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ABSTRACT: The airline crew scheduling problem is a combinatorial optimization problem and belongs to the class of NP-
hard problems. An effective method for solving the airline crew scheduling problem can reduce the crew costs and improve
crew satisfaction. Because of its complexity, the problem is divided into two subproblems: the crew pairing problem and
the crew rostering problem. In this paper, the crew rostering problem is focused on and the objective is to generate a fairness
timetable in which the workloads are distributed among each crew equally. We propose a hybrid particle swarm optimization
(PSO) and an improvement heuristic (IH) to solve this problem. The IH is designed to improve the standard deviation of the
workloads by picking a workload from the high workload crew and assigning it to the low workload crew. The IH improves
the solution of the particle after the particle changes position each generation. The proposed algorithm is tested on actual
pairing data from Thai Airways and is compared with PSO without IH and the multi-commodity network flow approach.
With the combination of PSO and IH, the algorithm can improve the quality of the solution by more than 20% in most cases,
and PSO with IH also outperforms the network approach in 6 out of 9 cases and especially in the large size cases for which
the network approach cannot find a feasible solution.
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INTRODUCTION

The airline crew scheduling problem is one of the
most difficult scheduling problems because of the
large number of flight legs and the complex set of
constraints. The problem is very important in an
airline operation because the crew costs are the second
largest cost. Thus effective solving methods can
reduce the crew costs and improve crew satisfaction.
Generally, most airlines divide the construction of
crew schedules into two phases: an airline crew
pairing problem (ACPP) and an airline crew rostering
problem (ACRP). In the first phase, the schedule
of flight pairings is generated. The flight paring is
a sequence of flight segments on consecutive days,
worked by a crew that begins and ends at the same
crew base. In general, the objective of the ACPP is
to find a minimum pairing schedule which covers all
of the flight segments in a specific period. In the
second phase, the ACRP constructs a personalized
schedule (roster) in the specific period for each crew
member. The rosters are created by assigning the
crew members to the flight pairings according to the
various constraints such as rest periods. In addition,
the pre-assigned activities and each crew member’s
qualifications must be taken into account in each

roster’s construction.
The ACRP is a combinatorial optimization prob-

lem and belongs to the class of NP-hard problems.
To solve a large-scale ACRP in a reasonable time
using an exact algorithm is impossible. The existing
methods for solving ACRPs are decomposing the
problem into the series of assignment problems such
as day-by-day method1–3, pilot-by-pilot method4, and
a combination of the two methods5. The disad-
vantage of the heuristic methods is the quality of
the solution and the flexibility in response to the
different ACRPs. An ACRP is formulated as a gen-
eralized set-partitioning model and solved by branch
and bound6, column generation technique7, branch
and cut8, or multi-commodity flow approaches9, 10.
Although the exact approaches can give the opti-
mal solution, the approaches cannot tackle the large-
scale ACRP. The metaheuristic approach which is
focused on here has been applied to solve ACRPa.
Examples of this method are simulated annealing11,
genetic algorithm11–13, Tabu search11 and particle
swarm optimization14. Moreover, there are hybrids
of the two metaheuristic techniques for enhancing
the performance of the algorithm such as the hybrid
between genetic algorithm and simulated annealing15

and the hybrid scatter search heuristic16. The method
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can generate a good feasible solution in a short time,
so the method can solve large-scale problems which
the airline company is interested in.

Thai Airways is trying to find an effective method
for solving its ACRP. The current method of Thai
Airways uses commercial software which is generic.
Thus the software takes a long time to run and does
not guarantee the feasibility of the result.

PROBLEM DESCRIPTION

Normally, the inputs of an ACRP are objectives for
generating the roster, activities or duties (e.g., pairing,
ground activities, and training activities), crew profile
(e.g., qualifications, pre-assignments, and vacations),
and regulations17. The objectives of an ACRP is
normally divided into costs and crew preferences18.
The costs have a direct effect on the airline costs,
and the crew preferences have an effect on the quality
of services. Constraints in an ACRP depend on the
rules. Normally, the rules are about the safety and
health of crew members (e.g., rest period restrictions,
flight duties period restrictions9, 13, 16, working hour
restrictions and the holiday rule of Nok Air, a Thai
domestic low cost airline19).

The ACRP at Thai Airways

The problem considered in this paper is from Thai Air-
ways international flights which service five routes:
North America, Europe, African, Australia and New
Zealand, and regional (Asia). The cabin crews on the
flights are divided into six categories which are in-
flight manager (IM), air purser, first class crew (F),
E-business class crew (E), R-business class crew (R),
and economic class crew (Y). The ACRP of each
crew category is handled separately because the all-
categories problem is difficult to solve.

Thai Airways considers the fairness of the roster
because it is very important for all cabin crew to
receive equal benefits such as workload, station, and
per diem. Here we focus only on the workload. The
objective of the ACRP is to balance the workload
among crew members in the schedule. Some regula-
tions concern the block time or flight time which is the
time between the plane moving from the runway at the
origin and the plane stopping at the destination airport.
The flight time of a crew member must not exceed 34 h
in a 7 day period, 110 h in a 28 day period, or 1000 h
in a year. The flight duty period is the period that starts
one hour before block time to thirty minutes after the
block time. A crew who is scheduled to a flight duty
must immediately be assigned to a rest period. The
rest period is a period during which a crew must not

Table 1 The flight duty period constraints.

flight duty period (h) rest period (h)

0–8 > 8
8–10 > 10
10–12 > 12
12–14 > 14
14–16 > 16

be assigned to any duty. The length of a rest period is
associated with the length of flight duty (Table 1).

Problem formulation

In order to distribute the workload as equally as
possible among the crew members, the objective of
the formulated model is to minimize the standard
deviation of the workload. The mathematical model
can be formulated as a nonlinear optimization as
follows:

min

√∑n
c=1[

∑m
p=1 xcpwp − (

∑m
p=1 Wp

n )]2

n
(1)

n∑
c=1

xcp = 1, ∀p ∈ P, (2)

g+6∑
d=g

n∑
p=1

xcpB
d
p 6 2040, ∀c ∈ C,∀g ∈ D, (3)

g+27∑
d=g

n∑
p=1

xcpB
d
p 6 6600, ∀c ∈ C, ∀g ∈ D, (4)

g+364∑
d=g

n∑
p=1

xcpB
d
p 6 60000, ∀c ∈ C,∀g ∈ D,

(5)

xcpxcl =

{
1, if xcp = 1 and Sl −Ep > 0,

0, otherwise.

∀c ∈ C,∀p ∈ P,

∀l ∈ {p+ 1, p+ 2, . . .,m}, (6)

xcp ∈ {0, 1} ∀c ∈ C,∀p ∈ P. (7)

P , D, C are the sets of pairs, days in the schedule, and
crew members in the schedule, respectively, and c, p,
d are their respective indices. xcp is a binary variable
where xcp = 1 if a crew member c is assigned to pair
p, and xcp = 0, otherwise. xcl is a binary variable
for crew member c and the pairs after pair p, where
xcl = 1 if a crew member c is assigned to pair l, and
xcl = 0 otherwise. Let wp, B

d
p , Sl, Ep be the workload
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of pair p, the block time of pair p which is on day d,
the starting time of pair l, and the ending time of pair
p including rest period, respectively.

In the model, the objective function is presented
by (1) which is set to minimize the standard devi-
ation of the workload among crew members. The
requirement that each pair must be assigned to a crew
is expressed by (2), and (3)–(5) are the block time
constraints. Constraints in (6) prevents an assignment
of a pair to a crew member who is working or is on
a rest period. The product of xcp and xcl checks the
validity of assigning pair l after pair p was assigned.
Pair l can be assigned if the starting time of pair l is not
less than ending time of pair p. Eq. (7) is the binary
constraint.

PARTICLE SWARM OPTIMIZATION (PSO)

PSO was introduced by Kennedy and Eberhart20, 21.
The first version was modified by Shi and Eberhart22,
and the modified version has become a popular ver-
sion of PSO. Reviews of the PSO algorithm and its
applications can be found in Ref. 23 and Ref. 24.

A member of the population in the algorithm is
represented by a particle which contains a position
(solution) and a velocity. Each particle moves in
a multidimensional space by adjusting its position
and its velocity based on its own experience and the
experience of the population. Each particle memo-
rizes its best position (pbest) and the population also
memorizes the best position in the group (gbest). The
velocity and the position are updated as follows.

vid(t+ 1) = wvid(t) + c1r(pid − xid(t))

+ c2r(pgd − xid(t)) (8)
xid(t+ 1) = xid(t) + vid(t+ 1) (9)

where vid(t), xid(t), and pid are, respectively, the
dth components of the velocity, position, and best
position of particle i at iteration t. pgd is the dth
component of the global best position. w is inertia
weight which controls the impact of the previous
velocity. c1, the acceleration of personal best position,
is the parameter to control the effect of pbest. c2, the
acceleration of best global position, is the parameter to
control the effect of gbest. r is a uniform-distributed
random number in the range [0, 1]. The effect of
inertial weight and the accelerations should be set
appropriately for balancing the local search and the
global search23.

In order to apply the PSO in discrete binary space,
Kennedy and Eberhart introduced the discrete binary
PSO25. Each position contains the binary variable
number. The velocity equation is the same as the

standard PSO, but the method to change the position is
changed. The value of the new velocity is transformed
to a value in the range [0, 1] by using the sigmoid
function:

s(vid(t+ 1)) =
1

1+ e−vid(t+1)
. (10)

The particle changes the position by

xid =

{
1, if r 6 s(vid(t+ 1)),

0, otherwise.
(11)

PSO FOR AIRLINE CREW ROSTERING

Solution representation

In our previous work14, we implemented the discrete
binary PSO to solve an ACRP. In that implementation,
a particle is represented as a binary timetable of crew
members in which the rows and the columns represent
crews and pairs, respectively. The position of particles
is a set of slots in the timetable which represents the
assignment of the crew and the pair corresponding to
those slots. Let the position of the particle be

xk
cp =


1, if the cth crewmember is assigned to,

the pth pair in the kth particle,
0, otherwise.

Repairing algorithm

The concept of the algorithm is similar to the discrete
binary PSO but the algorithm needs the repairing
algorithm for fixing the infeasible particle. The first
step is to identify and repair the covering problems.
For example, more than one crew is assigned to
operate a pair and no crew is assigned to operate a
pair. Once the covering problems are solved, all pairs
are assigned to all crews. The second step is to repair
the illegal pairs which violate the constraints such
as block time and rest period. The illegal pairs are
deleted from the schedule and added to the deleted
pair list. The third step is to reassign the pairs in
the deleted pair list to the schedule. The reassignment
considers the feasibility and the value of the objective
function. The deleted pairs are assigned to a crew
who have the lowest workload in order to balance the
workload. Source 1: More than one crew is assigned
to a pair. The workloads of a crew assigned to the
pair are compared with each other, and the crew with
the minimum workload is selected to operate the pair.
Source 2: No crew is assigned to a pair. The crew with
the minimum workload is assigned to the pair. Source
3: Block time constraint violation. If CBcp exceeds
the block time limitation, pair p is deleted from the
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schedule of crew c. The deleted pair is added to the
deleted pair list. Source 4: The flight duty and the
rest period constraint violation. The flight duty period
and the rest period constraints are checked following
constraint (6). The checking starts from the first pair
to the last pair. If there is an illegal pair which is
assigned in the rest period of the previous pair, the
pair is removed from the schedule and added in the
removed-pair set. For example, pair m starts on day 1
and finishes on day 2, and the pair n starts on day 2
and finishes on day 3. If both pairs were assigned to
a crew, one of those pairs might be deleted from that
crew and assigned to the deleted pair list.

Procedure

The procedure of PSO for the ACRP is similar to the
discrete binary PSO, but infeasible particles must be
repaired by the repairing algorithm before they are
evaluated for the fitness value and moved to the next
generation.
Step 1: Generate initial solution for each particle by

adding the c crew member to the p pair randomly
until all pairs are assigned. The velocity of each
particle is also random.

Step 2: If the initial solution is feasible, go to Step 3,
otherwise the solution is repaired by the repairing
algorithm.

Step 3: For each particle, evaluate the desired opti-
mization fitness function.

Step 4: Compare particle fitness with the best particle
position (pbest). If the current value is better
than pbest, set pbest equal to the current value
and pbest equal to the current location. In some
cases, the particle from the repairing algorithm is
still infeasible. The infeasible particle will not be
saved as pbest although the fitness value of the
infeasible particle is better than the fitness value
of pbest.

Step 5: Compare fitness evaluation with overall best
(gbest). If the current value is better than gbest
then set gbest and its location equal to the current
value and location. In the case of an infeasible
particle, the particle will be handled the same way
as in Step 4.

Step 6: Change velocity of each particle using

vkcp(t+ 1) = wvkcp(t) + c1r()(p
k
cp − xk

cp(t))

+ c2r()(gcp − xk
cp(t)) (12)

Step 7: Change the position of each particle by using
(10) and (11)

Step 8: Repeat Step 2 until stopping criterion is met.

PROPOSED HYBRID PSO WITH
IMPROVEMENT HEURISTIC (PSO-IH)

The PSO-IH is developed based on PSO for an
ACRP14. The structure of the algorithms is the same,
but the particle can improve itself. In every iteration,
each particle is improved by the improvement heuris-
tic (IH) after adjusting its position.

The improvement heuristic (IH)

The improvement heuristic (IH) is designed for im-
proving the solution of each particle. In this case,
the objective function of the ACRP is to minimize
the standard deviation of the workload. The crew
members in the schedule are ranked based on an
individual’s workload. The pairs from the crews in
the first half of the ranking (and have the highest
workload) are picked and reassigned to the crew who
have the lowest workload.

Step 1: Rank the crews in the schedule according to
the individual crew member’s workload.

Step 2: Choose a crew in the first half of the ranking
starting from the highest ranking crew (the highest
workload).

Step 3: Select a pair from the considered crew.
Step 4: Check that the selected pair can be assigned

to the last crew in the ranking. The addition of
the pair should not violent any constraints such
as rest period and block time. If the selected pair
cannot be assigned to the last crew, select the new
pair from the considered crew (go to Step 3). If
all pairs in the considered crew were selected and
cannot be assigned to the last crew in the ranking,
select a pair from the next highest crew in the
ranking (go to Step 2). If all crews in the first half
were considered, go to Step 7. If the selected pair
can be assigned to the last crew in the ranking, go
to Step 5.

Step 5: Reassign the selected pair to the last crew in
the ranking.

Step 6: Repeat Step 1.
Step 7: End of the process.

Main procedure

Step 1: Generate an initial solution for each particle.
Step 2: Repair infeasible particles by the repairing

algorithm.
Step 3: For each particle, perform the IH.
Step 4: For each particle, evaluate the fitness function

of the problem.
Step 5: Compare particles fitness values for setting

pbest and gbest.
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Step 6: Change the velocity of each particle using
(12).

Step 7: Change the position of each particle by using
(10) and (11).

Step 8: Repeat Step 2 until the algorithm reaches the
setting iteration.

COMPUTATIONAL RESULT

In order to evaluate the performance of PSO-IH, the
algorithm is compared with PSO without IH and the
multi-commodity network flow approach which is
based on Ref. 10. There are two experiments in the
evaluation. The first experiment aims to determine
the best population size and the number of iterations
for PSO-IH in each problem. The second one is the
performance evaluation of PSO-IH by comparing with
PSO and the network approach. All models in the
evaluation are run on an Intel Core i5 M650 3.5 GHz,
4.00 GB machine running under Windows. PSO-IH
and PSO were coded using Microsoft Visual Studio
2010-C sharp, and the multi-commodity network flow
model is coded by IBM ILOG CPLEX 12.0.

Test problem

The proposed algorithm is evaluated on nine gener-
ated problems, which represent various types of the
problem such as problem size and duration of pairs.
All problems focus on assigning the in-flight man-
agers (IM) to the international pairs during 14 days
(Table 2).

Population size and number of iterations setting

To find the optimal solution of PSO-IH, population
size and the number of iterations are determined by
conducting a two-way ANOVA with 95% confidence
interval. In this experiment, we have two factors,
three levels, ten replications, and nine problems, thus
there are 540 cases. The other parameters of PSO
are the same for each case: acceleration constant (c1

Table 2 All test problems.

Instance No. of No. of in-flight Duration of
pairs managers (IM) pairs

TA84S 84 30 Short haul
TA84M 84 30 Mix
TA84L 84 45 Long haul
TA150S 150 60 Short haul
TA140M 140 65 Mix
TA146L 146 65 Long haul
TA330S 330 150 Short haul
TA334M 334 150 Mix
TA238L 238 120 Long haul

Table 3 Population size and number of iterations for each
problem.

problem population size number of iterations

TA84S 100 1000
TA84M 60 500
TA84L 100 500
TA150S 100 500
TA140M 100 100
TA146L 60 1000
TA330S 100 500
TA334M 60 1000
TA238L 20 500

and c2) = 2, maximum velocity (Vmax) = 4.0, and
inertial weight (w) is linearly decreased from 0.9 at
the first iteration to 0.4 at last iteration. The results are
summarized in Table 3.

Comparison of the solutions

In the comparison experiment, the parameters of PSO
are set as follows: acceleration constant (c1 and c2)
= 2, maximum velocity (Vmax) = ± 4.0, and inertial
weight (w) linearly decreased from 0.9 at the first
iteration to 0.4 at the last iteration. The population
size and number of iterations are obtained from the
previous section. PSO-IH and PSO are run thirty times
for each problem. The averaged results are presented
in Table 4. The solution from PSO-IH is better than
PSO without IH in all problems and outperforms the
multi-commodity network flow approach (last two
columns in Table 4) in 6 out of 9 problems. The
multi-commodity network flow model cannot find a
feasible solution in three large-size instances. For
the computational time, PSO-IH is obviously worse
than PSO without IH in all problem and is also worse
than the multi-commodity network flow model in
TA84S and TA84L, but the computational time of both
methods are close to each other in the medium size
instances.

Based on the results, the addition of IH can
improve the solution quality of PSO by more than 20%
in 7 out of 9 problems while the little improvements
in the TA84L and TA146L are caused by the nature
of the problems, which consist of long haul pairs. It
is difficult to find the feasible slot in the minimum
workload crew for reassigning a long haul pair picked
from the maximum crew. PSO-IH performs better
than the multi-commodity flow model because the
objective function of PSO-IH is more appropriate than
the network model in which the objective function is
minimizing the upper bound of the workload. The
lower bound of the solution obtained from the network
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Table 4 Comparison of the solutions.

Instance Result CPU time Result CPU time Result CPU time
from from from from from from
PSO PSO PSO-IH PSO-IH network network

(s) (s) model model(s)

TA84S 13.53 6859 7.96 15 300 6.90 749
TA84M 15.29 2706 8.59 4335 10.38 7927
TA84L 19.28 4876 18.95 8280 20.10 164
TA150S 15.73 10 534 7.35 17 181 6.81 12 363
TA140M 16.43 2655 12.59 5673 13.04 13 464
TA146L 24.45 10 672 22.83 17 673 22.56 24 097
TA330S 19.95 125 783 14.23 249 552 N/A N/A
TA334M 19.98 113 658 13.37 273 543 N/A N/A
TA238L 12.54 12 675 9.51 23 798 N/A N/A

N/A = The model cannot find a feasible solution.
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model may be far from the average as shown in the
examples in Fig. 1. Furthermore, the network model
cannot obtain a feasible solution for large problems
which normally are found in the practice.

CONCLUSION

In this paper, the hybrid PSO and the improvement
heuristics for solving ACRP, called PSO-IH are pro-
posed. The performance of PSO-IH was evaluated
by comparing the PSO without IH and the upper
bound generated by the multi-commodity network
flow approach. The evaluation was on the generated
ACRP problems from Thai Airways. The results
show that PSO-IH outperforms PSO without IH and
the network approach; moreover PSO-IH can solve
large ACRP problems which the network approach
cannot solve. However, the addition of IH requires

a larger CPU time than PSO without IH while PSO-
IH requires shorter time than the multi-commodity
network flow approach in large problems. Also the
network approach cannot find a feasible solution for
the large problems. For further study, the IH should be
developed for solving ACRP with different objectives
because the proposed IH explained in this paper can
only solve the objective of Thai Airways.
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