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ABSTRACT: In this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a
steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large
CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of
bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize
the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared
with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good
estimator of (φ1, θ1) for the ARMA(1,1) model. Another comparison has been conducted to show that the I-CGA-SDA has
fewer function evaluations, minimum search space percentage, faster convergence speed and has a higher optimal precision
than that of the HGA.
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INTRODUCTION

One of the most famous procedures for the solution of
optimization problems is the genetic algorithm (GA),
which is composed mainly of three steps: recombina-
tion, crossover and mutation. By maintaining a popu-
lation of solutions, GA can be viewed as an implicit
model of the solutions in the search space. In the
standard GA, new solutions are generated by apply-
ing random recombination operators on two or more
high-quality individuals of the current population1.
These recombination operators, such as one-point,
two-point or uniform crossover, randomly selected
non-overlapping subsets of two ‘parent’ solutions to
form ‘children’ solutions.

The poor behaviour of genetic algorithms in some
problems, which are sometimes attributed to designed
operators, has led to the development of other types
of algorithms such as the probabilistic model building
genetic algorithm or estimation of distribution algo-
rithm (EDA). There is a class of algorithms which
have been developed recently to preserve the building
blocks2. The principal concept in these new tech-
niques is to prevent the distribution of partial solutions

to be included in a solution by building a probabilistic
model2–4. To name just a few, instances of EDA
algorithms include the population-based incremental
learning (PBIL)5, 6 and the compact genetic algorithm
(CGA)7. CGA represents the population as a proba-
bility (distribution) vector (PV) over the set of solu-
tions and is operationally equivalent to the order-one
behaviour of the simple GA with uniform crossover.
It processes each gene independently and requires less
memory than simple GA2, 7. As a second case study
to investigate the relative performance of CGA for op-
timizing the solution of estimation problems, we have
integrated CGA with the steepest descent algorithm
(SDA) into one system, called I-CGA-SDA, as an
attempt to optimize the maximum likelihood function
lnL(φ1, θ1) of the mixed ARMA(1,1) model.

A time series is an ordered sequence of obser-
vations in an equal interval space; this ordering is
generated through time or other dimensions such as
space. Time series occur in a variety of fields, such
as engineering, economics and agriculture. Formally,
this series is represented in a stochastic model known
as mixed auto-regressive moving average model,

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40S.078
http://www.scienceasia.org/2014.html
www.scienceasia.org


ScienceAsia 40S (2014) 79

ARMA(1,1)8,

zt = φ1zt−1+φpzt−p+at−θ1at−1−· · ·−θqat−q (1)

or
φ(B)zt = θ(B)at (2)

where at ∼ iid N(0, σ2
a), which means that the at’s

are identically, independently distributed, each with a
normal distribution having mean 0 and the same vari-
ance. This model employs p+ q+ 2 unknown param-
eters, µ, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq, σ

2
a, that are

estimated from the data. The moving average process
is stationary for any value of θ1, θ2, . . . , θq , that is,
the mean and the variance of the underlying process
are constant and the auto-covariance depends only on
the time lag. But many economic and business time
series are sometimes considered to be non-stationary.
Non-stationary time series can occur in many different
ways. Sometimes the series have a non-stationary
behaviour about a fixed mean, and hence its behaviour
can be represented by a model which calls for dth
difference of the process to be stationary. In practice
d is usually 0, 1, or at most 2. This behaviour can be
represented by (p, d, q) model for the dth difference to
be stationary8. Then the model takes the formula

wt = φ1wt−1 + · · ·+ φpwt−p + at − θ1at−1, (3)

or, in its operator form,

φ(B)wt = θ(B)at, (4)

where wt = ∆dzt. With the moving average operator,
(4) can be represented by

φ(B)(1−B)dzt = θ(B)at, (5)

which provides a powerful model for describing sta-
tionary and non-stationary time series, and it is called
an integrated moving average model (IMA) process
or ARIMA of order (0, d, q). A mixed model of first-
order is known as first-order auto-regressive moving
average model, which is denoted by ARMA(1,1).
Then (1) and (2) reduces to

zt = φ1zt−1 + at − θ1at−1, (6)

or
(1− φ1B)zt = (1− θ1B)at. (7)

This model will be invertible and stationary if all the
roots of (1 − φ1B) lie outside the unit circle. An
invertible MA is time-reversible, so we can get that
|φ1| < 1 and |θ1| < 1.

Estimation is the second step in analysis of the
time series. It indicates an efficient use of the data to

make inferences about the parameters conditional to
the adequacy of the entrained model. ARMA models
can be difficult to estimate if the parameter estimates
are not within the appropriate range, a moving aver-
age model’s residual terms will grow exponentially.
The calculated residuals for later observations can be
very large or can overflow. This can happen either
because of improper starting values being used or
because the iterations moved away from reasonable
values. Moreover, our model is nonlinear because
at = ((1− φ1B)/(1− θ1B))zt, so there is no direct
method that can handle these limitations, but all suit-
able methods are indirect methods (iterative methods)
which start with an initial value, then this value is iter-
atively modified by using some numerical algorithms.
The numerical method gives an approximate estimator
with some accuracy.

Recently, Hussain9, 10 proposed the use of a
canonical genetic algorithm for optimizing the maxi-
mum likelihood function lnL(θ, σ2

a) of the first-order
moving average MA(1) model. The results were
compared with the results obtained by the moment
estimator method. A hybrid GA and steepest descent
method was then proposed to optimize the likelihood
estimator of ARMA(1,1) model, and the results were
quite encouraging, compared to those from CGA11.

In this paper, we introduce a new evolutionary
way to estimate the same model by using CGA
integrated with steepest descent method as a local
search. In literature, Droste12 proved that CGA is
applicable for optimizing most of the linear func-
tions such One-Max in the optimal expected runtime.
In this paper we are interested in the behaviour of
the CGA for nonlinear functions in comparison with
CGA according to the number of function evaluations
taken, solution quality, the percentage of the search
space searched until convergence and the convergence
speed. Moreover, Al-Dabbagh et al used CGA to
optimize the maximum likelihood estimator of the
first-order moving average model MA(1)13. Simula-
tion results based on MSE were compared with those
obtained from the moment’s method and showed that
CGA can give good estimator of the MA(1) model.
Another comparison has been conducted to show that
the CGA method has fewer function evaluations, min-
imum searched space percentage, faster convergence
speed and has a higher optimal precision than that of
the CGA.

MATHEMATICAL FORMULATION

Maximum likelihood estimator (MLE) is a standard
approach to parameter estimation and inference in
statistics; it is a method that finds the most likely
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value for the parameter based on the data set collected,
in particular in nonlinear modelling with non-normal
data. MLE has many optimal properties in estimation:
sufficiency (complete information about the parameter
of interest contained in its MLE estimator); consis-
tency (true parameter value that generated the data
recovered asymptotically, i.e., for data of sufficiently
large samples); efficiency (lowest-possible variance
of parameter estimates achieved asymptotically); and
parameter invariance (same MLE solution obtained
independent of the parameter used)14.

In order to study the ARMA(1,1) model, let
us assume that a time series which is denoted by
z−d+1, . . . , z0, z1, z2, . . . , zn is generated by (6) mod-
elled over N = n+ d original observations z. Then,
the stationary mixed ARMA(0,1) model in (6) can be
rewritten as14, 15,

at = wt + φ1wt−1 + θ1at−1 (8)

where E(wt) = 0. Suppose that {at} has a normal
distribution with zero mean and constant variance
equal to σ2

a, then the likelihood function can be written
as follows14, 15:

L =

√∣∣M (1,1)
∣∣

(2πσ2
a)n

exp
(
−s(φ1, θ1)

2σ2
a

)
(9)

where

M (1,1) = var-cov(φ1, θ1)

= I−1(φ1, θ1)
1

I(φ1, θ1)
adj(I(φ1, θ1)).

(10)

If M (1,1) = I−1(φ1, θ1), then the logarithmic likeli-
hood function will be given by,

lnL = −n
2

ln(2πσ2
a) +

1
2

ln
∣∣M (1,1)

∣∣− s(φ1, θ1)
2σ2

a

,

(11)
where

I(φ1, θ1) =
n

σ2
a

 σ2
a

1−φ2
σ2

a

1−φ1θ1

σ2
a

1−φ1θ1

σ2
a

1−θ2

 (12)

and

s(φ1, θ1) =
n∑

t=−∞
(at | φ1, θ1, w)2 (13)

is the sum of squared errors, while (at | θ1, φ1, w)
denotes the conditional expectation of at given θ1, φ1

and w. The sum of squared errors can be found
by unconditional calculation of the at’s, which is

computed recursively by taking expectations in (13),
it is also called Least Square Estimate in which the
parameter estimated is obtained by minimizing the
sum of squares in (13), it usually provides very close
approximation to the maximum likelihood estimator.
Back-forecasting is a popular technique, it estimates
the parameters which are crudely put into the model
and run backwards in time. A back-calculation
provides the values w−j for j = 0, 1, 2, . . ., which
is needed to start off the forward recursion. For
moderate and large values of n, Equation (13) is
dominated by s(φ1, θ1)/2σ2

a, and thus the contours
of the unconditional sum of squares function in the
space of the parameters (φ1, θ1) are very much nearly
contours of likelihood and log-likelihood.

INTEGRATED COMPACT GENETIC
ALGORITHM AND STEEPEST DESCENT
ALGORITHM (I-CGA-SDA)

Compact genetic algorithm

The CGA is drawn from the PBIL, but requires fewer
steps, fewer parameters and fewer gene samples12.
The CGA manages its population as the probability
vector PV over the set of solutions (i.e., only models
its existence), thereby mimicking the order-one be-
haviour of the SDA with uniform crossover using a
small amount of memory1, 16.

Fig. 1 describes the pseudo-code of the CGA. The
values of PV are constrained by pi ∈ [0, 1] for all
i = 1, . . . , l, where l is the number of genes (i.e., the
length of the chromosome), which measures the pro-
portion of ‘1’ alleles in the ith locus of the simulated
population2, 7. The PV is initially assigned the values
of 0.5 to represent a randomly generated population.
In every generation (i.e., iteration), competing chro-
mosomes are generated on the basis of the current
PV, and their probabilities are updated to favour a
better chromosome (i.e, winner). It is noted that the
generation of chromosomes from PV simulates the
effects of crossover that leads to a decorrelation of the
population’s genes. In a simulated population of size
n, the probability pi is increased (or decreased) by 1/n
when the ith locus of the winner has an allele of ‘0’ (or
‘1’). If both the winner and the loser have the same
allele in each locus, then the probability remains the
same. This scheme is equivalent to (steady-state) pair-
wise tournament selection. The CGA is terminated
when all the probabilities converge to zero or one. The
convergent PV itself represents the final solution. It
can be seen that the CGA requires l× log2(n+ 1) bits
of memory while the SDA requires l× n bits1. Thus
a large-size population can be effectively exploited
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Parameters. n: population size, l: chromosome length
Step 1. Initialize probability vector

for i := 1 to l do pi := 0.5
Step 2. Generate two chromosomes from the probability vector

a := generate(p); b:= generate(p)
Step 3. Let them compete

winner, loser := compete(a, b)
Step 4. Update the probability vector

for i := 1 to l do
if winner(i) then

pi := pi + 1/n
else if loser(i) then

pi := pi − 1/n
end if

end for
Step 5. Check if the probability vector has converged. Go to Step 2, if it is not satisfied.
Step 6. The probability vector pi represents the final solution.

Fig. 1 Pseudo-code fashion of the CGA.

without unduly compromising on memory require-
ments16, 17.

(1) Individual Initialization and encoding: Certain
restrictions are defined on the encoding scheme:
(i) CGA needs in every step two random numbers,

each having a bit-string (0’s and 1’s) of fixed
length l = 15 bits. Two individuals a and b are
generated: they are two identical chromosomes
working in parallel, but using different initial
seeds. Each individual affectionately known as
a critter represents an element with the domain
of the solution space of the optimization prob-
lem. The chromosome of a given critter is the
only source for of all the information about the
corresponding solution. To apply the CGA to
real-values parameters optimization problems of
the form f :

∏
[ui, vi] → R(ui < vi), the bit-

strings is logically divided into n segments of (in
most cases) equal length lx (l = nlx) and each
segment is interpreted as the binary code of the
corresponding object variable xi ∈ [ui, vi]. A seg-
ment decoding function Γi : {0, 1}lx → [ui, vi]
typically looks like,

Γi(ai1ai2 · · · ailx) = ui+
vi − ui
2lx − 1

(∑
aij2j−1

)
,

where (ai1ai2 · · · ailx) denotes the ith-segment of
an individual a = (a11, . . . , anlx) ∈ lnlx = I l

(Fig. 2).
(ii) Every field of the probability vector PV is initial-

ized to 0.5.

(2) Fitness Evaluation: A fitness function is a nu-
merical value associated with each individual to mea-

Fig. 2 The individual structure in CGA.

sure the goodness of the solution. Each individual a
and b is converted into a number between 0 and 32 768
(15 bits mean 215 possible values). Hence individual
with higher fitness value represents better solution,
while lower fitness value is attributed to the individual
whose bit-string represents inferior solution. Combin-
ing the segment-wise decoding function to individual-
decoding function Γ = Γ1 × · · · × Γn 18, 19, fitness
values are obtained by setting

φ(a) = δ (f(Γ(a)))

where δ denotes a scaling function ensuring positive
fitness values such that the best individual receives
largest fitness.

(3) Compete: Compete is a procedure that compares
two real-values (meaning 2 bit-strings), a and b and
has an output either ‘1’ (if a > b), or ‘0’ (if a < b).
The comparison depends on the Fitness Evaluation
module.

(4) Probability Update: As the population has n
chromosomes, the probability vector PV must be able
to be increased or decreased by a minimal value of
1/n. There is no need to represent the probability as
the float number is.
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As the probability always has a value between 0
and 1, and can be written as the sum of the negative
powers of 2, with 0 and 1 as coefficients, the probabil-
ity vector contains the bit-string of these coefficients.
Increasing and decreasing it by the minimal value
means to change at least one value of this bit-string.
Technically, the pi is updated as follows:

If fa > fb then

if ai = 1 then pi = min
(
1, pi + 1

n

)
if ai = 0 then pi = max

(
1, pi − 1

n

)
else

if bi = 1 then pi = min
(
1, pi + 1

n

)
if bi = 0 then pi = max

(
1, pi − 1

n

)
.

Hence pi’s store the bit-string that represents the
probability. The operations that it needs are increment
and decrement of the bit-string by one unit.

Local search: steepest descent method

Typically, a local search method searches for the
best solution starting at a previously selected point,
which in our case is a solution selected throughout
the evolution process of CGA. In this paper, we use
steepest descent method to play the role of the local
search operator. It is defined by three basic stages:
frequency, probability, and the number of local search
iterations.

(1) Steepest Descent Method: Steepest Descent Al-
gorithm (SDA)19 is an iterative algorithm that depends
on the following rules of numerical computations:

β∗i = βi−1 − k∇ e2

where βi−1 is the parameter model, k is a con-
stant value (to be derived later), ∇ e2 is the gradi-
ent of e2, which can be approximated by ∇ e2 =
(∂ e2/∂β1, ∂ e2/∂β2, . . . , ∂ e2/∂βm). We can see
that the estimation of the parameters depends on an
iterative method which starts with an initial value
βi (estimated form one of the traditional estimation
methods). This algorithm will continue in modifying
these estimators until it reached to a stage that there
will be no change in the values of the forecasting mean
square error (FMSE), which is given by,

FMSE =
1

n− 1

n∑
t=1

(zt − ẑt)2

where zt is an actual value of observed time series and
ẑt is a predicted value of the actual one. From (6), we
obtain

a2
t = (zt − φ1twt−1 + θ1tat−1)2.

Therefore, ∂a2
t/∂φ1t = −2atzt−1 and ∂a2

t/∂φ1t =
−2atat−1. So,

(φ∗1t, θ
∗
1t) = (φ1t + 2katzt−1, θ1t − 2katat−1).

In order to obtain the value of k, we first note that

|∆at| = |a∗t − at| = 2kat
(
z2
t−1 + a2

t−1

)
Since 0 < |∆at/at| < 1, we obtain

0 < k <
1

2
(
z2
t−1 + a2

t−1

) .
As a local search method, this algorithm moves along
the direction of the steepest gradient until an improved
point achieved. The algorithm ends when there is no
new relationship shown point can be found (i.e., when
the gradient equal zero).

(2) The number of Local Search Iterations: One im-
portant issue for the application this algorithm is how
long the local search lasts before switching back to the
global CGA search. In order to make this decision,
we compare the most recent fitness improvements by
local search with last fitness improvements by global
search.

Do Local Search if
∆Global

pop
<

∆Local
fev

. (14)

This criterion presented in (14) where is the improve-
ment achieved between the two previous global search
generations, ∆Local is the current improvement in
the local search step, pop is the population size, and
fev is the number of function evaluations required for
the local search step. This criterion scales the fitness
improvements by the computational effort required
(i.e., pop and fev) so that the ratios are comparable.
When (14) is no longer true, or when the number of
iterations exceeds a user-specified maximum value,
the algorithm switches back to the global search.

Conceptual integrated algorithm

The coupling approaches are applied by the introduc-
tion of the generation interval for Hybrid Activation
Operator (HAO). When CGA goes through its oper-
ators generation by generation, the HAO is activated
since CGA achieves 20 generations. The intermediate
generation created by CGA is fed into an adopted
selection strategy which selects the best solutions
obtained from all previous generations into an array of
a small size. Then each binary individual in this array
is converted into real-value to be the initial values of
steepest descent algorithm that operates on this array
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Parameters. np: population size, l: chromosome length
Step 1. Initialize probability vector

for i := 1 to l do p[i] := 0.5
Step 2. Generate two chromosomes from the probability vector

a := generate(p); b:= generate(p)
Step 3. Let them compete

winner, loser := compete(a, b)
Step 4. Update the probability vector

for i := 1 to l do
if winner[i] then

p[i] := p[i] + 1/n
else if loser[i] then

p: = pi − 1/n
end if

end for
Step 5. Check if the probability vector has converged.

Go to Step 2 if it is not satisfied, otherwise go to Step 7.
Step 6. Local Search implementation

Check if the number of iterations has achieved the desired for applying the local search.
Step 6.1 Convert all the binary vectors in into their corresponding real-values.
Step 6.2 Apply SDA.
Step 6.3 Re-convert the best solution achieved to its corresponding binary value, go to Step 2.

Step 7. The probability vector p[i] represents the final solution.

Fig. 3 Pseudo-code fashion of I-CGA-SDA system.

for fixed small number of iterations. Then the best
vector among all the obtained vectors is converted
back into binary string to be manipulated by CGA.
Here, steepest descent method used as a tool in this
integration system that operates in small number of
generations in order to enhance the selected points
driven from CGA. The steps of the new proposed
I-CGA-SDA algorithm are stated in Fig. 3.

SIMULATION RESULTS AND DISCUSSION

This section presents the simulation results ob-
tained and the comparison conducted between the
I-CGA-SDA and HGA in terms of solution quality,
the number of function evaluations and the percent-
age of the searched space taken for the likelihood
estimator of ARMA(1,1)10, 11. All simulation results
are attained by triggering 5 distinct runs; each run
has 100 generations, then averaging the results data.
Furthermore, the results of these former methods
have been compared with those obtained by steepest
descent method based on initial values obtained by
moment method for the same value of (φ, θ) with
1000 runs. The simulation results performed are based
on different sample size (i.e., n = 25, 75, 125), φ is set
to (±0.1, ±0.3, ±0.4, ±0.6), and θ is set to (±0.2,
±0.4, ±0.5, ±0.8). The random variables at’s are
generated by using Box-Muller formula and sample
of size n generated by (3). The comparison has been
based on Mean Square Error, MSE = var(θ) + bias.

The HGA used binary tournament selection with-
out replacement, and uniform crossover with ex-
change probability Pc = 0.75. Inversion mutation is
used with probability Pm = 0.005. The population
size is set to 50. All runs end when the population
fully converged that is when the individuals have the
same alleles at each gene position.

As opposed to HGA, in I-CGA-SDA the popula-
tion size Ps and the chromosome length l are set to
30–50 and 20, respectively. The algorithms start with
a probability register initialized with 0.5, so that at the
beginning, there are equal chances for every bit of the
future chromosome to be either ‘0’ or ‘1’ at the end of
the algorithm. The objective function decides whether
it is better to increase or decrease the entry in the
probability register. Table 1 illustrates the results and
the simulations on a set of data that gives some ideas
of the behaviour of HGA, I-CGA-SDA, and SDA.

From Table 1 we can see that the MSE of HGA
and I-CGA-SDA are relatively competing in a small
range of differences but they are all smaller than those
obtained from the SDA. Consequently, they are more
reliable than the SDA in estimating the parameters
of the model under study. On the other hand, the
value of the MSE decreases when the sample size
increases for all the adopted methods. Moreover, MSE
of I-CGA-SDA and HGA when the model parameters
(φ1, θ1) take positive values is smaller than that when
these parameters are assigned to negative ones.
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Table 1 MSE for HGA, I-CGA-SDA, and SDA methods for
different values of sample size and model parameter.

n φ θ
SDA HGA I- CGA-SDA

φ θ φ θ φ θ

25

0.6 0.8 1.37 1.52 0.56 0.782 0.32 0.686
0.4 0.5 0.83 1.1 0.601 0.602 0.36 0.506
−0.1 0.2 0.58 0.38 0.28 0.243 0.21 0.225
−0.3 −0.4 0.64 1.04 0.48 0.521 0.271 0.511

75

0.6 0.8 1.36 1.43 0.503 0.657 0.271 0.563
0.4 0.5 0.8 0.97 0.53 0.482 0.346 0.425
−0.1 0.2 0.3 0.24 0.248 0.241 0.143 0.181
−0.3 −0.4 0.61 0.801 0.472 0.416 0.248 0.406

125

0.6 0.8 1.32 1.41 0.414 0.431 0.226 0.551
0.4 0.5 0.75 0.96 0.275 0.431 0.201 0.221
−0.1 0.2 0.36 0.212 0.226 0.225 0.122 0.025
−0.3 −0.4 0.52 0.61 0.216 0.41 0.112 0.301

Table 2 illustrates the average simulation results
of HGA and I-CGA-SDA, respectively, with popula-
tion size Ps = 50 over 100 runs, where F is the num-
ber of function evaluations taken until convergence
for the various numbers of generations, and PSS is
the percentage of the searched space which can be
calculated as follows13:

PSS =
NC×NG

TSS

where NC = number of individuals being evaluated
per generation, NG = number of generations until
convergence, TSS = total search space size. Here,
total search size = 2l× (no. of chrom. being evalu-
ated), which is equal to Ps in HGA and 2 in I-CGA-
SDA. Formally speaking, there is an evidence that the
two algorithms are quite different, while HGA has
a memory requirement of l × Ps, the I-CGA-SDA
requires only l × log2 Ps bits and in the number of
function evaluations HGA requires Ps × NG, while
I-CGA-SDA requires only 2 × NG. As one can see
from the results illustrated in Table 2, the difference
between I-CGA-SDA for both the number of function
evaluations and the percentage of the searched space
until convergence in which I-CGA-SDA exhibits bet-
ter performance than in the average of both cases.
It is also worth noting that the number of function
evaluations and the searched space are both decreases
when the number of sample size increases.

From Fig. 4, it is clear that the quality of solutions
and convergence speed found by the I-CGA-SDA is
better than these obtained by HGA. Ultimately, the
results suggest that the I-CGA-SDA performs the best
and the HGA performs the worst.

Table 2 Average simulation results of HGA and
I-CGA-SDA based on the number of function evaluations
F and the percentage of the searched space PSS.

n φ θ
HGA I-CGA-SDA

F PSS F PSS

25

0.6 0.8 3200 9.7656 124 0.3784
0.4 0.5 4150 12.6647 130 0.3967
−0.1 0.2 3000 9.1552 116 0.354
−0.3 −0.4 3750 11.444 124 0.3784

75

0.6 0.8 3200 9.7656 122 0.3723
0.4 0.5 3650 11.1389 126 0.3845
−0.1 0.2 2800 8.54492 100 0.3051
−0.3 −0.4 3500 10.6811 120 0.3662

125

0.6 0.8 2250 6.8664 96 0.2929
0.4 0.5 3000 9.1552 106 0.3234
−0.1 0.2 2450 7.4768 98 0.299
−0.3 −0.4 3250 9.9182 116 0.354

System Configuration

Intel Core Duo CPU T6670 @ 2.20 GHz 2.20 GHz,
4.00 GB of memory, Windows 7 Professional Version
2009, Language: Delphi 7.

CONCLUSIONS

In this paper, we investigate the performance of a
new integration system I-CGA-SDA for estimating
the parameter of log-likelihood function of first order
moving average model ARMA(1,1). Based on MSE,
I-CGA-SDA provides effective results for three ran-
dom samples with different sizes (n = 25, 75, 125)
with (φ, θ) that are set to (±0.1, ±0.3, ±0.4, ±0.6)
and (±0.2, ±0.4, ±0.5, ±0.8), respectively; in com-
parison with the HGA and SDA methods. Simulation
results also show that the I-CGA-SDA has a higher
optimal precision or at least the same as that obtained
from the HGA, at same time, the I-CGA-SDA needs
minimum searched space percentage and fewer func-
tion evaluations than that of the HGA.
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