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ABSTRACT: This paper deals with the problem of monotonicity-preserving curves of monotonic data. An alternative curve
scheme using a piecewise rational cubic ball function is presented. The function involves three shape parameters in each
subinterval. Data-dependent constraints are derived for a single shape parameter to preserve the shape of data while the
other two are left free to modify the monotonic curve as desired. Several numerical examples are presented to show the
effectiveness and capability of the proposed scheme. The scheme is C2, flexible, simple, local, and economical.
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INTRODUCTION

Data visualization is the study of visual display repre-
sentation of data and one of the factors that contributes
to data visualization is shape preserving. Visualization
of scientific data arises from scientific phenomena
and complex functions to incorporate the inherited
features of the data. The main goal of data visu-
alization is to communicate information clearly and
effectively through graphical means. The information
needs to be presented in a way that is clear and easy
to understand. These graphical representations of data
plays a significant role not only in manufacturing of
different product such as ship design, car modelling,
aeroplane but also in the fields of engineering, mili-
tary, education, art, medical research, image analysis,
advertising and transport. There are three basic shape
characteristics of data for curves and surfaces namely
positivity, monotonicity and convexity. The aim of
this paper is to preserve the meaning of underlying
physical phenomena of monotonic data.

There are many physical situations of data that
arise from different sciences and arts where they have
a meaning when their values are monotone. Examples
of monotonic data are approximations of couple and
quasi couples in statistics, approximations of potential
functions in physical and chemical systems and dose
response curves in biochemistry and pharmacology,
level of uric acid in gout patients, data generated from
stress and strain of materials, graphical display of

Newton’s law of cooling and medical diagnosis and
economic forecasting.

Since ordinary spline interpolating curve scheme
does not preserve the shape feature of monotonicity of
monotone data, some alteration are needed to preserve
the shape of such curves. Normally, ordinary curve
scheme used Bézier-Bernstein basis functions for C1

and C2 continuity of smoothness of interpolation. For
this reason, we propose a new scheme using ball basis
functions which involves three shape parameters and
the smoothness of the interpolation is C2 continuity.
The scheme only deals with monotonicity preserva-
tion of curves through monotone data

In recent years, problem of monotonicity on shape
preservation has been dealt by many authors. Abbas
et al1 developed monotonicity-preserving interpola-
tion with three shape parameters to maintain the shape
of monotonic data. The authors also derived data
dependent conditions. Abbas2 developed a C1 and
C2 piecewise cubic rational monotonicity-preserving
interpolation and introduced a rational cubic function
with three shape parameters that provide freedom to
designers to modify the curves for interactive design.
Abbas et al3 considered a C1 piecewise rational cubic
function with three shape parameters in each interval
to preserve the monotonicity of data. Butt4 inserted
additional knots rather than using certain choices of
slope in order to produce stiffness of cubic Hermite
interpolation. Duan et al5 used function values to
develop rational interpolation. The authors also dis-
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cussed how to constraint the interpolating curves in
order to lie above, below or in between two lines.
Fiorot and Tabka6 introduced C2 cubic polynomial
spline for preserving monotonicity or convexity. The
authors also introduced a new method to get the
values of derivative parameters d′i s through system
of linear equations. Lamberti and Manni7 focused
on parametric cubic to approximate and explore the
order of a global C2 shape preserving interpolating
function. They used tension parameters to control
the shape of curve. The authors also constructed
the necessary and sufficient conditions for convexity.
Wang and Tan8 developed a C2 piecewise rational
quartic spline function with two shape parameters.
Piah and Unsworth9 developed improved sufficient
conditions of a Bernstein-Bézier quartic rational with
quartic numerator and linear denominator and con-
sidered only single shape parameter to preserve the
shape of monotone data. The authors also improved
the region of monotonicity inspired by Wang and Tan8

without considering error estimation for interpolating.
Sarfraz et al10 developed rational cubic spline to
provide smoothness of positivity, monotonicity and
convexity curves. The authors also introduced two
families of parameters in order to control the shape
of curve.

In this work, an alternative curve scheme using
piecewise rational cubic ball function is developed to
ensure C2 continuity. The function involves three
shape parameters ui, vi and wi to preserve the shape
of the data. There are two kind of shape parameters
ui, vi are free parameters which can be used to adjust
that shape of the curve and wi plays the role of shape
parameter automatically to ensure monotone data are
preserved. This work is an involvement of reviews
by many authors. The new scheme has the following
useful and benefits features.
(i) It provides a C2 degree of smoothness, while1, 4

the degree of smoothness is C1.
(ii) No extra knots are needed as in where4 the

scheme is done by inserting extra knots between
any two knots in the interval.

(iii) Based on experimental results the present
scheme is flexible, simple, local and economical.
It is found that the generated curve is visually
pleasing as compared to the existing schemes in
Refs. 1, 8–10.

(iv) The present scheme is appropriate for uniform
and non-uniform spaced data while the scheme in
Ref. 4 only works for uniform spaced data.

(v) In this paper, a new method to compute deriva-
tive parameters using tridiagonal system of lin-
ear equations is much more efficient than, for

instance, solving the three systems of linear equa-
tions in Ref. 5.

(vi) In the proposed scheme, users are allowed to
refine the curve by introducing free parameters
which can be used freely to generate visually
better pleasant curve but in Ref. 9 the authors
proposed scheme does not allow the user to refine
the shape of curves.

(vii) This paper deals with the problem related
to rational cubic ball function (cubic/cubic) to
generate monotonic curve through given mono-
tonic data while in Wang and Tan8 and Piah
and Unsworth9 they used quartic over linear
Bernstein-Bézier function to ensure C2 continu-
ity.
The remainder of the paper is organized as fol-

lows. The second section introduces a rational cubic
ball interpolant and determination of derivatives is
discussed in the third section. The fourth section
discusses rational cubic ball function in terms of
preserving monotonic data and how to generate C2

piecewise interpolants. The outputs obtained from
three test cases are presented in the fifth section.

RATIONAL CUBIC BALL FUNCTION

Let {(ti, yi), i = 0, 1, 2, . . ., n} be a given set of data
points. It is defined over the interval [a, b] such that
a= t0 < t1 < t2 < . . . < tn = b. A piecewise rational
cubic ball function is defined in each subinterval
Ii = [ti, ti+1], i = 0, 1, 2, . . ., n− 1 as

B(t) ≡ Bi(ϕ) =
si(ϕ)
ri(ϕ)

(1)

where

si(ϕ) = ξ0(1−ϕ)2 + ξ1ϕ(1−ϕ)2

+ ξ2ϕ
2(1−ϕ) + ξ3ϕ

2,

ri(ϕ) = ui(1−ϕ)2 + αiϕ(1−ϕ)2

+ βiϕ
2(1−ϕ) + viϕ

2,

(2)

and

hi = ti+1 − ti,

∆i =
(yi+1 − yi)

hi
,

ϕ =
t− ti
hi

, ϕ ∈ [0, 1].

(3)

Here, both numerator and denominator are the usual
cubic ball polynomial instead of the usual cubic
Bernstein-Bézier polynomials and ui, αi, βi and vi

are non-zero shape parameters. According to (1), the
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denominator is non-zero. By collecting the middle
values of weights and defined as αi = βi = ui + vi +
wi > 0, i = 0, 1, 2, . . ., n − 1, equation (1) can be
written in terms of the three shape parameters in which
two are free shape parameters and wi is a constrained
shape parameter. A rational cubic ball function with
three shape parameter (1) can be rewritten as

B(t) ≡ Bi(ϕ) =
pi(ϕ)
qi(ϕ)

(4)

where
pi(ϕ) = ξ0(1−ϕ)2 + ξ1ϕ(1−ϕ)2

+ ξ2ϕ
2(1−ϕ) + ξ3ϕ

2,

qi(ϕ) = ui(1−ϕ)2

+ (ui +wi + vi)(1−ϕ) + viϕ
2.

(5)

A rational cubic ball function (4) satisfies the follow-
ing properties to ensure C2 continuity:

B(ti) = yi, B(ti+1) = yi+1,

B′(ti) = di, B′(ti+1) = di+1,

B′′(t+i ) = B′′(t−i ), i = 1, 2, . . . , n− 1,

(6)

where B′(ti) and B′′(ti) denote the first and second
derivatives with respect to t, respectively, and di

denotes the values of the derivative (tangents) at the
knots ti. From (6), it is easy to get the following
system of linear equations and values of unknowns ξi,
i = 0, 1, 2, 3

ηidi−1 + κidi + µidi+1 = ζi (7)

with
ηi = ui−1uihi,

κi = (ui−1 + vi−1 +wi−1)uihi

+ (ui + vi +wi)vi−1hi−1,

µi = vi−1vihi−1,

ζi = (2ui−1 + vi−1 +wi−1)∆i−1uihi

+ (ui + 2vi +wi)∆ivi−1hi−1,

(8)

and
ξ0 = uiyi,

ξ1 = (ui + vi +wi)yi + uihidi,

ξ2 = (ui + vi +wi)yi+1 − vihidi+1,

ξ3 = viyi+1.

(9)

When the values of shape parameters are ui = 1,
vi = 1 and wi = 0 in each subinterval Ii = [ti, ti+1],
i = 0, 1, 2, . . ., n− 1, the rational cubic ball function
reduces to a non-rational cubic ball function like cubic
Hermite spline. Variation of values in ui ’s and vi ’s
are used to control the curve and as a result the curves
becomes tight or loose in every segment.

DETERMINATION OF DERIVATIVES

In most applications, the derivative values or tangents
di are calculated from the given data points because
di are not given directly. The purpose of using
derivatives values di is for the smoothness of curve. In
equation (7), the system of linear equations is a dom-
inant tridiagonal system and has a unique solution for
all positive shape parameters. The system produces
(n − 2) linear equations and provides the values of
unknown derivative parameter di, i = 1, 2, . . . , n− 1.
The system can be solved for the values of derivative
parameters di’s using the LU decomposition method.
If the end points derivatives d1 and d2 are not given,
then it can be derived using the following approxima-
tions from Abbas2:

B′(t0) = d0, B′(tn) = dn.

MONOTONICITY-PRESERVING C2

RATIONAL CUBIC BALL INTERPOLATION

Let us assume (ti, yi), i = 0, 1, 2, . . ., n as a
given increasing set of monotonic data such that
t0 < t1 < t2 < . . . < tn, i.e.,

yi 6 yi+1, i = 0, 1, 2, . . ., n− 1.

Similarly for monotonically decreasing data, or equiv-
alently

∆i > 0, i = 0, 1, 2, . . ., n− 1.

The derivative parameters, di > 0 (for monotonically
increasing data) and di 6 0 (for monotone decreas-
ing data). There are two cases of monotonicity for
increasing data

Case 1: If ∆i = 0, then the values of derivatives
are di = di+1 = 0 and B(t) reduces to

Bi(t) = yi, ∀t ∈ [ti, ti+1], i = 0, 1, 2, . . ., n− 1,

i.e., the interpolant is automatically monotonic.
Case 2: If ∆i > 0, the interpolant B(t) preserves

monotonicity when B′i(t) > 0 for all t ∈ [ti, ti+1].
The simpler form of B′i(t) can be shown as

B′i(t) =
ki(ϕ)

(ri(ϕ))2

where

ki(ϕ) = A1,i(1−ϕ)3 +A2,iϕ(1−ϕ)3

+A3,iϕ
2(1−ϕ)2 +A4,iϕ

3(1−ϕ)

+A5,iϕ
3

(10)
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with

A1,i = u2
i di,

A2,i = 2ui(ui + 2vi +wi)∆i − (u2
i di + 2diuivi),

A3,i = 2[(u2
i + 4uivi + vi) + 3(ui + vi)wi +w2

i ]∆i

−
[
vidi+1(2ui + vi +wi) + uidi(ui + 2vi +wi)

]
,

A4,i = 2vi(2ui + vi +wi)∆i − (v2
i di+1 + 2diuivi),

A5,i = v2
i di+1.

The necessary conditions for monotonically preserv-
ing curve are

di > 0, ui > 0, vi > 0, wi > 0. (11)

From the conditions in (11), it is clear that A1,i and
A5,i are positive. A2,i > 0 if

wi >
uidi + 2di+1vi

2∆i
, (12)

A4,i > 0 if

wi >
2uidi + di+1vi

2∆i
, (13)

and A3,i > 0 if

wi >
uidi + di+1vi

∆i
. (14)

The constraint on wi in (14) is only competent and
rationally to choose for monotonicity because A2,i,
A4,i are also positive. The above conditions can be
summarized as

ui > 0, vi > 0

wi > max
{

0,
uidi + di+1vi

∆i

}
.

(15)

The above result can be re-summarized as

ui > 0, vi > 0

wi = mi + max
{

0,
uidi + di+1vi

∆i

}
.

(16)

for some mi > 0.

Theorem 1 A rational cubic ball function (4) pre-
serves theC2 monotonic curve of monotonic data over
the interval [ti, ti+1] if and only if shape parameters
ui, vi and wi satisfy (16).

Example 1 The data were collected from a cricket
match where the total score of the team at different

Table 1 Monotone data set obtained from cricket match.
i 1 2 3 4 5 6 7 8 9 10 11

ti 1 2 6 8 15 25 40 50 62 65 66
yi 1 1 2 4 6 6 10 10 13 18 20
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Fig. 1 Non-rational cubic ball curve does not preserve
monotonicity using ui = vi = 1 and wi = 0.

number of balls was recorded in Table 1. The t-
values are number of balls and y-values are numbers
of scores. The curve in Fig. 1 is drawn by the non-
rational cubic ball function (4) with shape parameters
ui = 1, vi = 1, and wi = 0. Generally, the curve is
smooth but the monotonicity is lost which does not
make any sense physically. On the other hand, Figs. 2
and 3 are generated by monotonicity-preserving C2

rational cubic ball interpolant with different values of
shape parameters. Fig. 4 is produced by a built in
MATLAB program PCHIP (Piecewise cubic Hermite
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Fig. 2 Monotonicity-preserving C2 rational cubic ball curve
with ui = vi = 0.5.
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Fig. 3 Monotonicity-preserving C2 rational cubic ball curve
with ui = vi = 2.5.
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Fig. 4 PCHIP curve.

Interpolating Polynomial). It is easy to see that Figs. 2
and 3 are visually pleasing and smooth as compared
to Fig. 4.

NUMERICAL EXAMPLES

Example 2 A monotonic data3 set in Table 2 is the
experimental results of the Great Northern beans.
Chemical solutions are made by mixing chemical
flake (KOH) and distilled water with a pH of 8.5
to water the beans. After 40 days, the effects of
the solution on bean plants can be seen by removing
and weighing bean plants from the vat. The t-values

Table 2 2D monotone data set.
i 1 2 3 4 5 6 7 8

ti 1 2 12 18 24 30 36 40
yi 0 0 0.42 2.08 3.43 3.78 4.12 4.37
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Fig. 5 Non-rational cubic ball curve using ui = vi = 1 and
wi = 0.
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Fig. 6 Monotonic C2 rational cubic ball curve with ui =

vi = 0.1.

represent the days and y-values indicate the height
of the beans. One can observed that the examined
data is monotone. Fig. 5 is produced by the non-
rational cubic ball function (4) that does not preserve
monotonicity of the data. Figs. 6 and 7 are produced
from the same monotonic data using rational cubic
ball interpolant. Fig. 7 improves the smoothness of
the curves in Fig. 6 and PCHIP curve in Fig. 8.

Example 3 An Akima monotone data set taken in
Table 3 is generated by a Piah and Unsworth9. Fig. 9

Table 3 Akima’s data set.
i 1 2 3 4 5 6 7 8 9 10 11

ti 0 2 3 5 6 8 9 11 12 14 15
yi 10 10 10 10 10 10 10.5 15 50 60 85
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Fig. 7 Monotonic C2 rational cubic ball curve with ui =

vi = 2.5.
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Fig. 8 PCHIP curve.
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Fig. 9 Non-rational cubic ball curve using ui = vi = 1 and
wi = 0.
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Fig. 10 Monotonicity-preserving C2 rational cubic ball
curve with ui = vi = 0.1.

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

t
i

y
i
      

Fig. 11 Monotonicity-preserving C2 rational cubic ball
interpolant with ui = vi = 1.5.

is generated by a non-rational cubic ball function.
On the other hand, Figs. 10 and 11 are generated
by proposed monotone rational cubic ball interpolant
using different values of shape parameters to preserve
the shape of monotonic data. The curve in Fig. 11 is
smoother than PCHIP curve in Fig. 12.

CONCLUDING REMARKS AND
SUGGESTIONS

In this paper, we propose and analyse the problem
of shape preservation of monotonic data. We have
developed a rational cubic ball function with three
shape parameters. The proposed scheme is suitable
for monotonicity-preserving problems in which only
data points are given. In this scheme, there is no
necessity to insert of extra points. Moreover, the
scheme calculates derivative parameters by solving a
single system of linear equations which is flexible,
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Fig. 12 PCHIP curve.

simple and economical, as compared to Fiorot and
Tabka5 who calculated the derivative parameters by
solving three tridiagonal systems of linear equations.
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