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ABSTRACT: We classify planar graphs and complete power graphs of groups and show that the only infinite group
with a complete power graph is the Prüfer group Zp∞ . Clique and chromatic numbers and the automorphism group of
power graphs are investigated. We also prove that the reduced power graph of a group G is regular if and only if G is
a cyclic p-group or exp(G) = p for some prime number p.
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INTRODUCTION

For a semigroup or group, we can associate a
graph in different ways to describe algebraic struc-
tures of the group or semigroup using the prop-
erties of graph. Bosak1 studied certain graphs
over semigroups. The directed power graph of a
semigroup was defined by Kelarev and Quinn2, 3.
Recently, Chakrabarty, Ghosh and Sen4 investigated
the power graph of semigroups and characterized
the class of semigroups with a connected or com-
plete power graph. Also, Cameron5 proved that
for finite groups, the undirected power graph de-
termines the directed power graph up to an iso-
morphism and two finite groups with isomorphic
undirected power graphs have the same number of
elements of each order.

For a given group G we may define the directed
power graph ~P (G) as a directed graph with vertex
set G in which there is an arc from x to y if
x 6= y and y = xm for some positive integer m.
The indegree (outdegree), denoted by indeg~Γ (u)
(respectively, outdeg~Γ (u)) of a vertex u in a directed
graph ~Γ is the number of arcs (v, u) (respectively,
(u, v)) in ~Γ . The undirected power graph P (G) is
defined in such a way that two distinct vertices x
and y are adjacent if one of them is a power of
the other one. For any graph Γ , we denote the set
of vertices and the edges of Γ by V (Γ ) and E(Γ ),
respectively. If X ⊆ G then we can also define P (X )
as the induced subgraph on X of P (G). Moreover,
|Γ | stands for the number of vertices of Γ and is
called the order of Γ . Two distinct vertices v1, v2
are adjacent if they are joined by an edge in Γ and
we denote this by v1 ∼ v2. The complement graph

Γ is defined as V (Γ ) = V (Γ ) and two vertices are
adjacent in Γ if and only if they are not adjacent in
Γ . A proper colouring of a graph Γ is a map from
V (Γ ) into some finite set of colours such that no two
adjacent vertices are assigned the same colour. If
Γ can be properly coloured with a set of k colours,
then we say that Γ can be properly k-coloured. The
minimum value of k for which Γ can be k-coloured
is called the chromatic number of Γ and we denote
it by χ(Γ ). The degree of vertex v in Γ is the number
of edges incident to v and we denote it by degΓ (v)
or simply deg(v). A graph automorphism ϕ is a
permutation on V (Γ ) such that u, v are adjacent if
and only if ϕ(u),ϕ(v) are adjacent. The set of all
graph automorphisms of Γ is denoted by Aut(Γ ). A
clique is an induced subgraph of Γ that is complete.
The maximum order of a clique in Γ is called the
clique number of Γ and is denoted by ω(Γ ).

PLANAR AND COMPLETE POWER GRAPHS

In this section, we shall characterize all groups with
a complete or planar power graph.

Definition 1 A group G is called torsion group if the
order all of elements of G is finite.

Lemma 1 Let G be a torsion group. If x and y are
adjacent vertices in P (G), then either |x | divides |y|
or |y| divides |x |. The converse is true whenever G is
a cyclic group.

For a finite nontrivial group G, Chakrabarty
et al proved that P (G) is complete if and only if
G is a cyclic group of prime power order4. In the
next theorem, we investigate a result for infinite
groups. Recall that a group G is called locally cyclic

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2015.41.073
http://www.scienceasia.org/2015.html
mailto:erfanian@math.um.ac.ir
www.scienceasia.org


74 ScienceAsia 41 (2015)

if every finitely generated subgroup of G is cyclic.
Equivalently, G is locally cyclic if 〈x , y〉 is cyclic for
every pair x , y of elements of G. In particular, every
locally cyclic group is abelian. It is a well-known
result that a group is locally cyclic if and only if it is
isomorphic to a subgroup of Q or Q/Z (see Ref. 6).

Definition 2 The power graph P (G) of a group G,
is the graph whose vertex set is the group G such
that two distinct elements are adjacent if one is a
power of the other.

Theorem 1 Let G be an infinite group. Then P (G)
is complete if and only if G ∼= Zp∞ for some prime p.

Proof : Since every proper subgroup of the Prüfer
group Zp∞ is a finite cyclic p-group, for every pair
of elements of G, one is a power of the other, which
implies that P (Zp∞) is an infinite complete graph.

Now suppose that P (G) is a complete graph
for some infinite group G. Clearly G is an abelian
torsion group, which is also a p-group. Since P (G)
is a complete graph, every pair x , y of G generates a
cyclic subgroup. Hence G is a locally cyclic p-group,
which implies G ∼= Zp∞ . 2
In the following theorem, we give a necessary and
sufficient condition for the power graph P (G) to
be planar. Recall that by a well-known theorem
of Kuratowski, a graph Γ is planar if it has no
subdivision of the graphs K3,3 and K5 (see Ref. 7).

Theorem 2 Let G be a group. Then P (G) is planar
if and only if G is a torsion group and πe(G) ⊆
{1,2, 3,4}, where πe(G) = {|x | : x ∈ G}.

Proof : First assume thatP (G) is a planar graph. We
claim that G is torsion group. If G has an element
of infinite order, then we can easily find subgraphs
K3,3 or K5 in P (G), which is a contradiction. Now,
suppose on the contrary that there exists an element
x ∈ G such that |x | ¾ 5. If |x | is divisible by a
prime p ¾ 5, then we have P (〈x |x |/p〉) ∼= Kp which
is impossible. Thus |x | = 2m3n, where m and n are
non-negative integers. If n = 0, m ¾ 3 or m = 0,
n ¾ 2, then P (〈x〉) ∼= K2m or K3n . Hence P (G)
contains a subgraph isomorphic to K5. Hence we
may assume that m, n ¾ 1 and 6 divides |x | and
consequentlyP (〈x |x |/6〉) has a subgraph isomorphic
to K3,3, which is again a contradiction. Hence
πe(G) ⊆ {1, 2,3, 4}. Conversely, assume that G is
a torsion group and πe(G) ⊆ {1,2, 3,4}. If x is an
element of order 3, then it is not adjacent to any
element of order 2 or 4 by Lemma 1. Therefore
P (〈x〉) ∼= K3. Put A = {g ∈ G : |g| = 3}. Then

Fig. 1 exp(G \A) = 2.

Fig. 2 exp(G \A) = 4.

exp(G \A) = 2 or 4. If exp(G \A) = 2, then P (G \A)
is a star graph and so P (G) is a graph containing
some triangles and the above star graph with the
same identity (Fig. 1).

Now suppose that exp(G \ A) = 4. Consider
B = {g ∈ G : |g| = 4}, C = {g ∈ G : |g| = 2} and
D = C \ B{2}, where B{2} = {g2 : g ∈ B}. For each
g ∈ B{2}, put Bg = {g ′ ∈ B : g ′2 = g}. Then we can
easily see that P (Bg ∪{1, g}) consists of some (not
necessarily finitely many) subgraphs K4 with two
common vertices, namely the identity and g, and
two non-common vertices g ′, g ′−1 ∈ Bg . ThusP (G)
involves a star graph with the identity as midpoint,
some triangles and some complete graphs K4 as
above, all of them having the identity in common.
Hence P (G) is planar (Fig. 2). 2

Corollary 1 If G is a group with a planar power
graph, then χ(P (G)) =maxπe(G).

Proof : If P (G) is planar, then by Theorem 2,
maxπe(G) ¶ 4. If maxπe(G) = 4, then P (G)
is a graph as in Fig. 2 with a complete subgraph
of order 4, which implies that χ(P (G)) = 4. If
maxπe(G) = 3, then P (G) contains complete sub-
graphs of order 3 that have the identity in com-
mon. Thus χ(P (G)) =maxπe(G) = 3. In the case

www.scienceasia.org

http://www.scienceasia.org/2015.html
www.scienceasia.org


ScienceAsia 41 (2015) 75

maxπe(G) = 2, P (G) is a star graph and clearly
χ(P (G)) = 2. 2
As a direct consequence of the above theorem, one
can deduce that the subgroups and quotients of a
group with a planar power graph have planar power
graphs. The following theorem is a consequence
of a theorem given in Ref. 8 which determines the
structure of all groups whose power graphs are
planar.

Theorem 3 Let G be a group. Then P (G) is planar
if and only if G is locally finite and has one of the
following structures.
(i) G is a group of exponent 2, 3, or 4.
(ii) There is a normal elementary abelian 3-subgroup

N of G such that G/N is isomorphic to a subgroup
of Q8.

(iii) There is a normal elementary abelian 2-sub-
group N of G such that G = NS where S ∼= S3.

(iv) There is a normal 2-subgroup N of G of nilpo-
tency class 2 such that |G/N |= 3.

Example 1 For the quaternion group Q8, we can
see that its power graph is planar and it is clear that
Q8 is a group of exponent 4.

REGULARITY OF A POWER GRAPH WITHOUT
IDENTITY ELEMENT

The graph Γ is regular if the all vertices have the
same degree. We know that for a nontrivial finite
group G of order n the degree of the identity element
in the graph P (G) is n−1. Thus P (G) is a regular
graph if and only if P (G) is a complete graph Kn−1.
It is known that the power graph of G is complete
if and only if G is a finite cyclic p-group, where p is
prime. The reduced power graph of a finite group
G is obtained when we remove the identity element
from the vertex set and is denoted by P ∗(G).

Theorem 4 Let G be a finite group. The reduced
power graph P ∗(G) is regular if and only if G is
isomorphic to the cyclic p-group or exp(G) = p, where
p is prime.

Proof : Suppose that P ∗(G) is regular and let 〈x〉
be the maximal cyclic subgroup of G of order n. It
is clear that degP ∗(G)(x) = n − 2. Since P ∗(G) is
regular, we infer that all the maximal cyclic sub-
groups of G have the same order. Every element
of finite group G is in a maximal cyclic subgroup.
Hence exp(G) = |〈x〉| = n. By the contradiction,
assume that G is not a cyclic p-group. Then we can
write n= pa1

1 pa2
2 . . . pam

m where p1 < p2 < · · · 〈pmm〉1
and p′is are prime. Let x ′ ∈ 〈x〉 of order n/p1.

We can easily compute the degree of vertex x ′ in
P ∗(G): that is, (n/p1)− 2+ kϕ(n) where k is the
number of maximal cyclic subgroups which contain
x ′ and ϕ is the Eulerian function. Since P ∗(G) is
regular, (n/p1)− 2+ kϕ(n) = n− 2 which implies
that k(p2−1)(p3−1) · · · (pm−1) = p2p3 . . . pm. Also
p2 > 2 (p2 6= 1). If prime number q divides p2 − 1,
then q | p2p3 . . . pm. Thus q = pi for some 2¶ i ¶ m
which is a contradiction. Hence G is a finite p-
group and P ∗(G) is n − 2 regular. If n = p, then
exp(G) = p. Suppose that n = pt > p. Let 〈x〉 and
〈y〉 be distinct maximal cyclic subgroups of order n.
The regularity P ∗(G) implies that these subgroups
are disjoint, otherwise the element g ∈ 〈x〉∩〈y〉 has
degree greater of n−2 in P ∗(G).

Suppose the maximal cyclic subgroups of G are
not unique. Let z ∈ Z(G) be of prime order p. Then
there exists a maximal cyclic subgroup 〈x〉 such that
z /∈ 〈x〉. Now 〈zx〉 is a maximal cyclic group such
that 〈zx〉 6= 〈x〉 and 〈zx〉 ∩ 〈x〉 6= 〈1〉 which is a
contradiction. Hence the maximal cyclic subgroup
of G is unique. Thus G is a cyclic group. 2

CLIQUE NUMBER AND CHROMATIC NUMBER

It is clear that χ(Γ ) ¾ ω(Γ ) for every graph Γ and
a graph Γ is perfect if χ(Γ1) =ω(Γ1) for all induced
subgraphs Γ1 of Γ . From the strong perfect graph
theorem given in Ref. 9, a finite graph Γ is perfect if
and only if neither Γ nor Γ contains an odd cycle of
length at least 5 as an induced subgraph. Utilizing
this fact, we prove that the power graph of each
group is perfect.

Theorem 5 The power graph of a finite group is
perfect.

Proof : Suppose that P (G) contains an induced
cycle subgraph C of odd length at least 5. Let ~C
be a related directed subgraph to C in the direct
power graph ~P (G). Then ~C must have a strong
directed path of length two which makes a chordal
in C which is a contradiction. Now suppose that C
is an induced cycle subgraph of odd length at least 5
in P (G). If C is a cycle of length 5, then C is also a
cycle of length 5 inP (G)which is not possible. Now
assume that C is a cycle of length at least 7. Then we
can easily find a triangle in C . On the other hand,
we should have indeg ~C(x) = 0 or outdeg ~C(x) = 0
for every vertex x in V (C) which is not true for the
above triangle. Thus there is no odd cycle of length
at least 5 as an induced subgraph in P (G). 2

Theorem 6 Let G be a finite group. Then

ω(P (G)) =max{ω(P (Zn)) : n ∈ πe(G)}.
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Proof : Suppose that C = {x1, . . . , xm} ⊆ V (P (G))
induces a complete subgraph. Clearly 〈C〉 is an
abelian subgroup. Let Ci = {Spi

(〈x〉) : x ∈ C}, where
Spi
(〈x〉) is the Sylow pi-subgroup of 〈x〉. Also,

let |Spi
(〈xki

〉)| = max{|Spi
(〈x〉)| : x ∈ C}. Since

〈Spi
(xs), Spi

(x t)〉 is cyclic for every 1 ¶ s, t ¶ m, it
is easy to see that 〈Ci〉= Spi

(〈xki
〉) is a cyclic group.

Therefore 〈C〉 = 〈C1, . . . , Cm〉 is a cyclic group and
the result follows. 2

In what follows, we shall give a formula for the
clique number of a finite cyclic group.

Lemma 2 Let n = pλ1
1 . . . pλr

r be a natural number
and m= λ1+ · · ·+λr . Let S be the set of all (m+1)-
tuples (d0, d1, . . . , dm) such that n = d0 > d1 > · · · >
dm = 1 is a chain of divisors of n and di−1/di is a
prime for all i = 1, . . . , m. Let f : S −→ N be a map
defined by f (d0, . . . , dm) = ϕ(d0)+ · · ·+ϕ(dm). Then
f takes its maximum value at (d0, . . . , dm) if and only
if di−1/di ¶ di/di+1 for all 0< i <m, and it is unique
with this property.

Proof : Suppose on the contrary that there exists D=
(d0, . . . , dm) ∈ S such that f (D) = max f (S ) and
di−1/di > di/di+1 for some i. Further, we assume
that i is a maximum with respect to this property
for all C ∈ S with f (C) =max f (S ), i.e.,

i =max
§

j such that
c j−1

c j
>

c j

c j+1
, for some C ∈S

such that f (C) =max f (S )
ª

.

for all C = (c0, . . . , cm). Let p = di−1/di and q =
di/di+1. If d ′i = pdi+1 and d ′j = d j whenever j 6= i,
then

D′ = (d ′0, d ′1, . . . , d ′m) ∈ S

and one can see that f (D′)¾ f (D) and the equality
holds if and only if p = 3, q = 2, q | di+1 and p - di+1.
By assumption f (D) = f (D′) and hence p= 3, q= 2,
q | di+1 and p - di+1. But there exists j > i such that
d ′j−1/d

′
j > d ′j/d

′
j+1 = 2, which contradicts the choice

of i. The uniqueness is a direct consequence of the
inequalities di−1/di ¶ di/di+1 (0 < i < m), which
hold for all D ∈S admitting f (D) =max f (S ). The
converse is clear. 2

Theorem 7 Let n = pλ1
1 pλ2

2 . . . pλr
r with p1 < p2 <

· · ·< pr . Then

ω(P (Zn)) = ϕ(n)+ϕ
�

n
p1

�

+ · · ·+ϕ

�

n

pλ1
1

�

+ϕ

�

n

pλ1
1 p2

�

+ · · ·+ϕ

�

n

pλ1
1 pλ2

2

�

+ · · ·+ϕ

�

n

pλ1
1 pλ2

2 . . . pr

�

+ · · ·

+ϕ

�

n

pλ1
1 pλ2

2 . . . pλr−1
r

�

+ϕ(1),

where ϕ is the Eulerian function.

Proof : Let Y be a clique in P (Zn). We first ob-
serve that if y ∈ V (Y ), then r y ∈ V (Y ) whenever
gcd(r, |y|) = 1. Hence the elements of V (Y ) can
be partitioned into sets each of which contains
elements of the same order. Thus V (Y ) = Yh1

∪
Yh2
∪ · · · ∪ Yhk

, where Yhi
possesses of all elements

of order hi and |Yhi
| = ϕ(hi). By Lemma 1 and

the fact that Y is a complete subgraph of P (Zn),
it follows that for each i, j ¶ m, either hi | h j or
h j | hi . Without loss of generality, we assume that
h1 | · · · | hk. On the other hand, for any chain of
positive divisors l1, . . . , lt of n such that l1 | · · · | lt ,
we can find a clique of size

∑t
i=1ϕ(li) in P (Zn).

Now suppose that X is a maximal clique in P (Zn).
Then V (X ) = Xd0

∪Xd1
∪· · ·∪Xdm

(d0 = n), where Xdi

possesses of all elements of order di , |Xdi
| = ϕ(di),

and dm | · · · | d0. Since X is a maximal clique,
then |V (X )| =

∑m
i=0ϕ(di) = ω(P (Zn)). Hence by

Lemma 2, m = λ1 + · · · + λr and di = max{h : h |
di−1, h< di−1}. 2

The following corollary gives a shortened for-
mula for ω(P (Zn)).

Corollary 2 Let n = pλ1
1 pλ2

2 . . . pλr
r such that p1 <

p2 < . . .< pr . Then

ω(P (Zn)) =
r+1
∑

i=2

ϕ

�

n

pλ1
1 pλ2

2 . . . pλi−1
i−1

�

pλi−1−1
i−1 +ϕ(n).

Proof :

ω(P (Zn)) = ϕ(1)+ϕ(pr)+ · · ·+ϕ(pλr−1
r )

+ϕ(pλr
r )(ϕ(1)+ϕ(pr−1)+ · · ·+ϕ(p

λr−1−1
r−1 ))

+ϕ(pλr
r pλr−1

r−1 )(ϕ(1)+ϕ(pr−2) · · ·+ϕ(p
λr−2−1
r−2 ))

+
...

+ϕ(pλr
r . . . pλ2

2 )(ϕ(1)+ϕ(p1)+ · · ·+ϕ(p
λ1−1
1 ))
+ϕ(n).
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Thus

ω(P (Zn)) = pλr−1
r +ϕ(pλr

r )p
λr−1−1
r−1

+ϕ(pλr
r pλr−1

r−1 )p
λr−2−1
r−2

+ · · ·+ϕ(pλr
r pλr−1

r−1 . . . pλ2
2 )p

λ1−1
1 +ϕ(n).

Let ni = pλi
i pλi+1

i+1 . . . pλr
r and nr+1 = 1. Then

ω(P (Zn)) =
r+1
∑

i=2

ϕ(ni)p
λi−1−1
i−1 +ϕ(n)

=
r+1
∑

i=2

ϕ

�

n

pλ1
1 pλ2

2 . . . pλi−1
i−1

�

pλi−1−1
i−1

+ϕ(n).

2

Corollary 3 Let n = pλ1
1 pλ2

2 . . . pλr
r such that p1 <

p2 < · · ·< pr . Then

χ(P (Zn)) =
r+1
∑

i=2

ϕ

�

n

pλ1
1 pλ2

2 . . . pλi−1
i−1

�

pλi−1−1
i−1

+ϕ(n).

Proof : By Theorem 5 and Corollary 2, the result is
clear. 2

AUTOMORPHISM GROUP OF POWER GRAPH
OF P (Zn)

In Ref. 10, Cameron and Ghosh showed that the
only finite group whose automorphism group is the
same as that of its power graph is the Klein four
group. In this section, we discuss the automorphism
group of P (Zn). For any graph Γ and v ∈ V (Γ ), the
set of neighbours of the vertex v in Γ is denoted by
NΓ (v), or briefly by N(v). Furthermore, we define
N[v] = N(v)∪{v}.

Lemma 3 If x , y ∈ V (P (Zn)) and |x | = |y|, then
N[x] = N[y].

Proof : As Zn has a unique subgroup of order |x |, we
have 〈x〉= 〈y〉 and the proof is straightforward. 2
Now let {d1, d2, . . . , dr} be the set of all divisors of n
other than 1 and n. Let A0 = {g ∈ Zn : |g|= n}∪{0}
and Ai = {g ∈ Zn : |g|= di}, for i = 1,2, . . . , r. Then
by Lemma 1, the induced subgraphs of P (Zn) on
Ai ’s are complete of order ϕ(di), for i = 1,2 . . . , r
and the induced subgraph of P (Zn) on A0 is a
complete graph of order ϕ(n) + 1. Hence, by
Lemma 3, every bijection α : Zn −→ Zn such that
α|Ai

: Ai −→ Ai is a permutation for i = 0, 1,2, . . . , r,
is an automorphism of P (Zn). Thus we have the
following theorem.

Theorem 8 Aut(P (Zn)) has a subgroup isomorphic
to Sϕ(n)+1×

∏

d|n,d 6=1,n Sϕ(d).

Corollary 4 Let n be a natural number such that for
every x , y ∈ Zn, deg(x) 6= deg(y) whenever |x | 6= |y|.
Then

Aut(P (Zn))∼= Sϕ(n)+1×
∏

d|n,d 6=1,n

Sϕ(d).

Proof : If α ∈ Aut(P (Zn)) and |x | 6= |y|, then α(x) 6=
y . Hence α(Ai) = Ai , for i = 0,1, 2, . . . , r, where
Ai ’s are defined as above. Thus α ∈ SA0

× SA1
× · · · ×

SAr
. 2
As an example, if G = Z12 and x = 2, y = 6

are elements of G. Then |x | = 6 and |y| = 2,
and deg(x) = deg(y) = 9. However, there is no
automorphism of P (Zn) which maps x to y . Hence
we have Aut(P (Z12))∼= Sϕ(12)+1×

∏

d|12,d 6=1,12 Sϕ(d).
The same happens for Z24.

We state the following conjecture for
Aut(P (Zn)). In spite the fact that we have
much evidence for some small values of n and
strongly believe that it is true for all n having at
least two distinct prime divisors, we have not able
to prove it completely as yet.

Conjecture 1 For every natural number n,

Aut(P (Zn))∼= Sϕ(n)+1×
∏

d|n,d 6=1,n

Sϕ(d).

Finally, we compute the degree of all vertices in
P (Zn).

Theorem 9 The degree of an arbitrary vertex x in
P (Zn) is

deg(x) = d −1+
∑

rd|n,r¾2

ϕ(rd),

where d is the order of x in Zn.

Proof : By Lemma 1, the number of elements of
order rd in Zn is ϕ(rd). The result follows immedi-
ately. 2

We may give a similar formula for the vertex
degrees of P (Zn) as follows.

Corollary 5 Let x be a vertex in P (Zn). Then

deg(x) = d −1−ϕ(d)+ϕ(d)σ(m)
n

dm
,

where d is the order of x in Zn, m =
∏

p|d,pk‖n/d pk

and σ(m) is the sum of divisors m. Also, pk ‖ n/d
means that n

d /p
k does not have divisor p.
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Proof : By Theorem 9, we have

deg(x) = d −1+
∑

r>1,r|n/d

ϕ(rd).

Assume n = pa1
1 pa2

2 . . . par
r and d = pb1

1 pb2
2 . . . pbr

r .
Also, let rx =

∏

bi 6=0 pci
i for each divisor r =

pc1
1 pc2

2 . . . pcr
r of n. Then

ϕ(rd) =
∏

bi 6=0

pbi+ci−1
i (pi −1)

∏

bi=0,ci 6=0

pci−1
i (pi −1)

=
∏

bi 6=0

pci
i

∏

bi 6=0

pbi−1
i (pi −1)

∏

bi=0,ci 6=0

pci−1
i (pi −1)

= rxϕ(d)ϕ
�

r
rx

�

.

Hence
∑

r|n/d

ϕ(rd) =
∑

r|n/d

rxϕ(d)ϕ
�

r
rx

�

= ϕ(d)
∑

r|n/d

rxϕ

�

r
rx

�

= ϕ(d)
∑

rx |n′x ,
(r/rx )|n′/n′x

rxϕ

�

r
rx

�

= ϕ(d)

�

∑

rx |n′x

rx

��

∑

(r/rx )|n′/n′x

ϕ

�

r
rx

�

�

= ϕ(d)σ(n′x)
n′

n′x
,

where n′ = n/d. 2

REFERENCES

1. Bosak J (1963) The graphs of semigroups. In: Fiedler
M (ed) Theory of Graphs and its Applications: Proceed-
ings of the Symposium held in Smolenice in June 1963,
pp 119–25.

2. Kelarev AV, Quinn SJ (2000) A combinatorial prop-
erty and power graphs of groups. In: Contributions
to General Algebra, vol 12, pp 229–35.

3. Kelarev AV, Quinn SJ (2002) Directed graph and
combinatorial properties of semigroups. J Algebra
251, 16–26.

4. Chakrabarty I, Ghosh Sen MK (2009) Undirected
power graphs of semigroups. Semigroup Forum 78,
410–26.

5. Cameron PJ (2010) The power graph of a finite
group II. J Group Theor 13, 779–83.

6. Roland S (1994) Subgroup Lattices of Groups, 2nd
edn, Walter de Gruyter, Berlin, pp 12–3.

7. Kuratowski K (1930) Sur le problème des courbes
gauches en topologie. Fund Math 15, 271–83.

8. Lytkina DV (2007) Structure of a group with ele-
ments of order at most 4. Siberian Math J 48, 283–7.

9. Chudnovsky M, Robertson N, Seymour P, Thomas R
(2006) The strong perfect graph theorem. Ann Math
164, 51–229.

10. Cameron PJ, Ghosh S (2011) The power graph of a
finite group. Discrete Math 311, 1220–2.

www.scienceasia.org

http://www.scienceasia.org/2015.html
www.scienceasia.org

