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ABSTRACT: We discuss the problem of monotonicity preservation of surfaces through 3D monotone data. This can be
done using a rational bi-cubic blended function that is an extension of a rational cubic function in the form of a cubic
numerator and quadratic denominator. The function involves twelve shape parameters in each rectangular patch. Data-
dependent constraints are derived on four of these shape parameters to conserve the shape of the data while the other eight
are left free to modify the monotone surface as desired. Several numerical examples are presented to show the effectiveness
and capability of the scheme. The present scheme is C1, flexible, simple, local, and economical.
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INTRODUCTION

The problem of visualization of scientific data and
shape preserving of curves or surfaces through known
data points is one of the noteworthy problem. It has
great significance in several fields like computer aided
geometric design, computer graphics, engineering,
medical, education, military, transport, advertising
and meteorology. Some non-rational spline methods
have developed to solve the aforementioned problem
and to visualize the data well, but usually they pay
no attention of innate shape features of data such as
positivity, monotonicity and convexity. The objective
of the present study is to conserve the monotonicity of
surfaces through known scientific 3D monotone data.
Monotone data arises in many physical situations from
different sciences and art where entities only have
a meaning when their values are monotone. For
instance, erythrocyte sedimentation rates in cancer
patients, approximation of couples and quasi couples
in statistics, empirical option of pricing models in
finance and dose-response curves and surfaces in
biochemistry and pharmacology1.

Several researchers have focused on the problem
of constructing shape preserving curves and surfaces
through monotone data. A C1 quadratic spline has
been developed by Beatson and Ziegler in Ref. 2
to visualize the monotone data that was arranged
over a rectangular grid. A bivariate interpolation has
been extended to univariate interpolation developed

by Carlson and Fritsch in Ref. 3 for monotone surface
through regular data. The authors derived necessary
and sufficient conditions on first partial derivatives and
first mixed partial derivatives (twist) at knots using
bi-cubic polynomial to conserve the monotonicity.
Casciola and Romani4 preserved the shape of data by
NURBS with tension parameters for rectangular case.
Costantini and Fontanella5 developed interpolating
splines of degree n and order of continuity k using
Bernstein polynomials to construct the monotone and
convex surfaces through arbitrary sets of data arranged
on rectangular grid. Floater and Peña6 constructed
three kinds of monotonicity-preserving of systems of
bivariate functions with some geometric applications
using Bernstein polynomials. Some researchers have
developed rational cubic7, 8 and rational bi-cubic9

spline interpolations to conserve the monotonicity
through monotone data. Shape parameters have uti-
lized in these interpolations to conserve and modify
the shape of data as desired. Simple data dependent
sufficient constraints were derived on shape parame-
ters to conserve the monotonicity of data everywhere
in the domain. Sarfraz10 visualized a monotone data
in the view of monotone surfaces using the rational
bi-cubic interpolant but it loses the smoothness of
interpolant at some knots.

In this paper, a simple monotone 3D data vi-
sualization scheme is presented. We extend a C1

piecewise rational cubic function with three shape
parameters8 to rational bi-cubic blended function. It

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40S.022
http://www.scienceasia.org/2014.html
mailto:m.abbas@uos.edu.pk
www.scienceasia.org


ScienceAsia 40S (2014) 23

involves twelve shape parameters in each patch for its
description. The degree of smoothness of proposed
monotone surface interpolation is C1. This paper
adds to the knowledge domain by introducing a new
cost effective, simple, local, easy to implement and
time saving scheme which is more efficient for CAD
systems than ever before as compared to existing
schemes9, 10. As a result, the proposed rational bi-
cubic blended function is simpler, easy to compute
and implement and preserves the shape of surfaces
with fewer constraints on shape parameters as com-
pared to rational bi-cubic function9, 10. The proposed
surface scheme is unique in its representation and it
works well for both equally and unequally space data.

REVIEW OF RATIONAL CUBIC FUNCTION

In this section, a piecewise rational function8 with
three shape parameters can be rewritten in the form
of (cubic/quadratic) to conserve the monotonicity of
curves. Moreover, it is used to extend as rational bi-
cubic blended function to conserve the monotonicity
of surfaces through 3D monotone data.

Let
{

(ti, fi), i= 0, 1, 2, . . ., n
}

be the given set of
data points such as t0 < t1 < t2 < . . . < tn. A piece-
wise rational cubic function with three shape parame-
ters, in each subinterval [ti, ti+1], i = 0, 1, 2, . . ., n−1
can be defined as

Pi(t) =
∑3

k=0(1−ϕ)3−kϕkλk

ri(ϕ)
(1)

where ri(ϕ) = αi(1−ϕ)2 +(αi +βi +γi)ϕ(1−ϕ)+
γiϕ

2 and ϕ = (t− ti)/hi, hi = ti+1 − ti. Let P ′i (t)
denote the first order derivative with respect to t. The
following conditions are imposed on a function (1) for
C1 continuity

Pi(ti) = fi, Pi(ti+1) = fi+1

P ′i (ti) = di, P ′i (ti+1) = di+1.
(2)

The unknown coefficients λk, k = 0, 1, 2, 3 can be
calculated from equation (2),

λ0 = αifi,

λ1 = fi (2αi + βi + γi) + αi hi di,

λ2 = fi+1 (αi + βi + 2γi)− γi hi di+1,

λ3 = γifi+1

where αi, βi and γi are positive shape parameters
and di denote the derivative values that are used for
smoothness of required curve. A piecewise rational
cubic function (1) becomes a standard cubic Hermite
spline when we set the values of shape parameters as
αi = 1, βi = 0 and γi = 1. The following result was
proposed in Ref. 8.

Theorem 1 (Ref. 8) A piecewise rational cubic func-
tion (1) conserves the monotonicity of curves through
monotone data, if in each subinterval [ti, ti+1], i =
0, 1, 2, . . ., n − 1, the shape parameters satisfy the
following conditions

αi > 0, γi > 0

βi > max
{

0,
γidi+1 −∆i(αi + 2γi)

∆i
,

αidi −∆i(2αi + γi)
∆i

}
,

where ∆i = (fi+1 − fi) /hi. The above result can be
rearranged as

αi > 0, γi > 0,

βi = ri + max
{

0,
γidi+1 −∆i(αi + 2γi)

∆i
,

αidi −∆i(2αi + γi)
∆i

}
for some ri > 0.

Remark 1 A piecewise rational cubic function (1)
preserves a C1 monotone curve through monotone
data if the derivative values di, i = 0, 1, 2, . . ., n are
calculated at each knots by using arithmetic mean
method proposed in Ref. 7.

Remark 2 The C2 monotone curve through mono-
tone data can be obtained by using piecewise ratio-
nal cubic function (1) with derivative values di, i =
0, 1, 2, . . ., nwhen they are calculated at each knots by
solving the system of linear equations given in Ref. 8.

Example 1 A monotone data set is taken in Table 1
for the test of monotonicity-preserving curves. Fig. 1
is generated by cubic Hermite spline scheme11 that
does not conserve the monotonicity of monotone data.
Fig. 2 is generated by using Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP, Built-in MATLAB
program) to conserve the monotonicity of same data
but the visual model is not smooth at some data
points which may not be suitable for practical design.
On the other hand, Fig. 3 and Fig. 4 are generated

Table 1 Monotone data set.
i 1 2 3 4 5 6 7 8 9 10 11

ti 0.1 4 6.5 10 15 25 40 50 62 65 66
fi 1 1 2 3.5 5.5 5.5 10 10 12.5 18 20
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Fig. 1 Cubic Hermite spline curve.
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Fig. 2 PCHIP curve.

by rational cubic function (1) with shape parameters
and derivative values calculated from Theorem 1 and
arithmetic mean method7, respectively, to conserve
the monotonicity. The effect of shape parameters can
be seen by noting the difference in C1 smoothness of
these monotonicity-preserving curves in Fig. 2, Fig. 3,
and Fig. 4.
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Fig. 3 A C1 monotone curve using rational cubic function
with αi = βi = 0.05 and ri = 0.1.
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Fig. 4 A C1 monotone curve using rational cubic function
with αi = βi = 0.5 and ri = 0.1.

RATIONAL BI-CUBIC BLENDED SPLINE
FUNCTION

The problem of constructing a rectangular coons sur-
face patches from given network of boundary curves
is discussed in this section. This job is done using
rational bi-cubic blended function which is an ex-
tension of rational cubic function (1). The rational
bi-cubic blended function is suitable to arrange the
data over rectangular mesh [ξ, ξ1] × [σ, σ1] such that
ξ = t0 < t1 < . . . < tn = ξ1 and σ = u0 < u1 < . . . <
um = σ1. The rational bi-cubic blended function over
each patch [ti, ti+1]×[uj , uj+1], i = 0, 1, 2, . . ., n−1,
j = 0, 1, 2, . . .,m− 1 is defined as

P (t, u) = [m0(ϕ),m1(ϕ)]
[
P (ti, u)
P (ti+1, u)

]
+ [n0(φ), n1(φ)]

[
P (t, uj)
P (t, uj+1)

]
−[m0(ϕ),m1(ϕ)]

[
Fi,j Fi,j+1

Fi+1,j Fi+1,j+1

] [
n0(φ)
n1(φ)

]
(3)

with

m0(ϕ) = (1−ϕ)2(1 + 2ϕ),m1(ϕ) = ϕ2(3− 2ϕ),

n0(φ) = (1− φ)2(1 + 2φ), n1(φ) = φ2(3− 2φ),

are called Hermite blending functions with ϕ = (t−
ti)/hi, φ = (u− uj)/ĥj , where hi = ti+1 − ti, ĥj =
uj+1 − uj and P (t, uj), P (t, uj+1), P (ti, u), and
P (ti+1, u) are four boundary rational cubic curves of
rectangular patch.

The boundary rational cubic curves can be defined
as

P (t, uj) =
∑3

i=0(1−ϕ)3−iϕiδi
r1(ϕ)

(4)
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with

δ0 = αi,jFi,j ,

δ1 = (2αi,j + βi,j + γi,j)Fi,j + αi,j hi F
t
i,j ,

δ2 = (αi,j + βi,j + 2γi,j)Fi+1,j − γi,j hi F
t
i+1,j ,

δ3 = γi,jFi+1,j ,

r1(ϕ) = αi,j(1−ϕ)2

+ (αi,j + βi,j + γi,j)ϕ(1−ϕ) + γi,jϕ
2;

P (t, uj+1) =
∑3

i=0(1−ϕ)3−iϕiηi

r2(ϕ)
(5)

with

η0 = αi,j+1Fi,j+1,

η1 = (2αi,j+1 + βi,j+1 + γi,j+1)Fi,j+1

+ αi,j+1hiF
t
i,j+1,

η2 = (αi,j+1 + βi,j+1 + 2γi,j+1)Fi+1,j+1

− γi,j+1hiF
t
i+1,j+1,

η3 = γi,j+1Fi+1,j+1,

r2(ϕ) = αi,j+1(1−ϕ)2 + γi,j+1ϕ
2

+ (αi,j+1 + βi,j+1 + γi,j+1)ϕ(1−ϕ);

P (ti, u) =
∑3

i=0(1− φ)3−iφiµi

r3(φ)
(6)

with

µ0 = α̂i,jFi,j ,

µ1 = (2α̂i,j + β̂i,j + γ̂i,j)Fi,j + α̂i,j ĥjF
u
i,j ,

µ2 = (α̂i,j + β̂i,j + 2γ̂i,j)Fi,j+1 − γ̂i,j ĥjF
u
i,j+1,

µ3 = γ̂i,jFi,j+1,

r3(φ) = α̂i,j(1− φ)2

+ (α̂i,j + β̂i,j + γ̂i,j)φ(1− φ) + γ̂i,jφ
2;

P (ti+1, u) =
∑3

i=0(1− φ)3−iφiψi

r4(φ)
(7)

with

ψ0 = α̂i,j+1Fi+1,j ,

ψ1 = (2α̂i,j+1 + β̂i,j+1 + γ̂i,j+1)Fi+1,j

+ α̂i,j+1ĥjF
u
i+1,j ,

ψ2 = (α̂i,j+1 + β̂i,j+1 + 2γ̂i,j+1)Fi+1,j+1

− γ̂i,j+1ĥjF
u
i+1,j+1,

ψ3 = γ̂i+1,jFi+1,j+1,

r4(φ) = α̂i,j+1(1− φ)2 + γ̂i,j+1φ
2

+ (α̂i,j+1 + β̂i,j+1 + γ̂i,j+1)φ(1− φ).

MONOTONICITY-PRESERVING RATIONAL
BI-CUBIC BLENDED SPLINE
INTERPOLATION

In this section, we discuss the monotonicity-
preserving surface problem. We use rational bi-
cubic blended function (3) with shape parameters
and derived simple data dependent constraints on
these shape parameters to assure the monotonic-
ity of surfaces through 3D monotone data. Let{

(ti, uj , Fi,j), i = 0, 1, 2, . . ., n; j = 0, 1, 2, . . .,m
}

be given set of monotone data is arranged over rectan-
gular mesh [ti, ti+1]×[uj , uj+1], i = 0, 1, 2, . . ., n−1,
j = 0, 1, 2, . . .,m−1, such that Fi,j < Fi+1,j , Fi,j <

Fi,j+1 or equivalently ∆i,j > 0, ∆̂i,j > 0 and F t
i,j >

0, Fu
i,j > 0 for all i, j. The necessary conditions on

shape parameters for monotonicity are

αi,j , αi,j+1, α̂i,j , α̂i+1,j > 0
γi,j , γi,j+1, γ̂i,j , γ̂i+1,j > 0.

(8)

According to the result developed in Ref. 4, the
rational bi-cubic blended surface patch inherits all the
properties of network of boundary curves. Hence
the rational bi-cubic blended function (3) conserves
the monotonicity of surfaces through 3D monotone
data if the four boundary curves P (t, uj), P (t, uj+1),
P (ti, u), and P (ti+1, u) defined in equations (4)–
(7) are monotone. The boundary curve P (t, uj) is
monotone if P ′(t, uj) > 0, i.e.,

P ′(t, uj) =
∑4

i=0(1−ϕ)4−iϕiχi

(r1(ϕ))2
> 0 (9)

with

χ0 = α2
i,jF

t
i,j ,

χ1 = 2αi,j [(αi,j + βi,j + 2γi,j)∆i,j − γi,jF
t
i+1,j ],

χ2 = χ1 + χ3 + (χ0 + χ4)
+ βi,j(αi,j + βi,j + γi,j)∆i,j

− 2αi,jγi,j(F t
i,j + F t

i+1,j),

χ3 = 2γi,j [(2αi,j + βi,j + γi,j)∆i,j − αi,jF
t
i,j ],

χ4 = γ2
i,jF

t
i+1,j ,

and
∑4

i=0(1 − ϕ)4−iϕiχi > 0 if χi > 0 for i =
0, 1, 2, 3, 4. Thus χi > 0 if

βi,j > max
{

0,
γi,jF

t
i+1,j −∆i,j(αi,j + 2γi,j)

∆i,j
,

αi,jF
t
i,j −∆i,j(2αi,j + γi,j)

∆i,j

}
. (10)
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Similarly, the boundary curve P (t, uj+1) is mono-
tone, if P ′(t, uj+1) > 0, i.e.,

P ′(t, uj+1) =
∑4

i=0(1−ϕ)4−iϕiκi

(r2(ϕ))2
> 0 (11)

with

κ0 = α2
i,j+1F

t
i,j+1,

κ1 = 2αi,j+1[(αi,j+1 + βi,j+1 + 2γi,j+1]∆i,j+1

− γi,j+1F
t
i+1,j+1),

κ2 = κ1 + κ3 + (κ0 + κ4)
+ βi,j+1(αi,j+1 + βi,j+1 + γi,j+1)∆i,j+1

− 2αi,j+1γi,j+1(F t
i,j+1 + F t

i+1,j+1),

κ3 = 2γi,j+1

[
(2αi,j+1 + βi,j+1 + γi,j+1)∆i,j+1

− αi,j+1F
t
i,j+1

]
,

κ4 = γ2
i,j+1F

t
i+1,j+1,

and
∑4

i=0(1 − ϕ)4−iϕiκi > 0, if κi > 0 for i =
0, 1, 2, 3, 4. Thus κi > 0 if

βi,j+1 > max
{

0,

γi,j+1F
t
i+1,j+1 −∆i,j+1(αi,j+1 + 2γi,j+1)

∆i,j+1
,

αi,j+1F
t
i,j+1 −∆i,j+1(2αi,j+1 + γi,j+1)

∆i,j+1

}
.

(12)

Similarly, the boundary curve P (ti, u) is monotone, if
P ′(ti, u) > 0, i.e.,

P ′(ti, u) =
∑4

i=0(1− φ)4−iφiλi

(r3(φ))2
> 0 (13)

with

λ0 = α̂2
i,jF

u
i,j ,

λ1 = 2α̂i,j((α̂i,j + β̂i,j + 2γ̂i,j)∆̂i,j − γ̂i,jF
u
i,j+1),

λ2 = λ1 + λ3 + (λ0 + λ4)

+ β̂i,j(α̂i,j + β̂i,j + γ̂i,j)∆̂i,j

− 2α̂i,j γ̂i,j(Fu
i,j + Fu

i,j+1),

λ3 = 2γ̂i,j((2α̂i,j + β̂i,j + γ̂i,j)∆̂i,j − α̂i,jF
u
i,j),

λ4 = γ̂2
i,jF

u
i,j+1,

and
∑4

i=0(1 − φ)4−iφiλi > 0, if λi > 0 for i =
0, 1, 2, 3, 4. Thus λi > 0, if

β̂i,j > max
{

0,
γ̂i,jF

u
i,j+1 − ∆̂i,j(α̂i,j + 2γ̂i,j)

∆̂i,j

,

α̂i,jF
u
i,j − ∆̂i,j(2α̂i,j + γ̂i,j)

∆̂i,j

}
. (14)

Finally, the boundary curve P (ti+1, u) is monotone,
if P ′(ti+1, u) > 0, i.e.,

P ′(ti+1, u) =
∑4

i=0(1− φ)4−iφiµi

(r4(µ))2
> 0 (15)

with

µ0 = α̂2
i+1,jF

u
i+1,j ,

µ1 = 2α̂i+1,j

[
(α̂i+1,j + β̂i+1,j + 2γ̂i+1,j)∆̂i+1,j

− γ̂i+1,jF
u
i+1,j+1

]
,

µ2 = µ1 + µ3 + (µ0 + µ4)

+ β̂i+1,j(α̂i+1,j + β̂i+1,j + γ̂i+1,j)∆̂i+1,j

− 2α̂i+1,j γ̂i+1,j(Fu
i+1,j + Fu

i+1,j+1),

µ3 = 2γ̂i+1,j

[
(2α̂i+1,j + β̂i+1,j + γ̂i+1,j)∆̂i+1,j

− α̂i+1,jF
u
i+1,j

]
,

µ4 = γ̂2
i+1,jF

u
i+1,j+1,

and
∑4

i=0(1 − φ)4−iφiµi > 0, if µi > 0 for i =
0, 1, 2, 3, 4. Thus µi > 0, if

β̂i+1,j > max
{

0,

γ̂i+1,jF
u
i+1,j+1 − ∆̂i+1,j(α̂i+1,j + 2γ̂i+1,j)

∆̂i+1,j

,

α̂i+1,jF
u
i+1,j − ∆̂i+1,j(2α̂i+1,j + γ̂i+1,j)

∆̂i+1,j

}
(16)

where

∆i,j = (Fi+1,j − Fi,j) /hi, ∆̂i,j = (Fi,j+1 − Fi,j) /ĥj .

Theorem 2 The rational bi-cubic blended function
(3) conserves the monotonicity of surfaces through
3D monotone data, if in each rectangular patch
[ti, ti+1] × [uj , uj+1], i = 0, 1, 2, . . ., n − 1, j =
0, 1, 2, . . .,m− 1 the shape parameters are satisfying
the following sufficient conditions,

βi,j > max
{

0,
γi,jF

t
i+1,j −∆i,j(αi,j + 2γi,j)

∆i,j
,

αi,jF
t
i,j −∆i,j(2αi,j + γi,j)

∆i,j

}
,
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βi,j+1 > max
{

0,

γi,j+1F
t
i+1,j+1 −∆i,j+1(αi,j+1 + 2γi,j+1)

∆i,j+1
,

αi,j+1F
t
i,j+1 −∆i,j+1(2αi,j+1 + γi,j+1)

∆i,j+1

}
,

β̂i,j > max
{

0,
γ̂i,jF

u
i,j+1 − ∆̂i,j(α̂i,j + 2γ̂i,j)

∆̂i,j

,

α̂i,jF
u
i,j − ∆̂i,j(2α̂i,j + γ̂i,j)

∆̂i,j

}
and

β̂i+1,j > max
{

0,

γ̂i+1,jF
u
i+1,j+1 − ∆̂i+1,j(α̂i+1,j + 2γ̂i+1,j)

∆̂i+1,j

,

α̂i+1,jF
u
i+1,j − ∆̂i+1,j(2α̂i+1,j + γ̂i+1,j)

∆̂i+1,j

}
.

The above results can be expressed as

βi,j = ri,j + max
{

0,

γi,jF
t
i+1,j −∆i,j(αi,j + 2γi,j)

∆i,j
,

αi,jF
t
i,j −∆i,j(2αi,j + γi,j)

∆i,j

}
,

βi,j+1 = si,j + max
{

0,

γi,j+1F
t
i+1,j+1 −∆i,j+1(αi,j+1 + 2γi,j+1)

∆i,j+1
,

αi,j+1F
t
i,j+1 −∆i,j+1(2αi,j+1 + γi,j+1)

∆i,j+1

}
,

β̂i,j = r̂i,j + max
{

0,

γ̂i,jF
u
i,j+1 − ∆̂i,j(α̂i,j + 2γ̂i,j)

∆̂i,j

,

α̂i,jF
u
i,j − ∆̂i,j(2α̂i,j + γ̂i,j)

∆̂i,j

}
,

β̂i+1,j = ŝi,j + max
{

0,

γ̂i+1,jF
u
i+1,j+1 − ∆̂i+1,j(α̂i+1,j + 2γ̂i+1,j)

∆̂i+1,j

,

α̂i+1,jF
u
i+1,j − ∆̂i+1,j(2α̂i+1,j + γ̂i+1,j)

∆̂i+1,j

}
,

for some ri,j , si,j , r̂i,j , ŝi,j > 0.

Proof : The result follows immediately from the above
discussion. 2

Algorithm 1
(i) Given a monotone data set

{
(ti, uj , Fi,j), i =

0, 1, 2, . . ., n; j = 0, 1, 2, . . .,m
}

.
(ii) Calculate the partial derivatives F t

i,j , Fu
i,j , for

i = 0, 1, 2, . . ., n, j = 0, 1, 2, . . .,m at given data
points using arithmetic mean method for 3D data
proposed in Ref. 9.

(iii) Choose any positive value for free shape param-
eters αi,j , αi,j+1, α̂i,j , α̂i+1,j , γi,j , γi,j+1, γ̂i,j ,
γ̂i+1,j and then calculate the values of constrained
shape parameters βi,j , βi,j+1, β̂i,j , β̂i+1,j using
Theorem 2.

(iv) Compute the rational boundaries P (t, uj),
P (t, uj+1), P (ti, u), and P (ti+1, u) defined in
equations (4)–(7) for the rectangular patches.

(v) Insert the calculated values of (i), (ii), (iii), and
(iv) in the rational bi-cubic blended function (3)
to obtain the monotonicity-preserving surfaces.

NUMERICAL EXAMPLES

In this section, a rational bi-cubic blended function
(3) with shape parameters is employed to conserve
the monotonicity preserving of surfaces through given
monotone data. Several numerical examples are pre-
sented in this section to exhibit the capability and
effectiveness of the proposed monotone rational bi-
cubic blended interpolation. A desired smooth and
visually pleasing monotone surface obtained from
several examples is compared with bi-cubic Hermite
interpolant11.

Example 2 The data set taken in Table 2 is produced
from the following function

F (t, u) = exp(t0.05 + u0.05) (17)

Table 2 3D monotone data generated from function (17).

t/u 0 2 6 10 14

0 1 2.82 2.98 3.07 3.13
2 2.82 7.93 8.41 8.65 8.81
6 2.98 8.41 8.91 9.17 9.34
10 3.07 8.65 9.17 9.43 9.61
14 3.13 8.81 9.34 9.61 9.79
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Fig. 5 Bi-cubic Hermite spline surface, and xz-view.

Fig. 5 is produced using bi-cubic Hermite spline11

that does not conserve the monotonicity. To re-
move this flaw, Fig. 6 depicts the monotone surface
everywhere in the domain using developed rational
bi-cubic blended interpolant with shape parameters
αi,j = α̂i,j = γi,j = γ̂i,j = 0.5.

Example 3 The 3D monotone data set which is taken
in Table 3 for the test of monotonicity-preserving
of surfaces. Fig. 7 displays non-monotone surface
through given monotone data using bi-cubic Hermite
spline11. This flaw can be removed well in Fig. 8
when it is produced by using developed monotone ra-
tional bi-cubic blended scheme with shape parameters
αi,j = α̂i,j = γi,j = γ̂i,j = 0.5.

Example 4 A 3D monotone data set in Table 4 is
taken from following mathematical function,

F (t, u) = t2(t10 + 1) + u2(u10 + 1) (18)

Table 3 A monotone data set.
t/u 1 2 3 4 5

1 0.2098 0.2099 0.2100 0.2101 0.2102
2 0.9437 0.9438 0.9439 0.9440 0.9441
3 0.9986 0.9987 0.9988 0.9989 0.9990
4 0.9994 0.9995 0.9996 0.9997 0.9998
5 1.0001 1.0002 1.0003 1.0004 1.0005
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Fig. 6 A monotone surface by rational bi-cubic blended
spline function with ri,j = r̂i,j = si,j = ŝi,j = 0.01, and
xz-view.

1

2

3

4

5

1

2

3

4

5
0.2

0.4

0.6

0.8

1

1.2

t
i

u
j

F
i,j

1 1.5 2 2.5 3 3.5 4 4.5 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t
i

F
i,j

Fig. 7 Surface generated by bi-cubic Hermite spline, and
xz-view.
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Fig. 8 Monotone surface developed by rational bi-cubic
blended spline function with ri,j = r̂i,j = si,j = ŝi,j = 0.1,
and xz-view.

Table 4 A 3D monotone data set.
t/u 0.2 0.5 0.9 1.5 2.0

0.2 0.08 0.29 1.13 132.04 4100.0
0.5 0.29 0.50 1.34 132.25 4100.3
0.9 1.13 1.34 2.18 133.09 4101.1
1.5 132.04 132.25 133.09 263.99 4232.0
2.0 4100.0 4100.3 4101.1 4232.0 8200.0

Fig. 9 can be drawn using bi-cubic Hermite spline11.
It depicts non-monotone surface at some knots. On
other hand, Fig. 10 can be produced using developed
monotone rational bi-cubic blended scheme. It pre-
serves the monotonicity everywhere in the domain
with values of shape parameters αi,j = α̂i,j = γi,j =
γ̂i,j = 0.05.

CONCLUDING REMARKS

In this paper, we have extended a C1 piecewise
rational cubic function8 to rational bi-cubic blended
function to conserve the shape of 3D monotone data
in the view of monotone surface. Twelve shape
parameters are used in each rectangular patch and
they are arranged in such a way; four of them are
constrained parameters while the remaining eight are

0

0.5

1

1.5

2

0

0.5

1

1.5

2
−2000

0

2000

4000

6000

8000

10000

t
i

u
j

F
i,j

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

t
i

F
i,j

Fig. 9 Non monotone surface using bi-cubic Hermite spline,
and xz-view.
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Fig. 10 Monotonicity-preserving surface using rational bi-
cubic blended spline function with ri,j = r̂i,j = si,j =

ŝi,j = 0.001, and xz-view.
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left free for designer’s choice for the modification of
monotone surface as desired. The proposed scheme is
suitable for such problems in which only data points
are given; in contrast the schemes5, 6 imposed a set
of constraints on derivatives and data points to obtain
the required shape of data. The developed surface
scheme has been demonstrated through different nu-
merical examples and observed that the scheme is not
only local and computationally economical but is also
visually pleasant compared to existing schemes9, 10.
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