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ABSTRACT: In this paper, index-1 differential algebraic equations have been solved via a block backward differentiation
formula (BDF) using variable step size. Two solution values are obtained simultaneously based on the method in the block.
The strategy of controlling the step size is proposed. The method is compared with the existing variable step BDF method.
Numerical results are given to support the enhancement of the method in terms of accuracy.
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INTRODUCTION

Differential algebraic equations (DAEs) arise in many
applications of engineering and science such as power
systems, circuit analysis, simulation of mechanical
systems, and optimal control problems1–3. The most
general form of a DAE is given by

F (x, y, y′) = 0 (1)

where ∂F/∂y′ is assumed to be singular. If it is
nonsingular, (1) is considered as an implicit ODE and
can be reformulated as y′ = f(x, y).

A semi-explicit DAE or an ODE with constraints
is defined as

y′ = f(x, y, z)

0 = g(x, y, z) (2)

where f : Rn ×Rm → Rn and g : Rn ×Rm → Rm.
This is a special case of (1). The index is 1 if ∂g/∂z
is nonsingular and one differentiation of (2) yields
z′. The index of a DAE is defined as the number of
differentiations required to transform the DAE system
to its related ODE. The unknowns, y and z, are differ-
ential variables and algebraic variables, respectively.
Problems with higher index are more difficult to solve.
Fortunately, most DAEs encountered in applications
are of index 1 and if the problems are of higher index,
they can be reduced to a combination of Hessenberg
systems.

Block methods for ODEs have been developed
by many researchers, e.g., see Refs. 4–7. In recent

years, considerable attempts have been made to solve
systems of DAEs numerically. Many numerical meth-
ods have been developed. The most common for
low index are the backward differentiation formula
(BDF)1, 8, 9 and implicit Runge-Kutta1, 10 methods.
Implicit methods for index-1 DAEs converge with the
same order as for ODEs1. Numerical methods for
solving ODEs are known to work well with DAEs.
Recently, block BDF methods using constant step size
for solving index-1 DAEs were presented11. The so-
lution of index-1 DAEs using a block BDF of variable
step size have not been considered before. This work
is an extension of the work in Ref. 11 to implement a
block BDF for the solution of DAEs. The aim of this
paper is to obtain two solution values of index-1 DAEs
simultaneously using a variable step size block BDF
method. A method for ODEs is used12. Unlike the
conventional BDF methods, the proposed method has
the advantage of computing more than one solution
value per step, using three previously computed back
values.

BLOCK BDF METHOD

First, the block BDF method for ODEs12 is presented
and then the extension of the method for semi-explicit
index-1 DAEs is explained.

Block BDF method for ODEs

In the derivation of the method for ODEs12, three back
values, namely, yn−2, yn−1 and yn, are used to com-
pute two new values, yn+1 and yn+2, simultaneously
at each step. The step size between the back values
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and current values are qh and q, respectively, where q
is the step size ratio. The step size control is organized
as follows. First, a constant step size is used and a test
is conducted to determine the magnitude of the local
truncation error in relation to the prescribed tolerance
used at each step. If the error is small enough to allow
for step size increase, the step size is increased by a
multiple of 1.6, otherwise it is halved. Hence, the
corresponding values of q that are used for the step
size changes are q = 1, 2, and 5

8 . The motivation
behind the choice of each value of q is to optimize
the total number of steps and make each value used
give rise to a zero stable formula. For full details of
the analysis of zero stability see Ref. 12.

The interpolating polynomial Pk(x)
of degree k which interpolates the points
(xn−2, yn−2), . . . , (xn+2, yn+2) is defined as

Pk(x) =

k∑
j=0

Lk,j(x) y(xn+2−j) (3)

where

Lk,j(x) =
∏
i=0
i 6=j

x− xn+2−i

xn+1−j − xn+2−i
j = 0, 1, . . ., k.

Define s= (x−xn+1)/h and substitute x= xn+1+sh
in the associated polynomial for (3). Hence

p(x) = p(xn+1 + sh)

=
(s+ 1+ 2 q)(s+ 1+ q)(s+ 1)s

4(q+ 1)(q+ 2)
yn+2

− (s+ 1+ 2 q)(s+ 1+ q)(s2 − 1)

(q+ 1)(2q+ 1)
yn+1

+
(s+ 1+ 2 q)(s+ 1+ q)s(s− 1)

4q2
yn

− (s+ 1+ 2 q)s(s2 − 1)

q2(q+ 1)(q+ 2)
yn−1

+
(s+ 1+ q)s(s2 − 1)

4q2(2 q+ 1)(q+ 1)
yn−2. (4)

The polynomial (4) is differentiated with respect to s
at both 0 and 1. Differentiating at s = 0 gives the
formula for the first point and differentiating at s = 1
gives the formula for the second point. For further
details of the derivation see Ref. 12. Substituting q =
1, 2 and q = 5

8 in the resulting derivatives, we obtain

the 2-point block formulae as follows. For q = 1:

yn+1 = 1
10yn−2 −

3
5yn−1 +

9
5yn −

3
10yn+2

+ 6
5hfn+1

yn+2 = − 3
25yn−2 +

16
25yn−1 −

36
25yn + 48

25yn+1

+ 12
25hfn+2. (5)

For q = 2:

yn+1 = 3
128yn−2 −

25
128yn−1 +

225
128yn −

75
128yn+2

+ 15
8 hfn+1

yn+2 = − 2
115yn−2 +

3
23yn−1 −

18
23yn + 192

115yn+1

+ 12
23hfn+2. (6)

For q = 5
8 :

yn+1 = 208
775yn−2 −

6912
5425yn−1 +

13689
6200 yn

− 351
1736yn+2 +

117
124hfn+1

yn+2 = − 12544
29875yn−2 +

53248
29875yn−1 −

74529
29875yn

+ 2548
1195yn+1 +

546
1195hfn+2. (7)

Block BDF method for DAEs

We define the 2-point block BDF of (5), (6) and (7)
for the DAE (2) as

yn+1 = hα1f(xn+1, yn+1, zn+1) + β1yn+2 + ζ1,

yn+2 = hα2f(xn+2, yn+2, zn+2) + β2yn+1 + ζ2,

0 = g(xn+1, yn+1, zn+1),

0 = g(xn+2, yn+2, zn+2), (8)

where ζ1 and ζ2 represent the back values for the first
and second points, respectively. β1 and β2 represent
the coefficient of yn+2 and yn+1, respectively. α1 is
the coefficient of fn+1 while α2 is the coefficient of
fn+2.

IMPLEMENTATION OF THE METHOD

Newton’s iteration is applied for the implementation
of the method. First, we define the error in the ith
iteration for y and z as err(i) which is equivalent to

max(|y(i)exact − y(i)approx|, |z
(i)
exact − z(i)approx|)

and the maximum global error is given by

MAXE = max
16i6TNS

(err(i))

where TNS is the total number of steps. Let y(i+1)
n+j

and z(i+1)
n+j , j = 1, 2 denote the (i+1)th iterative values
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of yn+j and zn+j , respectively. Define

e
(i+1)
n+j = y

(i+1)
n+j − y

(i)
n+j ,

ê
(i+1)
n+j = z

(i+1)
n+j − z

(i)
n+j , j = 1, 2. (9)

Let

F1 = yn+1 − β1yn+2 − hα1fn+1 − ζ1,
F2 = − β2yn+1 + yn+2 − α2hfn+2 − ζ2,
g1 = g(xn+1, yn+1, zn+1),

g2 = g(xn+2, yn+2, zn+2).

Newton’s iteration then takes the form y
(i+1)
n+j

z
(i+1)
n+j

 =

 y
(i)
n+j

z
(i)
n+j



−


∂F

(i)
j

∂y
(i)
n+j

∂F
(i)
j

∂z
(i)
n+j

∂g
(i)
j

∂y
(i)
n+j

∂g
(i)
j

∂z
(i)
n+j


−1

.

 F
(i)
j

g
(i)
j


where j = 1, 2. Hence e(i+1)

n+j and ê(i+1)
n+j , j = 1, 2 can

be approximated and then the solution values y(i+1)
n+j

and z(i+1)
n+j are computed from (9).

Choosing the step size

Choosing the step size is an important factor in the
reduction of the number of iterations. The step size
selection falls into three strategies. Using a prescribed
tolerance value (TOL) an initial step size is deter-
mined. A test is conducted to compare the local
truncation error (LTE) with TOL where

LTEY =
∣∣∣y(k)n+2 − y

(k−1)
n+2

∣∣∣ , k = 4,

LTEZ =
∣∣∣z(k)n+2 − z

(k−1)
n+2

∣∣∣ ,
LTE = max (LTEY,LTEZ).

If LTE < TOL the step is considered as successful.
At this step, the previous step size is maintained
(corresponding to using q = 1) and the following test
will be conducted:

hnew = chold

(
TOL

LTE

)1/k

, (10)

where c is the safety factor, and k is the order of the
method and is equal to 4. The hnew and hold in (10)
are the step size for the current and previous blocks,
respectively. Here c = 0.5.

If hnew > 1.6hold then hnew = 1.6hold. This
corresponds to using the formula q = 5

8 . On the other
hand, if LTE > TOL, the step size is halved and we
regard this step as a failed step (corresponding to the
formula when q = 2).

NUMERICAL RESULTS

The performance of the variable step block BDF
method on index-1 DAEs is examined using the
following examples representing models of various
DAEs occurring in engineering. Different tolerance
values (10−2, 10−4 and 10−6) are used. The examples
are also solved using variable step BDF for compari-
son purposes. The maximum error, successful steps,
failed steps, total number of steps, and the time of each
example are given and compared.

Example 1 [Ref. 13] y′ = f(x, y, z) = z, y(0) = 1,
0 = g(x, y, z) = z3−y2, z(0) = 1, 0 6 x 6 10. Exact
solution: y = (1+ 1

3x)
3, z = (1+ 1

3x)
2.

Example 2 [Ref. 1] y′ = f(x, y, z) = x cosx− y +
(1+x)z, y(0) = 1, 0 = g(x, y, z) = sinx−z, z(0) =
0, 06 x6 10. Exact solution: y = f(x, y, z) = e−x+
x sinx, z = sinx.

Example 3 y′1 = −xy2− (1+x)z1, y1(0) = 5, y′2 =
xy1−(1+x)z2, y2(0) = 1, 0 = 1

5 (y1−z2)−cos(
1
2x

2),
z1(0) = −1, 0 = 1

5 (y2 + z1)− sin( 12x
2), z2(0) = 0,

0 6 x 6 10. Exact solution: y1 = sinx+5 cos( 12x
2),

y2 = cosx+ 5 sin( 12x
2), z1 = − cosx, z2 = sinx.

It can be seen from Tables 1–3 that the 2BBDF
method is more accurate than BDF method with the
same order for all the examples tested. It is also
observed that the 2BBDF has smaller execution time
and fewer steps.

Table 1 Performance for Example 1.

TOL Method IFST IST TNS MAXE TIME

10−2 BDF 1 76 77 3.0× 10−2 2.5× 10−3

2BBDF 0 18 18 4.0× 10−4 7.4× 10−4

10−4 BDF 1 98 99 3.6× 10−4 7.2× 10−3

2BBDF 0 23 23 6.5× 10−5 9.1× 10−4

10−6 BDF 1 136 137 3.6× 10−5 6.0× 10−2

2BBDF 0 31 31 4.2× 10−6 1.2× 10−3

BDF = variable step BDF method; 2BBDF = variable
step 2-point block BDF method; IST = the total number
of successful steps; IFST = the total number of failed
steps; TIME = the execution time
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Table 2 Performance for Example 2.

TOL Method IFST IST TNS MAXE TIME

10−2 BDF 9 106 115 7.9× 10−3 1.5× 10−3

2BBDF 0 26 26 6.6× 10−5 3.0× 10−4

10−4 BDF 12 179 191 1.4× 10−4 3.9× 10−3

2BBDF 1 55 56 3.1× 10−6 7.8× 10−4

10−6 BDF 18 326 344 2.3× 10−6 3.7× 10−2

2BBDF 1 110 111 5.3× 10−8 3.0× 10−3

Table 3 Performance for Example 3.

TOL Method IFST IST TNS MAXE TIME

10−2 BDF 5 102 107 2.7× 10−1 1.0× 10−2

2BBDF 2 64 66 1.0× 10−3 2.6× 10−3

10−4 BDF 4 231 235 2.5× 10−3 9.7× 10−2

2BBDF 2 191 193 3.0× 10−6 7.5× 10−3

10−6 BDF 7 665 672 2.8× 10−5 1.2× 10−1

2BBDF 2 554 556 9.5× 10−9 2.1× 10−2

CONCLUSIONS

In this paper, a variable step 2-point block BDF
method is applied to solve semi-explicit index-1
DAEs. The numerical results obtained for the test
problems indicate that the maximum errors of the 2-
point are lower than the existing variable step BDF
method.
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