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ABSTRACT: We study the Sharma-Tasso-Olver equation from the Lie symmetry point of view. We derive the Lie point
symmetry generators of the equation and classify them to obtain the optimal system of one-dimensional subalgebras of the
Lie symmetry algebra of the equation. These subalgebras are then used to construct symmetry reductions for the equation.
We obtain the general solution of the nonlinear second-order ordinary differential equation which results from the symmetry
reduction for the travelling wave group-invariant solutions of the equation by transforming it into a linear third-order ordinary
differential equation through a Riccati transformation. Then we show that one can easily obtain the travelling wave exact
group-invariant solutions for the underlying equation by using the general solution of the linearized third-order ordinary
differential equation and the Riccati transformation. We also construct conservation laws for the underlying equation by
making use of the multiplier method.
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INTRODUCTION

Nonlinear evolution equations (NLEEs) appear in
many branches of applied mathematics, physics, and
engineering. The investigation of exact solutions of
NLEEs plays an important role in the study of these
equations. One of the most widely studied aspects
is their integrability since the existence of the exact
solutions enables one to have a better understanding of
the phenomena modelled by these NLEEs. Moreover,
the existence of such exact solutions to these NLEEs
facilitates the verification of numerical methods and
helps in the stability analysis of solutions. Also,
the study of existence of conservation laws of partial
differential equations (PDEs) further confirms their in-
tegrability and plays an important role in the solution
process of PDEs.

In the past few decades, because of the increased
interest for finding the exact solutions, a variety of
analytical and computational methods have been de-
veloped for the analysis of these NLEEs, for example,
the Adomian decomposition method, the inverse scat-
tering transform, the Darboux transformation method,
the Hirota bilinear method, the Lie-Bäcklund trans-
formation method, the (G′/G)-expansion method,
the exponential function method, the F -expansion

method and many others.
The Sharma-Tasso-Olver (STO) equation has the

form

ut + 3αu2x + 3αu2ux + 3αuuxx + αuxxx = 0. (1)

In (1), α is an arbitrary real constant. The STO equa-
tion (1) appears in many scientific applications such as
in quantum field theory, relativistic physics, dispersive
wave phenomena, plasma physics, nonlinear optics,
and applied and physical sciences1–3. Many authors
have studied the STO equation (1) in recent years
because of its applications in several areas of interest
(see Refs. 4–6 and the references therein).

The transformation

t̃ = t/α, x̃ = x, ũ = u (2)

maps (1) to the PDE

ũt̃ + 3ũ2x̃ + 3ũ2ũx̃ + 3ũũx̃x̃ + ũx̃x̃x̃ = 0. (3)

Hence, without loss of generality, dropping the tildes
in (3), we can consider the PDE of the form

ut + 3u2x + 3u2ux + 3uuxx + uxxx = 0 (4)

in our analysis as all the results of (4) can easily be
extended to the class (1) by the transformation (2).
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In this paper, the method of Lie point symmetry
and multiplier approach will be used to study the
exact solutions and conservation laws for the STO
equation (4). In Ref. 7, the authors have investigated
the potential form of (1) for exact solutions using the
potential symmetry method.

During the past four decades, Lie symmetry anal-
ysis has proved to be a powerful tool for solving
a given nonlinear system of PDEs in a systematic
manner. For the theory and application of the Lie
symmetry methods, see, e.g., Refs. 8–10.

Here we use the Lie symmetry method to obtain
all the Lie point symmetries of (4). It is found that
(4) admits a three-dimensional Lie algebra. Then with
the help of these Lie point symmetries we construct
the optimal system of one-dimensional subalgebras of
the Lie algebra of (4). We obtain symmetry reduc-
tions using these optimal system of one-dimensional
subalgebras. In the process to construct travelling
wave group-invariant solutions for (4) we have found
that the nonlinear second-order ordinary differential
equation (ODE), which is a consequence of symme-
try reduction, is linearizable to a third-order ODE
through a Riccati transformation11, 12. By integrating
the linearized third-order ODE and using the Riccati
transformation again we obtain the travelling wave
exact group-invariant solutions for (4). It should be
mentioned that our analysis of travelling wave exact
solutions of the STO equation (1) is much simpler than
those mentioned in Refs. 3–6. We also construct con-
servation laws for (4) by making use of the multiplier
method10, 13, 14.

The outline of the paper is as follows. First we
present the main operators and briefly discuss the
approach in the construction of the conservation laws
for (4). The Lie point symmetries of (4) are then
obtained and used to construct the optimal system of
one-dimensional subalgebras of the Lie algebra of (4).
Symmetry reductions and exact solutions of (4) are de-
rived by using the optimal system of one-dimensional
subalgebras. We then construct conservation laws for
(4) via the multiplier method.

PRELIMINARIES

In this section, we provide the notation and some
important results. For details the reader is referred to
Refs. 9, 13, 14.

Consider a kth-order system of PDEs of n inde-
pendent variables x = (x1, x2, . . . , xn) and m depen-
dent variables u = (u1, u2, . . . , um), namely

Eα(x, u, u(1), . . . , u(k)) = 0, α = 1, . . . ,m, (5)

where u(1), u(2), . . . , u(k) denote the collections of all

first, second, . . ., kth-order partial derivatives, that
is, uαi = Di(u

α), uαij = DjDi(u
α), . . ., respectively,

with the total derivative operator with respect to xi

given by

Di =
∂

∂xi
+uαi

∂

∂uα
+uαij

∂

∂uαj
+ . . . , i = 1, . . . , n,

(6)
where the summation convention is used whenever
appropriate.

A Lie-Bäcklund operator is given by

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+
∑
s>1

ζαi1i2...is
∂

∂uαi1i2...is
, (7)

where ξi, ηα ∈ A and A is the space of differential
functions. The additional coefficients ζαi1i2...is are
determined uniquely by the prolongation formulae

ζαi = Di(W
α) + ξjuαij ,

ζαi1...is = Di1 . . . Dis(W
α) + ξjuαji1...is , s > 1,

in which Wα = ηα − ξjuαj is the Lie characteristic
function.

The n-tuple vector T = (T 1, T 2, . . . , Tn) where
T j ∈ A and j = 1, . . . , n is a conserved vector of (5)
if T i satisfies

DiT
i = 0 (8)

on (5). Equation (8) is called a local conservation law
of system (5).

It can be shown that every admitted conservation
law arises from multipliers Qα(x, u, u(1), . . .) such
that

QαEα = DiT
i (9)

holds identically10, 13. In the multiplier approach for
conservation laws, one takes the variational derivative
of (9), that is,

δ

δuβ
(QαEα) = 0 (10)

holds for arbitrary functions of u(x1, x2, . . . , xn),
(see also Refs. 10, 14). All the multipliers can be
derived from the determining equation (10) for which
the underlying equation is expressed as a local conser-
vation law.

LIE POINT SYMMETRY GENERATORS

A vector field

X = τ(t, x, u)
∂

∂t
+ξ(t, x, u)

∂

∂x
+η(t, x, u)

∂

∂u
(11)
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is a generator of a point symmetry of (4) if

X [3][ut+3u2x+3u2ux+3uxuxx+uxxx] = 0. (12)

on (4). Here the operatorX [3] is the third prolongation
of the operator X and is defined by

X [3] =X+ζt
∂

∂ut
+ζx

∂

∂ux
+ζxx

∂

∂uxx
+ζxxx

∂

∂uxxx
,

where the coefficients ζt, ζx, ζxx and ζxxx are given
by

ζt = Dt(η)− utDt(τ)− uxDt(ξ),

ζx = Dx(η)− utDx(τ)− uxDx(ξ),

ζxx = Dx(ζx)− uxtDx(τ)− uxxDx(ξ),

ζxxx = Dx(ζxx)− uxxtDx(τ)− uxxxDx(ξ).

The operator Di is the total derivative operator as
given in (6).

The infinitesimal coefficients τ , ξ and η are inde-
pendent of the derivatives of u. Thus by equating the
coefficients of like derivatives of u in the determining
equation (12) we obtain the following overdetermined
system of linear PDEs:

τ = τ(t),

ξ = ξ(t, x),

ηuu = 0,

τt − 3ξx = 0,

τt − 2ξx + ηu = 0,

η− 2uξx + uτt − ξxx + ηxu = 0,

ηt + 3u2ηx + 3uηxx + ηxxx = 0,

6uη− ξt − 3u2ξx + 3u2τt + 6ηx

− 3uξxx + 6uηxu − ξxxx + 3ηxxu = 0.

Solving the above determining equations for the coef-
ficients τ , ξ and η, we obtain the following three Lie
point symmetry generators admitted by (4):

X1 =
∂

∂t
,X2 =

∂

∂x
,X3 = 3t

∂

∂t
+ 3x

∂

∂x
− u ∂

∂u
.

(13)

OPTIMAL SYSTEM OF ONE-DIMENSIONAL
SUBALGEBRAS OF THE LIE ALGEBRA

In order to derive reductions and to construct classes
of group-invariant solutions for (4) in a system-
atic manner, we obtain an optimal system of one-
dimensional subalgebras for (4). We will use the
method for constructing an optimal system of one-
dimensional subalgebras as given in Ref. 10.

Table 1 The adjoint table for the symmetries.

Ad X1 X2 X3

X1 X1 X2 X3 − 3εX1

X2 X1 X2 X3 − εX2

X3 exp(3ε)X1 exp(3ε)X2 X3

To calculate the adjoint representation, we use the
following well-known Lie series:

Ad(exp(εX))Y = Y − ε[X,Y ] +
1

2!
ε2[X, [X,Y ]]

− 1

3!
ε3[X, [X, [X,Y ]] + · · · ,

where Ad means the adjoint representation of a Lie
group on its Lie algebra, together with the com-
mutation relations of the three Lie symmetry gen-
erators (13) which are [X1, X2] = 0, [X1, X3] =
3X1, [X2, X3] = X2.

For example,

Ad(exp(εX1))X3 = X3 − ε[X1, X3]

+
1

2!
ε2[X1, [X1, X3]]− · · ·

= X3 − 3εX1. (14)

Similarly, we can find the other entries of the adjoint
table. We thus have the adjoint representation given
by Table 1.

In Table 1, the (i, j) entry represents
Ad(exp(εXi))Xj . For a non-zero vector

X = a1X1 + a2X2 + a3X3

we have to simplify the coefficients ai as far as
possible through adjoint maps to X . The calculations
are easy and we obtain an optimal system of one-
dimensional subalgebras spanned by X2, X1 + εX2,
and X3, where ε = 0,±1.

REDUCTION AND GROUP-INVARIANT
SOLUTIONS

In this section we use the optimal system of one-
dimensional subalgebras of the Lie algebra of (4),
found above, to construct symmetry reductions and
exact group-invariant solutions for (4).

(a) X2. The group-invariant solution correspond-
ing to X2 is u = h(γ), where γ = t is the group
invariant of X2. Substituting this solution into (4) and
solving the ODE, we obtain the solution for (4) given
by u(t, x) = C, where C is a constant.

(b) X1 + εX2, where ε = 0,±1 (travelling wave
solutions). Here, the group-invariant solution is given
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by u(t, x) = h(γ), where γ = x − εt is the group
invariant of X1 + εX2. Substitution of this solution
into (4) gives

h′′′ + 3hh′′ + 3h2h′ + 3h′2 − εh′ = 0, (15)

where the prime denotes differentiation with respect
to γ. Integrating (15) with respect to γ, we obtain

h′′ + 3hh′ + h3 − εh = C, (16)

where C is an arbitrary constant of integration. We
find that through the Riccati transformation

h(γ) =
v′

v
, (17)

where v′ = dv/dγ, the ODE (16) can be linearized to
a third-order ODE of the form

v′′′ − εv′ −Cv = 0. (18)

The characteristic equation m3− εm−C = 0 of (18)
has roots mi, i = 1, 2, 3 given by

m3
1 − εm1 −C = 0, (19)

m2,3 =
−m1 ±

√
−3m2

1 + 4ε

2
. (20)

Three cases arise.
Case 1 (m1 6=m2 6=m3). In this case, the general

solution of (18) is given by

v = C1 exp(m1γ) +C2 exp(m2γ) +C3 exp(m3γ),
(21)

where C1, C2 and C3 are arbitrary constants. Thus
the general solution of (16), using (17), takes the form

h(γ) =
m1 e

m1γ +m2A1 e
m2γ +m3A2 e

m3γ

em1γ +A1 em2γ +A2 em3γ
,

(22)
where A1 = C2/C1 and A2 = C3/C1. Hence the
group-invariant solution of (4) is given by

u(t, x) =
m1 e

m1γ +m2A1 e
m2γ +m3A2 e

m3γ

em1γ +A1 em2γ +A2 em3γ
,

(23)
where γ = x− εt.

Case 2 (m1 = m2 6= m3). Here the general
solution to (18) takes the form

v = (C1 +C2γ) exp(m1γ) +C3 exp(m3γ), (24)

where C1, C2 and C3 are arbitrary constants. Thus
the group-invariant solution of (4) using (17) is given

by

u(t, x)

=
A1 e

m1γ +m1[1 +A1γ] e
m1γ +m3A2 e

m3γ

[1 +A1γ] em1γ +A2 em3γ
,

(25)

where γ = x− εt, A1 = C2/C1 and A2 = C3/C1.
Case 3 (m1 = m2 = m3). Here we find that the

general solution to (18) can be given in the form

v = (C1 +C2γ +C3γ
2) exp(m1γ), (26)

where C1, C2 and C3 are arbitrary constants. Thus
the group-invariant solution of (4) using (17) is given
by

u(t, x) =
{A1 + 2A2γ +m1[1 +A1γ +A2γ

2]}
[1 +A1γ +A2γ2]

,

(27)
where γ = x− εt, A1 = C2/C1, and A2 = C3/C1.

(c) X3. This symmetry generator gives rise to the
group-invariant solution u(t, x) = t−1/3 h(γ), where
γ = xt−1/3 is the group invariant of X3. Substitution
of this solution into (4) results in the ODE

3h′′′ + 9hh′′ + 9h2h′ + 9h′2 − γh′ − h = 0. (28)

CONSERVATION LAWS

In this section, we construct conservation laws for (4)
using the multiplier approach as outlined above.

We consider the multipliers of the form
Q(t, x, u, ut, ux) for (4). The determining equation
(10) for the multipliers takes the form

δ

δu
[Q(ut+3u2x+3u2ux+3uxuxx+uxxx)] = 0. (29)

Expanding (29) yields

Qu[ut + 3u2x + 3u2ux + 3uxuxx + uxxx]

−Dt[Qut
(ut + 3u2x + 3u2ux + 3uxuxx + uxxx)]

−Dx[Qux(ut + 3u2x + 3u2ux + 3uxuxx + uxxx)]

+Q(6uux + 3uxx)−Dt(Q)−Dx[Q(6ux + 3u2)]

+D2
x(3uQ)−D3

x(Q) = 0. (30)

In (30), we equate the coefficients of the derivatives
of u to zero and obtain an overdetermined system of
linear PDEs. Solving this system we find that the
multiplier Q takes the form

Q = c1, (31)
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where c1 is a constant. The conserved vector (T 1, T 2)
of (4) satisfies the divergence relation given by

Q[ut + 3u2x + 3u2ux + 3uxuxx + uxxx]

= DtT
1 +DxT

2, (32)

for all arbitrary functions u(t, x). From (31) and (32),
we have

c1[ut + 3u2x + 3u2ux + 3uxuxx + uxxx]

= Dt(c1u) +Dx[c1(u
3 + 3uux + uxx)]. (33)

Thus whenever u(t, x) is solution of (4), we have

Dt(c1u) +Dx[c1(u
3 + 3uux + uxx)] = 0. (34)

Hence we derive the following conserved vector for
(4) from (34):

T 1 = u, T 2 = u3 + 3uux + uxx.

CONCLUDING REMARKS

We mention here that this approach to construct the
travelling wave group-invariant solutions of (4) has
not been reported earlier. Furthermore, since (4) is
an evolution equation and of odd order, it is not vari-
ational. We therefore applied the multiplier method
to find its conservation laws. We found that for (4),
this method gives rise to one multiplier and thus one
conserved vector is obtained.
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