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ABSTRACT: By representing a genus one curve as a plane curve with five double points, we are able to construct a 3-
parameter family of genus one curves over Q with Jacobians having a torsion subgroup isomorphic to Z5. This leads, by
specializing the parameters, to elliptic curves over Q of the Mordell-Weil group with high rank and with a torsion subgroup
isomorphic to Z5. We also show this family contains as a subfamily the principal homogeneous space parameterizing elliptic
curves with a rational point of order 5, namely X1(5). We explicitly describe these families by equations in the Weierstrass
form.
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BASIC CONSTRUCTION

Let S = {P0, P2, . . . , P4} be a set of 5 points in the
projective plane P2(F ) with the property that no three
are co-linear, we call such a set in general position.
Although most of the results hold over an arbitrary
field F , for our interests and for simplicity we assume
F is a subfield of the complex numbers or even just
the rational numbers. A plane quintic having only
ordinary double points at the points Pi has geometric
genus 1

2 (5− 1)(5− 2)− 5 = 1 (see Ref. 1). On the
other hand we have the following lemma.

Lemma 1 The vector space of quintic forms in three
variables with double points on S has dimension 6.

Proof : The vector space of degree n forms in k + 1
has dimension

(
n+k

k

)
, because this is the number of

combinations of n elements (with repletion) which
can be taken from a set of k + 1 elements. Hence
the dimension of the vector space of all quintic forms
in 3 variables is 21. Now to have double points
on S, each point of S imposes 3 independent linear
conditions, namely the vanishing of the first order
partial derivatives which, by Euler’s formula, implies
the vanishing of the form (see Ref. 1 for more details).
Hence the dimension of the vector space of quintic
forms with double points on S is 21–15 = 6. 2
We now find a basis for this vector space. For i =
0, 1, . . . , 4 let Li be the line through Pi and Pi+1 and
Ki be the line through Pi and Pi+2 where the indices
are considered modulo 5. Using the same symbols

to denote the line equations, the product of each set
of linear forms is a quintic which will be denoted as
follows.

Definition 1 Given a set S ⊆ P2 of 5 points in general
position, a union of five lines described above is called
a pentagon on S and we refer to the points of S as its
vertices.

Given a set S of five points in general position, the
following facts are immediate:
(i) If P is a pentagon then the union of the remaining

5 lines is also a pentagon on S which will be
called the pentagon opposite to P and is denoted
by P op.

(ii) There are exactly 12 pentagons on S which come
in 6 pairs of the form (P, P op).

(iii) P and P op meet outside the set S in exactly
five points giving the set T = {q0, q2, . . . , q4}.
We will use the following notation. For i =
0, 1, . . . , 4, qi is the point of intersection of Li and
Ki+2, where again the indices are taken mod 5.
If we fix a form for each of the 12 pentagons then

the following lemma shows in particular that these
12 forms generate the vector space of quintic forms
with double points on S.

Lemma 2 Let S be a set of five points in general
position. There is a set of 6 pentagons on S so that
their defining forms are linearly independent. Hence
these forms generate a vector space of quintic forms
with double points on S.
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Proof : Let S = {P0, P1, P2, P3, P4} and P be a
pentagon on S. Let

P =
4∏

i=0

Li

be a defining form for the pentagon P so that Li is
the form defining the line through Pi and Pi+1 (i =
0, 1, . . . , 4 and the indices are taken mod 5). Then we
can write

P op =
4∏

i=0

Ki

for the opposite pentagon so that Ki is the form
defining the line through Pi and Pi+2 (i = 0, 1, . . . , 4
and the indices are taken mod 5). We claim that the
following forms are linearly independent:

A1 = P

A2 = P op

A3 = L1L3L4K0K1

A4 = L0L2L4K1K2

A5 = L0L2L3K0K4

A6 = L0L1L3K2K3.

To see this, suppose we have a linear relation

6∑
i=1

aiAi = 0.

By evaluating the left-hand side of the equation at
the point of intersection of the lines L0 and K2 we
find that a3 = 0, since all the forms Ai where i 6= 3
vanish at this point and A3 6= 0 there. Then put
a3 = 0 and evaluate at the point of intersection of
the lines L3 and K0 to get a4 = 0. Similarly, putting
a3 = a4 = 0 and evaluating at the point of intersection
of the lines L4 and K2 implies that a5 = 0. Continue
in this pattern to see that the evaluation at the point of
intersection of L4 and L2 implies that a6 = 0. Finally,
it follows that a1 = 0 and hence the forms Ai are
linearly independent. 2
We will consider the family of curves given by the
equation

Q : P + µP op = 0

where µ is a non-zero rational number. If Q̃ is the
normalization of Q then Q̃ is genus one curve and
the space of holomorphic differentials on Q̃ has a nice
general description given by the following lemma.

Lemma 3 Let the curve Q have affine equation
q(x, y) = 0, and let the coordinates are chosen so

that qy does not vanish identically. Let Q̃ be the
normalization of Q, then the space of holomorphic
differentials on Q̃ is generated by the differential form:

ω =
g(x, y)d x
qy(x, y)

=
−g(x, y)d y
qx(x, y)

where g(x, y) is the corresponding affine equation for
the conic G through the points of S.

Sketch of proof We only give a sketch of the proof,
for more details see Ref. 1 p. 360. First to avoid
complications discussing points at infinity, write ω
using homogenous coordinates, i.e., x = X/Z, and
y = Y/Z. Then ω has the homogenous form

ω =
G(X,Y, Z)(ZdX −XdZ)

QY (X,Y, Z)
.

MAIN RESULTS

To select our five points forming S, we note the
following result about points in general position.

Proposition 1 The divisors of degree zero supported
on the five points of T represent 5-torsion in the
Jacobian of Q.

Proof : We show that the points qi for i = 0, 1, . . . , 4
are 5-torsion points by explicitly finding rational func-
tions fij such that div(fij) = 5qi−5qj. Using the lines
Li and Ki, we have the following intersection cycles

Li ·Q = 2Pi + 2Pi+1 + qi

Ki ·Q = 2Pi + 2Pi+2 + qi+3

where the indices are taken mod 5 for i = 0, 1, . . . , 4.
It follows that we have the divisor

div
(
L1L

2
3K

3
0K4

L2
0L2K3

2K3

)
= 5q3 − 5q0.

Adding 1 (mod 5) to the indices of the lines of the
rational function on the left we get a rational functions
fij with following divisors

div(f41) = 5q4 − 5q1
div(f02) = 5q0 − 5q2
div(f13) = 5q1 − 5q3
div(f41) = 5q2 − 5q4.

The remaining desired rational functions are found
by multiplying or dividing these five rational func-
tions. 2

Since any four points (with no three are collinear)
in P2 are projectively equivalent to the points p0 =
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(0 : 0 : 1), p1 = (1 : 0 : 1), p2 = (0 : 1 : 1), and
p3 = (1 : 1 : 1). We will choose for S the points p0,
p1, p2, p3, and p4 = (a : b : 1).

Now for i = 0, 1, . . . , 4 the affine forms for the
lines Li are given respectively by y,−x+1−y, y−1,
x−xb+b−y+ay−a, and xb−ay. On the other hand,
the affine forms for the lines Ki are given respectively
by−x,−x+1, x−xb+ay−a, x−y, and xb−ay+y−b.
So that the curve Q is now given by the affine form

y(−x+ 1− y)(y− 1)(x− xb+ b− y+ ay− a)
× (xb− ay)− t(−x+ 1)(x− xb+ ay− a)

× (x− y)(xb− ay+ y− b)

Now by construction we have the following theorem.

Theorem 1 The above affine form defines a genus one
curve Q over the field Q(a, b, t) whose Jacobian con-
tains 5-torsion subgroup represented by the points q0,
q1, q2, q3, and q4 with coordinates given respectively
by(
− a

−1 + b
: 0 : 1

)
,
(

1
2 : 1

2 : 1
)
,
(a− 1 + b

b
: 1 : 1

)
,(

0 :
−b+ a

a− 1
: 1
)
,
(
1 :

b

a
: 1
)
.

We show now that this family ‘contains’ X1(5).

Theorem 2 With the substitutions a = 2 and b = 3,
the above defines a genus one curve Q over the field
Q(t) whose Jacobian is the modular elliptic curve
X1(5).

Proof : Using maple software we calculated the Jaco-
bian in Weierstrass form

x3 +
(
− 27

256 −
189
128 t

2 − 27
256 t

4 + 81
84 t−

81
64 t

3
)
x

− 27
2048 t

6 − 2025
2048 t

2 − 27
2048 + 243

1024 t+ y2

− 2025
2048 t

4 − 243
1024 t

5 = 0

with j-invariant

−
(
1− 12t+ 12t3 + 14t2 + t4

)
t5 (11t− 1 + t2)

.

Now going back to the curve Q that represents
an infinite 3-parameter family of genus one curves
over Q. By specializing the parameters, we modify
this family and get other families with more rational
points on them. Indeed a simple way to do this is
by basically substituting the coordinates of any point
(x, y) and solving the parameter t in terms of a and b.

For example, using the affine point (3,2) will produce
a 2-parameter family given by the affine form

y(−x+ 1− y)(y− 1)(x− xb+ b− y+ ay− a)

× (xb− ay)− 2
3

1
(3− 3b+ a)(−b+ a− 1)

×
(

(1− 2b+ a)(−3b+ 2a)x(−x+ 1)

× (x− xb+ ay− a)(x− y)(xb− ay+ y− b)
)
.

By another rational point substitution, say (1,13), for
(x, y) and solving for b in terms of a, the result is a
1-parameter family given by the form

y(−x+ 1− y)(y− 1)(x− 13xa+ 12a− y+ ay)

× (13xa− ay) +
74
3

1
(3− 38a)(−12− 1)

× (1− 25a)ax(−x+ 1)(x− 13ax+ ay− a)
× (x− y)(13xa− ay+ y− 13a).

Now this family has lots of smooth rational points.
Using Mazur’s classification of the Mordell-Weil
groups of rational points on an elliptic curve2, one
concludes that the Jacobian of the above curve over
Q(a) has positive rank and a subgroup of the torsion
points isomorphic to Z5. We then use the program
MAPLE to calculate the Jacobian and represent it by
the following Weierstrass form.

x3 +
(
−1875313186498431044352a12

+ 7731869513246851415040a11

− 1217227157475263114208a10

+ 8875065530934155344896a9

− 2778879875742156730752a8

+ 212401231538868523008a7

+ 9003009698068973184a6

− 1968960606584954112a5

+ 93495090081745872a4

+ 1085215555120320a3 − 276569761691808a2

+ 8526936360384a− 80951927472
)
x

− 4943968379370907549600331780096a18

+ 303572954508181181364837866618880a17

− 782856050341339378468804131864576a16

+ 1090644782663773822407639896604672a15

− 874576625648832139489558757591040a14
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+ 392466512775697275228409970085888a13

− 8418605164781014994841751993344012

+ 3617229355755020670244737650688a11

+ 83692324964511053939496297830a10

− 78627268386235714543319301120a9

− 1703921229822764330592574464a8

+ 340046983924371781226956800a7

+ 874333645133139830261376a6

− 859502101359433277820672a5

+ 4596393029433980261760a4

+ 1923455392105068836352a3

− 82316734874175634560a2

+ 14007027782047558912a

− 8865207481313664 + y2.

2
From the above construction and the fact that the
specializing map is an injective group homomorphism
for infinitely many values of the parameter, see Ref. 3,
we have the following theorem.

Theorem 3 The elliptic curve over Q(a) with equa-
tion given by the above form has Mordell-Weil group
with rank at least one and a torsion subgroup isomor-
phic to Z5. Thus by specializing rational values for a
we have produced infinitely many elliptic curves over
Q with Mordell-Weil group having torsion subgroup
isomorphic to Z5 and rank at least 1.
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