that f (y) = 0 and f (x) 6= 0, we are left with
f (x y) = f (x). As a result, (25) gives f (x y−1) =
−3 f (x). Considering P f (x y−1, y), we will have

f (x y−2) ∈ {5 f (x),−7 f (x)}. (27)

On the other hand, replacing x in Lemma 5 with
x y−1, we derive

f (x y−2) ∈ { f (x),−3 f (x)}. (28)

Comparing (27) and (28), we infer that f (x) = 0, a
contradiction.

Now we turn to the case when

f (x)+ f (x y2) = −2 f (x y). (29)

Applying Lemma 6 to (25) and (29), then realizing
that f (y) = 0, we get

f (x)+ f (x y) = 0. (30)

Since (G, ·) is 2-divisible, there exists z ∈ G such that
y = z2. Therefore P f (xz, z) and (30) give f (xz) =
0. Eliminating f (x y) from (25) and (30) gives

f (x y−1)+ f (x) = 0. (31)

Then P f (xz−1, z) and (31) yields f (xz−1) = 0.
Finally, P f (x , z) with f (xz−1) + f (xz) = 0 gives
f (x) = 0, a contradiction. 2

MAIN RESULTS

In this section, we shall use the lemmas and the
theorems in the previous sections to obtain the
equivalence of (3) and (4) by settling each combina-
tion of alternatives in P f (x y−1, y) and P f (x y, y).

Theorem 5 f ∈ A (G, G∗) if and only if f satisfies
the quadratic functional equation (4) for all x , y ∈ G.

Proof : The sufficiency of the theorem is obvious. For
the necessity, let f ∈A (G, G∗). Suppose there exist
x , y ∈ G such that

f (x y−1)+ f (x y) 6= 2 f (x)+2 f (y). (32)

We will denote α= f (y) and an = f (x yn) for every
n ∈ Z. Therefore (32) becomes

a−1+ a1 6= 2a0+2α. (33)

From P f (x , y) and (33), we have

a−1+ a1 = −2a0−2α. (34)

From (33) and (34), we observe that

a−1+ a1 6= 0. (35)

In addition, (33) and the contrapositive of Theo-
rem 4 imply that

α 6= 0. (36)

ConsideringP f (x y−1, y) andP f (x y, y), there exist
ε1, ε2 ∈ {−1,1} such that

a−2+ a0 = 2ε1(a−1+α), (37)

a0+ a2 = 2ε2(a1+α). (38)
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Considering P f (x , y2) and using f (y2) = 4 f (y) =
4α, we have

a−2+ a2 = ±2(a0+4α). (39)

Combining (37), (38) and (39), we have

ε1(a−1+α)+ ε2(a1+α) ∈ {2a0+4α, −4α}. (40)

If ε1 = ε2 = 1, then (33) and (40) give

a−1+ a1 = −6α. (41)

Then (34) gives a0 = 2α. Observing (36) and a0 6=
±α, we apply Lemma 8 to (37) and (34) to get

a−1 ∈ {0,4α}. (42)

Apply Lemma 7 to (34) and (38), while observing
that a0 6= ±α,

a1 ∈ {0,4α}. (43)

From (41), (42) and (43), we infer that α = 0, a
contradiction.

If ε1 = 1 and ε2 = −1, then (40) becomes

a−1− a1 ∈ {−4α, 2a0+4α}. (44)

Eliminating a−1 from (34) and (44), we have

a0+ a1 = α or 2a0+ a1 = −3α. (45)

Apply Lemma 6 to (34) and (38) to get

a0+ a1 ∈ {0,−2α,−4α}. (46)

Combining (45) and (46), there remain three possi-
bilities:
(a) a0 = −3α and a1 = 3α. From (34), we have

a−1 = α. From (37), we have a−2 = 7α. Con-
sidering Lemma 5 with x replaced by x y−1, we
conclude that α= 0, a contradiction.

(b) a0 = a1 =−α. From (34), we have a−1+a1 = 0,
which contradicts (35).

(c) a0 = α and a1 = −5α. From (34), we have
a−1 = α. From (38), we have a2 = 7α. Consid-
ering P f (x y2, y), we have a3 ∈ {21α,−11α}.
On the other hand, P f (x y, y2) gives a3 ∈
{α,−3α}. Comparing the possible values of a3,
we infer that α= 0, a contradiction.

If ε1 = −1 and ε2 = 1, then we switch the roles
of an and a−n, for every n∈N, in the argument when
ε1 = 1 and ε2 = −1. This will lead us to the same
contradictions.

If ε1 = ε2 = −1, then (34) and (40) give a0 =
−2α and

a−1+ a1 = 2α. (47)

Apply Lemma 6 with x y−1 instead of x to (37) and
(34) to get

a−1 ∈ {2α, 0,−2α}. (48)

Apply Lemma 6 again to (34) and (38) to get

a1 ∈ {2α, 0,−2α}. (49)

From (47), (48) and (49), there are two possible
cases:
(a) a−1 = 0 and a1 = 2α. From (37), we get a−2 =

0. Considering P f (x y−2, y), we have a−3 =
±2α. On the other hand, P f (x y−1, y2) gives
a−3 ∈ {6α,−10α}. Comparing a−3, we infer that
α= 0, a contradiction.

(b) a−1 = 2α and a1 = 0. Switching the roles of an
and a−n, for every n ∈N, in the argument of the
case (a) will lead us to the same contradiction.

2
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