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ABSTRACT: We study the blow-up property for weak solutions to the Cauchy problem of non-autonomous semilinear
pseudoparabolic equations. Given the growth bound of the non-autonomous coefficient, the Fujita-type critical exponent is
obtained.
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INTRODUCTION

We study non-negative weak solutions u = u(x, t) of
the Cauchy problem{

∂tu−∆∂tu = ∆u+ V (x)up, in Rn ×R+,

u(x, 0) = u0(x), in Rn
(1)

where p > 1 is a constant and V, u0 are given non-
negative functions. This partial differential equa-
tion (PDE) is called a pseudoparabolic equation1–4.
It is semilinear and non-autonomous owing to the
coefficient V (x) on the right-hand side. Nonlin-
ear pseudoparabolic equations have been proposed
to model many physical systems; for instance, the
non-steady flow of second-order fluids in one space
dimension5, seepage of homogeneous fluids through
fissured rock6, heat conduction involving two temper-
atures7.

The equation (1) is also closely related with the
following non-autonomous semilinear heat equation

∂tu = ∆u+ V (x)up

and the latter has been widely investigated by many
authors8. In the case V (x) ≡ 1, the problem (1)
becomes autonomous and was investigated by Cao
et al9. In their paper, the existence of mild solutions,
which are also weak solutions, was established. Using
the energy method, the authors obtained the critical
exponent of the problem, denoted by pc, for the class
of classical solutions:

pc = 1 +
2

n
. (2)

This means that if 1 < p 6 pc then every nontrivial
non-negative solution to the problem blows up in some
finite time T0, i.e., limt→T−0

‖u(·, t)‖L∞ = ∞. On
the other hand, if p > pc there are both blowing-up
solutions (for sufficiently large u0) and global-in-time
solutions (for sufficiently small u0). Even though the
blow-up phenomenon has played an important role in
PDE theory10, 11, the blowing-up problem of (1) for
non-constant V , however, remains open.

In this study, the Cauchy problem (1) with a
broader class of functions V is considered and the
critical exponent analogous to (2) is obtained. The
energy method does not seem to work for the weak
solution in the case where V is non-constant and
therefore a new approach is needed. The technique
employed here is the test function (or nonlinear ca-
pacity) method12. Other important related questions
(e.g., existence, uniqueness, regularity, and large-
time asymptotic) will be addressed in our forthcoming
papers.

PRELIMINARIES

Let QT = Rn × [0, T ) and Q∞ = Rn × [0,∞).

Lemma 1 (Folland13) Let (X,µ) be a measure
space and 1 6 p, q 6∞.
(i) For all a, b > 0 and λ ∈ [0, 1], we have

aλb1−λ 6 λa+ (1− λ)b.

(ii) If f ∈ Lp(X), g ∈ Lq(X) where 1/p+ 1/q = 1,
then h = fg ∈ L1(X) and

‖h‖L1(X) 6 ‖f‖Lp(X) ‖g‖Lq(X) .
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The solutions of (1) considered in this paper are
weak solutions which are defined as follows.

Definition 1 A function u is called a weak (or distri-
butional) solution to the problem (1) on I = [0, T )
provided
(i) u ∈ C(I;L1

loc(Rn)), V up ∈ L1
loc(I;L1

loc(Rn)),
(ii) for all ϕ ∈ C3

c (QT ), the following identity holds:∫∫
QT

u(∂tϕ−∆∂tϕ+ ∆ϕ) +

∫∫
QT

V upϕ

=

∫
Rn

u0(∆ϕ−ϕ)|t=0 (3)

If (i) and (ii) are true with T = ∞, then u is called a
global weak solution.

The following lemma12 will be used to construct
the test functions needed below. For the completeness
of the paper, the proof is provided.

Lemma 2 For any q ∈ (1,∞), there is a C3 function
φ : R→ [0, 1] with φ(s) = 1 if s 6 1, 0 6 φ(s) 6 1 if
1 6 s 6 2, φ(s) = 0 if s > 2, and

|φ′(s)|q + |φ′′(s)|q + |φ′′′(s)|q 6 Cφφ(s)q−1

for all s ∈ R, for some constant Cφ > 0.

Proof : Choose a function ζ ∈ C3(R, [0, 1]) with

ζ(s)


= 1, s 6 1,

∈ (0, 1), 1 < s < 2,

= 0, s > 2

and let φ(s) = ζ(s)3q . Then

|φ′|q = |3qζ ′|q ζ(3q−1)q 6 Cφq−1

|φ′′|q =
∣∣3q(3q− 1)(ζ ′)2 + 3qζζ ′′

∣∣q ζ(3q−2)q
6 Cφq−1

|φ′′′|q = |3q(3q− 1)(3q− 2)(ζ ′)3

+ 3(3q)(3q− 1)ζζ ′ζ ′′ + 3qζ2ζ ′′′|qζ(3q−3)q

6 Cφq−1

because (3q − i)q > 3q(q − 1) for i = 1, 2, 3 and
0 6 ζ 6 1 where C > 0 is a constant depending only
on q, ‖ζ ′‖L∞ , ‖ζ ′′‖L∞ , and ‖ζ ′′′‖L∞ . �

Remark 1 Generally, for any q ∈ (1,∞) and k ∈ N,
there is φ ∈ Ck([0,∞), [0, 1]) satisfying

k∑
i=1

∣∣∣φ(i)(s)∣∣∣q 6 Cφ(s)q−1 ∀ s > 0

for some constant C.

MAIN RESULTS

We will consider the class of functions V in (1) that
satisfies the following assumption.
Assumption. The function V (x) has an order of
growth of at least σ >−2, in the sense that there exists
x0 ∈ Rn and a constant c0 > 0 such that

V (x) > c0 |x− x0|σ (4)

for almost every x ∈ Rn.
The proof below is valid for arbitrary x0. How-

ever, for simplicity of presentation and without loss of
generality, we let x0 = 0.

Theorem 1 Assume (4) on V and let 1 + (σ+)/n <
p 6 1 + (σ + 2)/n where σ+ = max{0, σ}. If 0 6
u0 ∈ L1(Rn) with ‖u0‖L1(Rn) > 0, then there is no
nontrivial, non-negative global weak solution u to the
problem (1).

Proof : The theorem will be proved by contradiction.
We therefore assume the contrary that the problem
(1) admits a non-trivial, global weak solution u. We
divide the proof into 5 steps.

Step 1. Define the operator

Aϕ := ∂tϕ−∆∂tϕ+ ∆ϕ,

for all test functions ϕ ∈ C3
c (Q∞). Then u satisfies

for all ϕ the identity∫∫
suppAϕ

uAϕ+

∫∫
suppϕ

V upϕ =

∫
Rn

u0(∆ϕ−ϕ)|t=0.

(5)
Choose ϕ to satisfy 0 6 ϕ 6 1 and ϕ|suppAϕ > 0 a.e.
so that suppAϕ ⊂ suppϕ.

Let K = suppϕ and K ′ = suppAϕ. By the
Hölder and Young inequalities, we have∫∫

K′
|uAϕ|

6

(∫∫
K′
V upϕ

)1/p(∫∫
K′

|Aϕ|q

(V ϕ)q−1

)1/q

6
1

p

∫∫
K

V upϕ+
1

q

∫∫
K′

|Aϕ|q

(V ϕ)q−1
, (6)

where q = (p/(p− 1)) ∈ (1,∞). Combining (5), (6)
with the assumption V (x) > c0 |x|σ a.e. yields the
estimate∫∫

K

V upϕ 6
1

cq−10

∫∫
K′

|Aϕ|q

(|x|σ ϕ)q−1

+ q

∫
Rn

u0(∆ϕ−ϕ)|t=0. (7)
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Step 2. Let us further specify ϕ. Fix a function φ
satisfying Lemma 2. For R>>1, define ϕ by

ϕ(x, t) = φ

(
t+ |x|2

R2

)
.

Below, the following rescaling variables will be used:
τ = t/R2, ξ = |x| /R, and s = τ + ξ2. As subsets in
the ξt-plane, {(ξ, τ) : 1 6 τ+ξ2 6 2} = K ′ ⊂K and
K ⊂ [0,

√
2]× [0, 2]. Direct computation shows that

∂tϕ =
1

R2
φ′,

∆ϕ =
1

R2

(
4ξ2φ′′ + 2nφ′

)
,

∂t∆ϕ =
1

R4
(4ξ2φ′′′ + 2nφ′′), and

Aϕ =
2n+ 1

R2
φ′ +

4ξ2R2 − 2n

R4
φ′′ − 4ξ2

R4
φ′′′.

In particular, we have

|∆ϕ|t=0 6
C0

R2
, (8)

where C0 = 8 ‖φ′′‖L∞ + 2n ‖φ′‖L∞ . Using the fact
that ϕ satisfies Lemma 2, we obtain, for all R>> 1,
that

|Aϕ|q =

∣∣∣∣2n+ 1

R2
φ′ +

4ξ2R2 − 2n

R4
φ′′ − 4ξ2

R4
φ′′′
∣∣∣∣q ,

6
Cn,q
R2q

(|φ′|q + |φ′′|q + |φ′′′|q),

6
C1

R2q
ϕq−1,

where C1 = Cn,qCφ.
Step 3. We perform the polar integration dxdt =

Rn+2ξn−1dξdωdτ to get that∫∫
K′

|Aϕ|q

(|x|σ ϕ)q−1
dx dt

=

∫∫∫
K′

C1

(Rξ)σ(q−1)R2q
Rn+2ξn−1 dξ dω dτ

6
C1ωn
Re

∫∫
16τ+ξ262

ξα−1 dξ dτ, (ωn =
∣∣Sn−1∣∣)

6
2C1ωn
Re

∫ √2

0

ξα−1 dξ,

where α = (n/(p−1))(p−1−σ/n) and e = (n/(p−
1))(1 + (σ + 2)/n− p). Since p > 1 + ((σ+)/n) >
1 + σ/n, we have α > 0. Hence∫∫

K′

|Aϕ|q

(|x|σ ϕ)q−1
6
M

Re
, (9)

where M = 21+α/2C1ωn. Plugging (8) and (9) in (7)
yields∫∫

K

V upϕ

6
Mc1−q0

Re
+ q

∫
Rn

u0(∆ϕ−ϕ)|t=0 (10)

6
Mc1−q0

Re
+ q

∫
Rn

u0|∆ϕ|t=0

6
Mc1−q0

Re
+
qC0

R2
‖u0‖L1 . (11)

Step 4. Now consider the case p < 1+(σ+2)/n.
It is obvious that e > 0. Since ϕ ≡ 1 on {(x, t) : 0 6
t+ |x|2 6 R2} ⊂ K, it follows that∫∫

06t+|x|26R2

V up 6
Mc1−q0

Re
+
qC0

R2
‖u0‖L1 ,

for allR>>1. As e > 0, the right-hand side converges
to 0 as R→∞. Hence

∫∫
Q∞

V up = 0 which implies
u ≡ 0 contradicting the non-triviality of u.

Step 5. For the case p = 1 + (σ+ 2)/n, the right-
hand side of (11) is bounded as R→∞. Hence∫∫

Q∞

V up dxdt <∞.

Therefore V up is integrable. By (5), (8), (9), and
Hölder’s inequality, we have∫∫

K

V upϕ

6
∫∫

K′
u |Aϕ|+ qC0

R2
‖u0‖L1

6

(∫∫
K′
V upϕ

)1/p(∫∫
K′

|Aϕ|q

(V ϕ)q−1

)1/q

+
qC0

R2
‖u0‖L1

6
M1/q

cq−10

(∫∫
K′
V upϕ

)1/p

+
qC0

R2
‖u0‖L1

6
M1/q

cq−10

(∫∫
K′
V up

)1/p

+
qC0

R2
‖u0‖L1 . (12)

Since K ′ ⊂ {(x, t) : R2 6 t2 + |x|2 6 2R2}, the
integrability of V up implies

∫∫
K′
V up → 0 as R →

∞. Therefore, by lettingR→∞, we obtain from (12)
that ∫∫

Q∞

V up = 0,

which implies u ≡ 0, and again a contradiction. �
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For the next result, we will show that when p >
1 + (σ+ 2)/n, weak solutions to the Cauchy problem
(1) blow up in a finite time if u0 is large enough.

Theorem 2 Let p > 1 + (σ + 2)/n. If u0 ∈ L1(Rn)
is sufficiently large in the sense that there exists R0 >
C

1/2
0 , where C0 is given in (8) depending on φ from

Lemma 2, such that∫
BR0

(0)

u0(x) > max

{
3
4 ‖u0‖L1 ,

4Mc1−q0

qRe0

}
,

then every weak solution u to the Cauchy problem (1)
blows up in a finite time.

Proof : Again, we will prove by contradiction and
therefore assume that the global weak solution u
exists. Set R = R0>>1 in the proof of the preceding
theorem. Since R0 > C

1/2
0 , (8) can be reduced to

|∆ϕ(x, 0)| 6 1.

In (10), which is true for all cases of p > 1 + (σ+)/n,
the second term on the right-hand side can be esti-
mated by∫

Rn

u0(x)[∆ϕ(x, 0)−ϕ(x, 0)] dx

6
∫
|x|>R0

u0(x)−
∫
|x|6R0

u0(x)

= ‖u0‖L1 − 2

∫
|x|6R0

u0(x)

6 − 1
2 ‖u0‖L1 6 −

1

2

∫
|x|6R0

u0(x).

Hence∫∫
K

V (x)upϕ 6Mc1−q0 R−e − q

2

∫
|x|6R0

u0(x)

6Mc1−q0 R−e − 2Mc1−q0 R−e

= −Mc1−p
′

0 R−e < 0,

which is absurd because V, u > 0. Therefore there is
no global weak solution to (1). �

Remark 2 Examples of u0 satisfying the conditions
of Theorem 2 are

u0 = aχBR0
(0)

where R0 > C
1/2
0 and a is a constant satisfying

a >
4Mc1−q0

ωnq
C
−(n+e)/2
0 .
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