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ABSTRACT: In this paper, a novel and simple method based on an all-pass filter is presented by using the benefits of a
pole re-position technique. The gains at frequencies of π of each single notch filter are adjusted by adding N − 1 tuning
variables. The proposed method ensures that the passband gains are uniformly flat, the notch frequencies exactly meet the
specifications, and the realized 3 dB bandwidths are approximately the same as those specified. This technique is very
useful for designers because there are only N − 1 tuning variables required to adjust, and it does not need a complicated
mathematical calculation. Although this technique is simple and easy to implement, it requires many iterations to find a
suitable parameter for making the passband gain between two notch frequencies uniformly flat. Hence in this paper, three
searching algorithms have been applied to reduce the number of iterations. We obtain a faster search and a closer frequency
response to the ideal one.

INTRODUCTION

Notch filters are widely used for removing, eliminat-
ing, or cancelling unwanted frequencies or interfer-
ences. There are many applications of notch filters in
the field of signal processing, such as removing power
line interference in electrocardiograms, cancelling
noise in broadcast TV, rejecting the interference in
ultra-wideband radio systems, controlling howl in
speaker phone systems, and eliminating hum in audio
systems.

Unlike FIR notch filters, digital IIR notch filters
are popularly used in practice because they can be
designed to have a narrow stopband. They can also be
designed in several ways, such as transforming ana-
logue notch filter1–3, the pole-reposition technique4–6,
and implementation based on all-pass filters7–9 which
is considered in this paper.

The frequency response of an ideal IIR notch filter
can be expressed as

Hi(e
jω) =

{
0, ω = ω0i,

1, otherwise,
(1)

where ω0i denotes the notch frequency of the ith notch
filter. A transfer function of IIR notch filter based on
an all-pass filter7–9 can be represented as

Hi(z) =
1
2{1 +Ai(z)}, (2)

where Ai(z) is a second-order all-pass filter, which

can be represented as

Ai(z) =
k2i + k1i(1 + k2i)z

−1 + z−2

1 + k1i(1 + k2i)z−1 + k2iz−2
, (3)

where components k1i and k2i are, respectively, given
as

k1i = − cos(ω0i), k2i =
1− tan(BWi/2)

1 + tan(BWi/2)
, (4)

where BWi is the bandwidth of the ith notch filter. By
substituting (3) into (2), Hi(z) can be re-written as

Hi(z) =
1+ k2i

2

1 + 2k1iz
−1 + z−2

1 + k1i(1 + k2i)z−1 + k2iz−2
.

(5)
Hence the transfer function of a multiple notch filter
can be constructed by cascading each single notch
filter7 as

HM(z) =

N∏
i=1

1
2{1 +Ai(z)}, (6)

where N specifies the number of notch frequencies.
Its ideal magnitude response can be expressed as

HM(ejω) =

{
0, ω = ω01, ω02, . . . , ω0N ,

1, otherwise.
(7)
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Fig. 1 Magnitude responses of narrow bandwidth case
versus wide bandwidth case.

Example 1 For a double notch filter (N = 2) with
narrow bandwidth, let ω01 = 0.3π, ω02 = 0.5π,
BW1 = 0.02π, BW2 = 0.02π. For the wide band-
width case, let ω01 = 0.3π, ω02 = 0.5π, BW1 =
0.1π, BW2 = 0.15π. The transfer functions of the
narrow bandwidth case and the wide bandwidth case
can be directly derived from (6), where the magnitude
responses are shown in Fig. 1.

From Example 1, it is shown that the conventional
all-pass based method7 satisfies the requirements only
for a narrow bandwidth case. For a wide bandwidth
case, there is an ill-conditioned passband gain for
frequencies between notch frequencies caused by the
overlapped bandwidths (Fig. 1). In general, multi-
ple notch filters are designed to have not-too-narrow
bandwidths for stability reasons. There are two tech-
niques for solving the overlapping problem, which are
the optimal pole position technique5, and the all-pass
filter of order 2N technique8.

The optimal pole position technique5 is simple
and practical, since it does not require any compli-
cated calculation. The technique relies on solving for
filter coefficients to satisfy the table of gains at specific
frequencies. The optimal pole reposition algorithm5

works only for double notch filters, but the modified
version of this algorithm6 shows that this technique
also works well in the general multiple notch filter
case, i.e., the case of more than two notch frequencies.
This algorithm yields an acceptable result. However,
an optimal method for searching the optimal values
of a bandwidth factor, i.e., a parameter which is used
to adjust the level of passband gains between notch
frequencies, has not been proposed.

When the all-pass filter of order 2N technique8

is applied, the non-uniformly-flat passband gains be-
tween notch frequencies can be solved effortlessly.
However, it causes the problem of having a shift of
notch frequencies. Hence a mirror image polynomial

is formed to solve these notch frequency shifts. This
algorithm is very efficient. However, the solving
process after equating the mirror image polynomial
with a polynomial formed by the numerator part of
the multiple notch filter transfer function is rather
difficult and it requires nonlinear polynomial equation
solving, which is extremely complex, especially when
the number of notch frequencies increases.

In this paper, a new approach is presented by
merging the idea of the optimal pole position tech-
nique with the all-pass based scheme for solving
the overlapping problem, while passband gains are
ensured to be uniformly flat; the notch frequencies
and the bandwidths meet the specific requirements.
Moreover, a method for searching the optimal values
of parameters used to control the level of passband
gains between notch frequencies is also proposed.

THE NEW DESIGN

The pole position depends directly on cos(ω0),
clearly, which is k1i in (4). The pole-reposition
technique is applied to the all-pass based algorithm.
Hence k1i in the denominator is replaced by kXi.
Hence a new transfer function Ĥi(z) can be expressed
as

Ĥi(z) =
1

2

(1 + k2i)(1 + 2k1iz
−1 + z−2)

1 + kXi(1 + k2i)z−1 + k2iz−2
, (8)

where kXi is the modified coefficient (pole-reposition)
of the ith notch filter. The tuning variables (a, b, . . . )
can be considered as a specific case of pi, where i =
1, 2, . . . , N , defined as

Ĥi(e
jπ) = piĤi(e

j0) = piĤi(1)

with
N∏
i=1

pi = 1.

That is, in Table 1 (N = 2 case), p1 = 1/a, p2 =
a, and in Table 2 (N = 3 case), p1 = 1/ab, p2 = b,
p3 = a. For simplicity, a double notch filter (N = 2)
is derived whose desired gains are shown in Table 1.

Table 1 Desired gains for N = 2 case.

frequency DC π

notch filter 1 G1 G1/a
notch filter 2 G2 G2a
double notch filter G1G2 G1G2
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Table 2 Desired gains for N = 3 case.

frequency DC π

notch filter 1 G1 G1/(ab)
notch filter 2 G2 G2b
notch filter 3 G3 G3a
triple notch filter G1G2G3 G1G2G3

Notch filter 1

The DC gain = G1. From (8), the DC gain can be
derived as

Ĥ1(e
j0) = Ĥ1(1)G1 =

1+ k11
1 + kX1

. (9)

The π gain = G1/a. The π gain can be derived as

Ĥ1(e
jπ) = Ĥ1(−1)G1 = a

(
1− k11
1− kX1

)
. (10)

By pairing (9) and (10), the gain of the notch filter 1
can be represented as

G1 =
1+ k11
1 + kX1

= a

(
1− k11
1− kX1

)
, (11)

where a represents a real tuning variable. Thus the
modified coefficient of the notch filter 1, kX1, can be
shown to be

kX1 =
(1− a) + k11(1 + a)

(1 + a) + k11(1− a)
. (12)

Notch filter 2

The DC gain = G2. The notch filter 2 can also be
derived in a similar manner. The DC gain can be
expressed as

Ĥ2(e
j0) = Ĥ2(1)G2 =

1+ k12
1 + kX2

. (13)

The π gain = G2a The π gain can be expressed as

Ĥ2(e
jπ) = Ĥ2(−1)G2 =

1

a

(
1− k12
1− kX2

)
. (14)

Pairing (13) and (14), the gain of notch filter 2 can be
expressed as

G2 =
1+ k12
1 + kX2

=
1

a

(
1− k12
1− kX2

)
. (15)

Hence the new pole position of notch filter 2, kX2, can
be expressed as

kX2 =
(a− 1) + k12(1 + a)

(1 + a) + k12(a− 1)
. (16)

In general, passband gains are uniformly flat and
equal to one. (11) and (15) show that the passband
gains at DC and frequencies of π are uniformly flat but
they cannot guarantee that the passband gains will be
equal to one. To fix this problem, the transfer function
of a single notch filter is transformed to be:

HXi(z) =
Ĥi(z)

Gi
,

where Gi denotes the DC gain of the ith notch filter.
Hence the transfer function of an IIR multiple notch
filter of the proposed design is

ĤM(z) =

N∏
i=1

HXi(z),

=

N∏
i=1

Ĥi(z)

Gi
.

(17)

DESIGN EXAMPLES AND DISCUSSION

This algorithm can be done easily by tuning variables
manually. However, the maximum passband gain
between notch frequencies may not be unity. To
overcome this problem, the tuning parameter has to
minimize the following cost function.

Error =
∫ π

0

∣∣∣|ĤM(ω)| − |HI(ω)|
∣∣∣ dω, (18)

where HI(ω) represents the transfer function of an
ideal notch filter.

Since the interval of integration is in some sense
small and the cost function is relatively smooth over
the interval [0, π], the composite Simpson’s rule10, 11

can be used instead of an exact integration.

Example 2 As expressed in Example 1, the specifica-
tions of a multiple notch filter with N = 2 are given
as follows:

HM(ejω) =

{
0, ω = 0.3π, 0.5π,

1, otherwise,

where the bandwidths of notch filters 1 and 2 are,
respectively, given as

BW1 = 0.1π, BW2 = 0.15π.

Hence the gains at frequencies of π can be directly
used from Table 1 where (17) is also used as a new
transfer function of a multiple notch filter.

Serial searching is employed. The interval [0, π]
is broken up into 100 small subintervals, with in-
crementing a by 0.0001 from 0 until 1. Thus the
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Fig. 2 Comparison of magnitude responses for N = 2.

Table 3 Parameters used for N = 2.

design param. H1 H2 error

conventional 7 k1i −0.5878 −6.12× 10−17 0.36
k2i 0.7265 0.6128

all-pass of k1i −0.5878 −6.12× 10−17 0.31
order 2N 8 k2i 0.7265 0.6128

k∗1i −0.5397 −0.0705

proposed k1i −0.5878 −6.12× 10−17 0.31
k2i 0.7265 0.6128
kXi −0.5397 −0.0705
Gi 0.8955 1.0758
a 0.8684 0.8684

minimum value of a cost function takes place at a =
0.8684. Note that the precision of the optimum value
is adequate when 4 decimal places are used.

The magnitude response of the proposed design
is shown in Fig. 2, where all parameters used for each
design are given in Table 3.

The corresponding transfer function of the pro-
posed design is

H(z) =
N(z)

D(z)
,

with

N(z) = 2.8904(1 + z−4)− 3.3979(z−1 + z−3)

+ 5.7808z−2

and

D(z) = 4− 4.1816z−1 + 5.7808z−2

− 2.6142z−3 + 1.7809z−4.

The pole positions of the conventional design7,
all-pass of order 2N design8, and the proposed design
are compared in Table 4.

Fig. 2 shows that the magnitude responses of
the proposed design and the all-pass filter order 2N

Table 4 Comparison of pole positions for N = 2.

conventional 7 order 2N 8 proposed

0.5074± 0.6849j 0.4659± 0.7138j 0.4659± 0.7138j
0.0000± 0.7828j 0.0569± 0.7807j 0.0568± 0.7808j

design8 are almost the same line. An ill-conditioned
gain from the conventional design7 can be solved by
using both techniques, depending on the designers.
But the disadvantage of Ref. 8 is that the complicated
nonlinear equations for this algorithm are difficult to
solve, especially, when N > 3. On the other hand,
the proposed design can be done easily by tuning only
N−1 variables (which is the parameter a in this case).

Example 3 The specifications of a multiple notch
filter with N = 3 are

HM(ejω) =

{
0, ω = 0.1π, 0.2π, 0.6π,

1, otherwise,

where the bandwidths of notch filter 1, 2, and 3 are,
respectively,

BW1 = 0.1π, BW2 = 0.1π, BW3 = 0.2π.

For N = 3, the desired gains can be expressed
as in Table 2. While kX1, kX2, and kX3 can be re-
adjusted directly from (12) or (16), depending on each
gain at a frequency of π. Thus

kX1 =
(1− ab) + k11(1 + ab)

(1 + ab) + k11(1− ab)
,

kX2 =
(b− 1) + k12(1 + b)

(1 + b) + k12(b− 1)
,

kX3 =
(a− 1) + k13(1 + a)

(1 + a) + k13(a− 1)
.

Since there are two tuning variables, i.e., the
tuning parameters a and b, then one more loop is
added for tuning parameter b. Hence the parameters
a and b are searched from 0 to 1 with an increment of
0.0001. Then the minimum error exists at a = 0.8435
and b = 0.4040.

Fig. 3 represents the magnitude responses for the
proposed design, where all necessary parameters are
given in Table 5.

The corresponding transfer function can be repre-
sented as

H(z) =
N(z)

D(z)
,

with

N(z) = 5.0756(1 + z−6)− 14.73(z−1 + z−5)

+ 19.8056(z−2 + z−4)− 19.8056z−3
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Fig. 3 Comparison of magnitude responses for N = 3.

Table 5 Parameters used for N = 3.

design param. H1 H2 H3 error

conventional 7 k1i −0.9511 −0.8090 0.3090 0.58
k2i 0.7265 0.7265 0.5095

all-pass of k1i −0.9511 −0.8090 0.3090 0.56
order 2N 8 k2i 0.7265 0.7265 0.5095

k∗1i −0.9182 −0.8629 0.2301

proposed k1i −0.9511 −0.8090 0.3090 0.56
k2i 0.7265 0.7265 0.5095
kXi −0.8629 −0.9182 0.2302
Gi 0.3569 2.3344 1.0641
a 0.8435 – 0.8435
b 0.4040 0.4040 –

and

D(z) = 8−21.8210z−1+26.0476z−2−19.8047z−3

+ 13.5630z−4 − 7.6397z−5 + 2.1517z−6

where the pole positions are compared in Table 6.
Table 7 shows the relationship among those pa-

rameters, i.e., bandwidths BW, tuning variable a,
error calculated from cost function, and pole radius
(which directly affects the stability margin), where
BW1 = BW2 for all cases, and ω1 and ω2 are
assumed to be 0.3π and 0.5π, respectively. Note that
the pole radius directly depends on the bandwidth.
Hence if the values of notch frequencies ω1 and ω2 are
changed, it will not affect the pole radius. However,
the tuning variable, a, can always changes, and the
error is slightly different.

Table 6 Comparison of pole positions for N = 3.

conventional 7 order 2N 8 proposed

−0.2332± 0.6746j −0.1737± 0.6924j −0.1737± 0.6923j
0.6984± 0.4886j 0.7449± 0.4143j 0.7449± 0.4143j
0.8210± 0.2291j 0.7927± 0.3134j 0.7926± 0.3135j

Table 7 Case of N = 2 and BW1 = BW2.

BW a error pole radius

0.01π 1 0.0439 0.9844
0.05π 0.9789 0.1326 0.9242
0.1π 0.9139 0.2563 0.8524
0.15π 0.7963 0.3660 0.7828
0.2π 0.5095 0.4603 0.7138

As shown in Example 2 and Example 3, the num-
bers of tuning parameters increase with the number
of notch frequencies. Hence to determine tuning
parameters for multiple notch filter, the serial search
method can be computed intensively. Thus the new
searching technique based on multidimensional search
without using derivatives, which will be described
later, is used instead.

FINDING THE OPTIMAL FILTER
PARAMETER

When using the pole-reposition technique, the tuning
parameters have to be adjusted precisely in order to
make the passband gain uniformly flat and maintain
the characteristic of the notch filter. According to
the previous section, the weakness of this method is
the long computing time when designing a multiple
notch filter. In order to improve the performance
of this technique, the searching algorithm has been
applied to find suitable parameters that optimize the
cost function. For simplicity, the cost function (18)
has been revised as

f(X) =

∫ π

0

|(1− ‖HM(ω)‖)| dω, (19)

where X is vector of tuning parameters that minimize
the cost function f ; X = (x1, x2, . . ., xN ). The mag-
nitude of an ideal notch filter is 1 since the bandwidth
of ideal notch filter should be very narrow.

Note that using the square function will make the
computed error larger than usual and this sometimes
causes the wrong decision when choosing optimal
parameters. On the other hand, using an absolute
function, the result will be more accurate since it uses
the actual difference to compute the error.

In this paper, we focused on the cyclic coordinate
method and the Hooke and Jeeves method using lines
searches as expressed below.

Algorithm 1 [Cyclic coordinate method] This
method will search along directions d1,d2, . . .,dj
where dj is a zero vector size n, where n is number
of tuning parameters except at the jth position, i.e.,
d1 = (x1, 0, 0, . . ., 0), d2 = (0, x2, 0, . . ., 0), etc.
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Thus along each search direction dj , the variable xj
is changed while all other variables are kept fixed.
Step 1: Choose a scalar ε > 0 as the termination

parameter.
Step 2: Let d1,d2, . . .,dn be the coordinate direction

where n is number of tuning parameters.
Step 3: Choose the point x1 as the searching starting

point.
Step 4: Let y1 = x1 and k = j = 1.
Step 5: Let λj be an optimal solution to minimize the

cost function f(yj + λjdj) along dj direction.
Then let yj+1 = yj + λjdj . If j < n, replace
j by j + 1, and repeat Step 5. Otherwise, go to
Step 6.

Step 6: Let xk+1 = yn+1. If ‖xk+1 − xk‖ < ε, then
stop. Otherwise, let y1 = xk+1, j = 1, k =→
k+ 1, and repeat Step 5.

For the general case of an N -notch filter, the
number of tuning parameters and direction vectors is
N − 1.

Algorithm 2 [Hooke and Jeeves method using line
searches] The method of Hooke and Jeeves performs
an explanatory search and a pattern search. The
explanatory search is similar to the cyclic coordinate
method (i.e., all parameters are fixed except one
searching parameter). The additional pattern search is
the acceleration step by searching along the line which
is created by two optimal points. Then the process is
repeated.
Step 1: Choose a scalar ε > 0 as the termination

parameter.
Step 2: Let d1,d2, . . .,dn be the coordinate direction

where n is number of tuning parameters.
Step 3: Choose the point x1 as the searching starting

point.
Step 4: Let y1 = x1 and k = j = 1.
Step 5: Let λj be an optimal solution to minimize the

cost function f(yj + λjdj). Then let yj+1 =
yj + λjdj . If j < n, replace j by j + 1, and
repeat Step 5. Otherwise, let xk+1 = yn+1. If
‖xk+1 − xk‖ < ε, then stop; otherwise, go to
Step 6.

Step 6: Let d = xk+1 − xk and let

λ̂ = argmin
λ

f(xk+1 + λd).

Let y1 = xk+1+λ̂d, j = 1, k→ k+1, and repeat
Step 5.

For the general case of an N -notch filter, the
number of tuning parameters and direction vectors
will be N − 1.
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Fig. 4 Magnitude response of triple notch obtained by cyclic
coordinate search with different starting points.
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Fig. 5 Optimal tuning parameter of triple notch filter with a
different set of notch frequencies and BW = 0.1π.

To minimize the cost function in (19), an approx-
imation to the cost function is computed by numerical
integration using the trapezoid rule12. However, the
accuracy of this method is quite low if there are
not many sampling points. In order to improve the
performance, Richardson’s extrapolation is applied12.

Since the success of the cyclic coordinate method
strongly depends on the initial searching point, some-
times the best optimal solution cannot be obtained if
the cost function is non-convex (Fig. 4). To improve
the searching efficiency, the cyclic coordinate method
has to be modified to start the search from various
initial points. By plotting the cost function with re-
spect to two adjustable parameters (Fig. 5), we found
that the optimal solutions are usually located near the
boundary. Hence we have to set four initial search-
ing points at (0.25, 0.25), (0.25, 0.75), (0.75, 0.25),
(0.75, 0.75) (Fig. 6).

Sometimes the optimal solution might be located
in the middle region and the searching direction from
4 initial points cannot go to the middle. Thus the result
will not be the best solution. To ensure that all regions
have been checked, an additional searching point has
been located at (0.5, 0.5) (Fig. 7).
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Fig. 6 Four initial searching points.
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Fig. 7 Optimal searching points.

DESIGN EXAMPLES AND DISCUSSION

Example 4 Triple notch filter (N = 3) with ω1 =
0.1π, ω2 = 0.5π, ω3 = 0.6π, and BW = 0.1π per
sample.

Applying the proposed algorithm, the cyclic co-
ordinate search and Hooke and Jeeves method using
line searches with starting point at (0.6, 0.4) give
the values of tuning parameters a and b of 0.0140
and 0.8870, 0.9990 and 0.9200, respectively. The
modified cyclic coordinate search gives 0.6680 and
0.0280, respectively. As shown in Fig. 8, the modified
cyclic coordinate search gives the best magnitude
response, which is similar to the result obtained by
serial search with an increment of 0.001.

Example 5 Quad notch filter (N = 4) with specifica-
tion ω1 = 0.1π, ω2 = 0.2π, ω3 = 0.6π, ω4 = 0.7π
and BW = 0.05π per sample.

Applying the proposed algorithm, the cyclic co-
ordinate search and the Hooke and Jeeves method
using line searches with starting point at (0.5, 0.5, 0.5)
give the values of tuning parameters a, b, and c, of
0.0320, 0.4990, and 0.694, 0.0320, 0.4990, and 0.694,
respectively. The modified cyclic coordinate search
gives 0.0230, 0.6960, and 0.6950. As shown in Fig. 9,
the modified cyclic coordinate search gives the best
magnitude response, which is similar to the result
obtained by serial search with 0.001 increment.

Table 8 and Table 9 show the error and opti-
mal parameter from the cyclic coordinate and Hooke
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Fig. 8 Magnitude of response of serial search and proposed
method for N = 3.
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Fig. 9 Magnitude of response of serial search and proposed
method for N = 4.

and Jeeves methods, respectively, with initial point
(0.6, 0.4) required to converge at various ω1, ω2, ω3,
and BW. The reason we use point (0.6, 0.4) is this
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Table 8 The error and optimal parameters from the cyclic
coordinate method with initial point (0.6, 0.4) required
to converge at various ω1, ω2, ω3, and BW. Average
computing time = 9.0 s.

ω1/π ω2/π ω3/π BW/π a b error

0.1 0.2 0.6 0.1 0.8970 0.6320 0.6515
0.2 0.4 0.6 0.1 0.8660 0.9790 0.6545
0.1 0.2 0.3 0.1 0.5040 0.3810 0.6693
0.1 0.3 0.6 0.1 0.8870 0.9210 0.6511
0.1 0.5 0.6 0.1 0.0140 0.8870 0.7164
0.1 0.5 0.9 0.1 0.8900 1.0000 0.6325
0.1 0.2 0.3 0.05 0.1100 0.9730 0.3926
0.2 0.4 0.6 0.05 0.9640 0.3901 0.3901

Table 9 The error and optimal parameters from the Hooke
and Jeeves method using line searches with initial point
(0.6, 0.4) required to converge at various ω1, ω2, ω3, and
BW. Average computing time = 9.3 s.

ω1/π ω2/π ω3/π BW a b error

0.1 0.2 0.6 0.1 0.8970 0.6320 0.6515
0.2 0.4 0.6 0.1 0.8660 0.9770 0.6545
0.1 0.2 0.3 0.1 0.5040 0.3810 0.6693
0.1 0.3 0.6 0.1 0.8870 0.9210 0.6511
0.1 0.5 0.6 0.1 0.9990 0.920 0.7046
0.1 0.5 0.9 0.1 0.8900 1 0.6325
0.1 0.2 0.3 0.05 0.2150 0.3860 0.6273
0.2 0.4 0.6 0.05 0.9640 0.9940 0.3901

point results in the lowest computational time.
According to Table 8 and Table 9, the two pro-

posed algorithms give very similar results in terms
of adjustable parameters and the number of iterations
when starting at the same initial point. Hence either
method can be used for finding an optimal solution.

Although most of the time, these two algorithms
can find best optimal result, the obtained result might
be different due to many local minimum points of
cost function as shown in Fig. 10 and Fig. 11. Hence
different initial searching points might lead to differ-
ent optimal solutions. To overcome this problem, the
cyclic coordinate method has been modified to start
the search from various starting points.

Table 10 and Table 11 show the error and optimal
parameters from the plane and modified cyclic coor-
dinate methods, respectively, required to converge at
various ω1, ω2, ω3, and BW.

CONCLUSIONS

The advantages of the proposed design are as fol-
lows. (1) It can guarantee that the passband gains
are uniformly flat while the notch frequencies and
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Fig. 10 Contour plot of typical cost function versus tuning
parameter (a,b).
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Fig. 11 Plot of typical cost function versus tuning parameter
b when a = 0.8 (non-convex).

the realized bandwidths meet the specifications of the
designers. (2) It does not need a complicated mathe-
matical calculation. (3) It can be easily implemented
by either serial searching or the optimal multidimen-
sional search without using derivatives. The proposed
algorithm yields higher efficiency and searching speed
with the lowest possible error.

The non-unity maximum passband gains between
notch frequencies always emerge when cascading ev-

Table 10 The error and optimal parameters from a plane
search required to converge at various ω1, ω2, ω3, and BW.
Average computing time = 26 s.

ω1/π ω2/π ω3/π BW/π a b error

0.1 0.2 0.6 0.1 0.8970 0.6320 0.6515
0.1 0.3 0.6 0.1 0.8870 0.9210 0.6511
0.2 0.4 0.6 0.1 0.8660 0.9760 0.6545
0.1 0.5 0.6 0.1 0.6680 0.0280 0.6507
0.1 0.2 0.3 0.1 0.5040 0.3810 0.6693
0.1 0.5 0.9 0.1 0.8900 1.000 0.6325
0.1 0.2 0.6 0.05 0.9710 0.6650 0.3891
0.2 0.4 0.6 0.05 0.9640 0.9940 0.3901
0.1 0.2 0.3 0.05 0.9030 0.2700 0.3926
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Table 11 The error and optimal parameters from a plane
search required to converge at various ω1, ω2, ω3, ω4, and
BW. Average computing time = 58 s.

ω1/π ω2/π ω3/π ω4/π BW/π a b c

0.1 0.3 0.5 0.7 0.1 0.943 1.000 0.822
0.1 0.2 0.6 0.7 0.1 0.023 0.696 0.695
0.1 0.2 0.3 0.4 0.1 0.404 0.406 0.538
0.6 0.7 0.8 0.9 0.1 1.000 0.915 0.587
0.1 0.4 0.5 0.7 0.1 0.830 0.058 0.814
0.1 0.3 0.5 0.7 0.05 0.981 0.998 0.949
0.1 0.2 0.6 0.7 0.05 0.053 0.265 0.924
0.1 0.2 0.3 0.4 0.05 0.112 0.996 0.472
0.6 0.7 0.8 0.9 0.05 0.998 0.546 0.861
0.1 0.4 0.5 0.7 0.05 0.967 0.050 0.142

ery notch filter simultaneously. This ill-conditioning
degrades the performance of a multiple notch filter as
its bandwidths increases. The stability margin, i.e., the
minimum distance from the pole to the perimeter of a
unit circle, is directly proportional to the bandwidth.
The value of the stability margin decreases as the
value of bandwidth increases. Thus another advantage
of the proposed technique is that the stability margin
of the algorithm is based on all-pass filter design,
which is adjustable and can be made greater than those
of Refs. 4–6 with minimal error increment.
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