
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2014.40.306
ScienceAsia 40 (2014): 306–312

Mathematical models of nonlinear uniform consensus
Mansoor Saburova,∗, Khikmat Saburovb

a Faculty of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
b University of West Bohemia, Pramenni 20/3 P.O.Box 301 00 Pilsen, Czech Republic

∗Corresponding author, e-mail: msaburov@gmail.com
Received 11 Apr 2014
Accepted 23 Jul 2014

ABSTRACT: We consider a nonlinear protocol for a structured time-invariant and synchronous multi-agent system. In the
multi-agent system, we present opinion sharing dynamics as a trajectory of a cubic triple stochastic matrix. We provide
a criterion for a uniform consensus of the multi-agent system. We show that the multi-agent system eventually reaches a
consensus if either one of the following two conditions is satisfied: (i) every member of the group people has a positive
subjective opinion on the given task after some revision steps or (ii) all entries of the given cubic triple stochastic matrix are
positive.
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INTRODUCTION

The idea of reaching consensus through repeated av-
eraging was introduced by DeGroot1 for a structured
time-invariant and synchronous environment. Since
that time, the consensus, which is the most ubiquitous
phenomenon of multi-agent systems, has become pop-
ular in various fields such as biology, physics, control
engineering, and social science2, 3.

The dynamics of opinion sharing, competing, and
the emergence of consensus have become an active
topic of the recent research in statistical and nonlinear
physics4. For example, there are many models which
address how consensus can be achieved in the evolu-
tion of two competing opinions in a population. These
include the voter model, the majority rule model, and
the social impact model. Due to the high relevance
of complex networks to social and natural systems,
opinion dynamics have also been investigated using
networks such as regular lattices, random graphs,
small-world networks, and scale-free networks. Phase
transitions in opinion dynamics are observed5–7 and
the emergence of global consensus, where all agents
share the same opinion, has been investigated8. It has
also been found that both the network structures9 and
the opinion updating strategies10–12 can affect the time
for reaching the final consensus.

Most research papers are concerned with the
consensus problem under linear protocols. However,
many systems, such as the well-known Kuramoto os-
cillator, exhibit nonlinear locally passive dynamics13.
The consensus problem was studied in some nonlinear
protocols14–16.

In this paper, we provide some nonlinear proto-
cols of multi-agent systems and study the consensus
problem for the provided nonlinear protocols. It is
convenient to first provide a linear protocol for an
estimate-modification process of a structured time-
invariant and synchronous environment which was
presented in Refs. 1, 17.

We consider a group of m individuals each of
which can specify their own subjective probability
distribution for some given task. Suppose the m in-
dividuals have to act together as a team or committee.

For i = 1, . . . ,m, let x(0)i denote the subjective
distribution that the individual i is assigned to a given
task. The subjective distributions,

x(0) = (x
(0)
1 , . . . , x(0)m )T

will be based on the different backgrounds and differ-
ent levels of expertise of the members of the group.
It is assumed that if the individual i is informed of
the distributions of each of the other members of
the group, they might wish to revise their subjective
distribution to accommodate this information. In De-
Groot’s model1, it was assumed that when individual
i makes this revision, their revised distribution is a
linear combination of the distributions x(0)1 , . . . , x

(0)
m .

Let pij denote the weight that individual i assigns to
x
(0)
j when they make this revision. It was assumed

that the pij > 0 and

m∑
j=1

pij = 1.
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Hence after being informed of the subjective distribu-
tions of the other members of the group, individual i
revises their own subjective distribution from x

(0)
i to

x
(1)
i =

m∑
j=1

pijx
(0)
j .

Let P denote an m × m matrix whose (i, j)th
element is pij . It is clear that P is a row-stochastic
matrix since the elements are all non-negative and the
row-sums are equal to one. Let

x(n) = (x
(n)
1 , . . . , x(n)m )T.

Then the vector of revised subjective distributions can
be written as x(1) = Px(0).

The critical step in this process is that the above
revision is iterated, i.e., if x(n) denotes the subjective
distribution of the members of the group after n
revisions then

x(n) = Px(n−1) = Pnx(0).

DeGroot states1 that a consensus is reached if and
only if allm components of x(n) converge to the same
limit as n→∞.

In this paper, our main assumption is that the
subjective distribution x(n) of the members is proba-
bilistic in every step, i.e.,

∑m
k=1 x

(n)
k = 1 and x(n)k >

0 for any k = 1,m and n ∈ N.
Let Sm−1 be an (m − 1)-dimensional simplex,

where

Sm−1 =

{
x :

m∑
k=1

xk = 1, xk > 0,∀k = 1,m

}
.

In this case, one has that x(n) ∈ Sm−1 for any
n ∈ N in DeGroot’s model if and only if

∑m
i=1 pij =∑m

j=1 pij = 1 and pij > 0, i.e., P is a doubly
stochastic matrix. Consequently, we may conclude
that a trajectory {x(n)}∞n=0 of the doubly stochastic
matrix P presents the DeGroot model of a struc-
tured time-invariant synchronous environment with
the probabilistic subjective distribution for some given
task.

In Ref. 18, Chatterjee and Seneta consider a
generalization of DeGroot’s model in which the indi-
viduals can change their weights pij at each iteration.
More precisely, let {Pn}n∈N be a sequence of dou-
bly stochastic matrices (a non-homogeneous Markov
chain) and x(0) ∈ Sm−1. A sequence x(n+1) =
Pn+1x

(n) presents the Chatterjee-Seneta model of a
structured time-varying and synchronous environment

with the probabilistic subjective distribution for some
given task. In this paper, we shall consider a nonlinear
model for the estimate modification process of a struc-
tured time-invariant and synchronous environment
which generalizes both the DeGroot and Chatterjee-
Seneta models.

In general, we suppose that doubly stochastic
matrices in the Chatterjee-Seneta model depend on
subjective distributions x(n) in every step, i.e., entries
of doubly stochastic matrices are not constants but
functions of x(n),

Px(n) :=
(
pij(x

(n))
)m
i,j=1

. (1)

A general model of a structured synchronous
time-varying environment with probabilistic subjec-
tive distributions is defined by

x(n+1) = Px(n)x(n) (2)

where Px(n) is a doubly stochastic matrix defined by
(1). By choosing Px(n) , we may get different models
of multi-agent systems. For instance, if Px(n) = P0

(the matrices are free of n and x(n)) then we get the
DeGroot model. If Px(n) = Pn (the matrices are free
of x(n) but depended on n) then we get the Chatterjee-
Seneta model.

We shall study a consensus problem in a multi-
agent system.

Definition 1 We say that a consensus is reached with
respect to an initial state x(0) in a structured time-
varying synchronous multi-agent system given by (2)
if a trajectory x(n) starting from the initial point x(0)

converges to the centre C = (1/m, . . . , 1/m)T of the
simplex Sm−1 as n→∞.

Definition 2 We say that a uniform consensus is
reached in a structured time-varying synchronous
multi-agent system given by (2) if the trajectory x(n)

starting from any initial point x(0) converges to the
centre C = (1/m, . . . , 1/m)T of the simplex Sm−1

as n→∞.

Remark 1 Uniform consensus is achieved if the sys-
tem reaches to a consensus regardless of the initial
opinion. In this event, the consensus does not depend
on an initial opinion.

The following notation is used in this paper.
Let I = {1, . . . ,m} be an index set, R be the
set of real numbers, and Rm be the m-dimensional
Euclidean space with the standard inner product
(x, y) =

∑m
i=1 xiyi. Elements of Rm are column
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vectors. Let x = (x1, . . . , xm)T ∈ Rm and ek =
(δk1, δk2, . . . , δkm)T, k = 1,m be the standard basis
of the space Rm. Let

Sm−1 = {x ∈ Rm :

m∑
i=1

xi = 1, xk > 0, ∀k = 1,m}

be the (m− 1)-dimensional simplex and

intSm−1 = {x ∈ Sm−1 : xk > 0 ∀k ∈ 1,m}

be its interior. Let C = (1/m, . . . , 1/m)T be the
centre of the simplex Sm−1. Let M(x) = maxi∈I xi,
m(x) = mini∈I xi, and d(x) = M(x) − m(x) be
functions. Let P = (pij)

m
i,j=1 be a square matrix and

P = (Pijk)
m
i,j,k=1 be a cubic matrix.

THE MAIN MODEL

In this section, we shall provide some nonlinear
protocols of multi-agent systems. We need some
preliminary notions and notation.

Definition 3 A cubic matrix P = (Pijk)
m
i,j,k=1 is

called triple stochastic if all its entries are non-
negative and it is stochastic in three directions, i.e.,

m∑
i=1

Pijk =

m∑
j=1

Pijk =

m∑
k=1

Pijk = 1, Pijk > 0,

for any i, j, k = 1,m.

Let P = (Pijk)
m
i,j,k=1 be a cubic triple stochastic

matrix and Pk = (Pijk)
m
i,j=1 be its kth-plane (square)

matrix for fixed k = 1,m. It is clear that Pk =
(Pijk)

m
i,j=1 is a doubly stochastic matrix for every

k = 1,m. We write a cubic matrix P as P =
(P1 |P2| · · · |Pm).

Let x ∈ Sm−1 and P = (P1 |P2| · · · |Pm) be
a cubic triple stochastic matrix. An action P � x of
the cubic matrix P on the vector x is a square matrix
Px = P � x such that

Px =


(
P1(x)

)
1
· · ·

(
P1(x)

)
m(

P2(x)
)
1
· · ·

(
P2(x)

)
m

...
. . .

...(
Pm(x)

)
1
· · ·

(
Pm(x)

)
m

 . (3)

One can see that

Px =

(
pki(x)

)m
k,i=1

,

where pki(x) ≡ (Pkx)i =
∑m
j=1 Pijkxj , is

a doubly stochastic matrix. Indeed, since P =

(P1 |P2| · · · |Pm) is a cubic triple stochastic matrix
and x ∈ Sm−1, we have that

m∑
i=1

pki(x) =

m∑
i=1

(Pkx)i =

m∑
i=1

 m∑
j=1

Pijkxj


=

m∑
j=1

(
m∑
i=1

Pijk

)
xj =

m∑
j=1

xj = 1,

m∑
k=1

pki(x) =

m∑
k=1

(Pkx)i =

m∑
k=1

 m∑
j=1

Pijkxj


=

m∑
j=1

(
m∑
k=1

Pijk

)
xj =

m∑
j=1

xj = 1.

Definition 4 We say that a sequence {x(n)}∞n=0 ⊂
Sm−1 is a trajectory of a cubic triple stochastic matrix
P = (P1 |P2| · · · |Pm) starting from an initial point
x(0) if one has that

x(n+1) = (P � x(n))x(n) = Px(n)x(n), (4)

where Px is a doubly stochastic matrix defined by (3).

Let us define a nonlinear stochastic operator V :
Sm−1 → Sm−1 by means of a cubic triple stochastic
matrix P = (P1 |P2| · · · |Pm) as follows:

V : x→ V (x) ≡ (P � x)x = Pxx. (5)

It is clear that V : Sm−1 → Sm−1 has the following
form:

V (x) =

(
(P1x, x), (P2x, x), . . . , (Pmx, x)

)T

,

(6)
where (·, ·) is the standard inner product in Rm.
More precisely, V : Sm−1 → Sm−1 is a quadratic
stochastic operator

V (x) =

 m∑
i,j=1

Pij1xixj , . . . ,

m∑
i,j=1

Pijmxixj

T

.

(7)
Quadratic stochastic operators (QSOs) have appli-

cations in population genetics19. A QSO describes a
distribution of the next generation in the population
system if the distribution of the current generation
is given. In Ref. 20, a mathematical model of
the transmission of human ABO blood groups was
described as a QSO on a 7-dimensional simplex and
based on some numerical investigations of the QSO,
the future ABO blood group distribution of Malaysian
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people was predicted. See Ref. 21 for a long self-
contained exposition of the recent achievements and
open problems in the theory of QSOs.

The main problem in nonlinear operator theory is
to study the behaviour of nonlinear operators. This
problem was not fully finished even in the class of
QSOs which are the simplest nonlinear operators21.
In Refs. 22, 23, a special class of QSO was studied as
a generalization of a logistic mapping into the higher
dimensions.

The form V (x) = (P � x)x = Pxx of the QSO
gives an advantage during the study of stability (con-
sensus) problems. Moreover, the trajectory {x(n)}∞n=0

of V starting from x(0), where x(n+1) = V (x(n)), is
nothing more than the trajectory of the cubic stochas-
tic matrix defined by (4). In what follows, we shall just
examine the cubic stochastic matrix and its trajectory.

Protocol A. In a multi-agent system, an opinion
sharing dynamics is given by the following nonlinear
rule (or a trajectory of a single cubic triple stochastic
matrix):

x(n+1) ≡ (P � x(n))x(n) = Px(n)x(n), (8)

where x(n) = (x
(n)
1 , . . . , x

(n)
m )T is the subjective dis-

tribution of the members of the group after n revisions,
P = (P1 |P2| · · · |Pm) is a cubic triple stochastic
matrix, and Px is a doubly stochastic matrix defined
by (3). In this case, the opinion sharing dynamics (8)
can be written as

x(n+1) ≡ m∑
i,j=1

Pij1x
(n)
i x

(n)
j , . . . ,

m∑
i,j=1

Pijmx
(n)
i x

(n)
j

T

.

A NONLINEAR UNIFORM CONSENSUS

Let M(x) = maxi∈I xi, m(x) = mini∈I xi and
d(x) = M(x) − m(x) for any x ∈ Sm−1, where
I = {1, 2, . . . ,m}. It is clear that all functions
M,m, d : Sm−1 → R are continuous and d(x) = 0 if
and only if x = C = (1/m, . . . , 1/m)T.

Lemma 1 Let {x(n)}∞n=0 ⊂ Sm−1 be any sequence.
A sequence {x(n)}∞n=0 converges to the centre C =
(1/m, . . . , 1/m)T of the simplex Sm−1 if and only if
limn→∞ d(x(n)) = 0.

Proof : Let {x(n)}∞n=0 ⊂ Sm−1 be any sequence.
The ‘only if’ part. If {x(n)}∞n=0 converges to

the centre C = (1/m, . . . , 1/m)T of the simplex
Sm−1 then limn→∞ d(x(n)) = limn→∞M(x(n)) −
limn→∞m(x(n)) =M(C)−m(C) = 0.

The ‘if’ part. Suppose that limn→∞ d(x(n)) =
0. Let ω({x(n)}) be an omega limiting set of
{x(n)}∞n=0 and x∗ ∈ ω({x(n)}) be any point. Then
there is a subsequence {x(nk)}∞k=0 of {x(n)}∞n=0 such
that limk→∞ x(nk) = x∗. Since the function d :
Sm−1 → R is continuous, we get that d(x∗) =
limk→∞ d(x(nk)) = 0. Hence x∗ = C and
ω({x(n)}) = {C}. �

Theorem 1 Let P = (Pijk)
m
i,j,k=1 be a cubic triple

stochastic matrix and V : Sm−1 → Sm−1 be an
associated quadratic stochastic operator given by (7).
If x(n0) ∈ intSm−1 for some n0 then the trajectory
{x(n)}∞n=0 of V : Sm−1 → Sm−1 converges to the
centre C = (1/m, . . . , 1/m)T of the simplex Sm−1.

Control system interpretation: Suppose that an
opinion sharing dynamics in the multi-agent system
is given by nonlinear Protocol A. If every member of
the group people has a positive subjective opinion on
the given task after some revision steps then the multi-
agent system eventually reaches a consensus.
Proof : From Lemma 1 it is enough to show that
limn→∞ d(x(n)) = 0. Without loss of generality,
we may suppose that x(0) ∈ intSm−1. Let P =
(P1 |P2| · · · |Pm) be a cubic triple stochastic matrix
and Px = P � x be an action of the cubic triple
stochastic matrix P on x. Then Px = (pki(x))

m
k,i=1 is

the doubly stochastic matrix, where

pki(x) = (Pkx)i =

m∑
j=1

Pijkxj . (9)

In this case, the opinion sharing dynamics can be
written as

x(n+1) = Px(n)x(n). (10)

We want to show that

M(x(0)) > · · · >M(x(n)) > · · · , (11)

m(x(0)) 6 · · · 6 m(x(n)) 6 · · · , (12)

where M(x) = maxi∈I xi and m(x) = mini∈I xi. In
fact, since Px is a doubly stochastic matrix, it follows
from (10) that

M(x(n+1)) = x
(n+1)
k0

=

m∑
i=1

pk0i(x
(n))x

(n)
i

6M(x(n))

m∑
i=1

pk0i(x
(n))

=M(x(n)),

m(x(n+1)) = x
(n+1)
k′0

=

m∑
i=1

pk′0i(x
(n))x

(n)
i
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> m(x(n))

m∑
i=1

pk′0i(x
(n))

= m(x(n)).

On the other hand, since P = (P1 |P2| · · · |Pm) is a
cubic triple stochastic matrix, it follows from (9), (11),
and (12) that

pki(x
(n)) =

m∑
j=1

Pijkx
(n)
j

6M(x(0))

m∑
j=1

Pijk =M(x(0)),

pki(x
(n)) =

m∑
j=1

Pijkx
(n)
j

> m(x(0))

m∑
j=1

Pijk = m(x(0)),

for any k, i = 1,m and n ∈ N. This means
that for any n, all entries of the matrices Px(n) lie
in the segment [m(x(0)),M(x(0))], i.e., m(x(0)) 6
pki(x

(n)) 6 M(x(0)) for any k, i = 1,m and n ∈ N.
We have thatm(x(0)) > 0 since x(0) ∈ intSm−1. We
then obtain from the last argument that

x
(n+1)
k =

m∑
i=1

pki(x
(n))

(
x
(n)
i −M(x(n))

)
+M(x(n))

= m(x(0))
(
m(x(n))−M(x(n))

)
+M(x(n))

=
(
1−m(x(0))

)
M(x(n))

+m(x(0))m(x(n)), (13)

x
(n+1)
k =

m∑
i=1

pki(x
(n))

(
x
(n)
i −m(x(n))

)
+m(x(n))

> m(x(0))
(
M(x(n))−m(x(n))

)
+m(x(n))

= m(x(0))M(x(n))

+
(
1−m(x(0))

)
m(x(n)), (14)

for any k = 1,m. Consequently, we obtain from (13)
and (14) that

d(x(n+1)) =M(x(n+1))−m(x(n+1))

=
(
1− 2m(x(0))

)
d(x(n)), (15)

for any n ∈ N. Then it follows from (15) that

d(x(n+1)) 6
(
1− 2m(x(0))

)n+1

d(x(0)).

Since m(x(0)) > 0 and 1−2m(x(0)) < 1, we get that
limn→∞ d(x(n)) = 0. �

We now provide a criterion for a system to
reach uniform consensus. Let e

(0)
k = ek =

(δk1, δk2, . . . , δkm)T and e(n+1)
k = P

e
(n)
k

e
(n)
k , where

k = 1,m.

Theorem 2 Let P = (Pijk)
m
i,j,k=1 be a cubic triple

stochastic matrix and V : Sm−1 → Sm−1 be
an associated quadratic stochastic operator given by
(7). Then the trajectory {x(n)}∞n=0 starting from any
initial point of the simplex Sm−1 converges to the
centre C = (1/m, . . . , 1/m)T of the simplex Sm−1

if and only if there is N0 ∈ N such that e(N0)
k ∈

intSm−1 for any k = 1,m.

Control system interpretation: Suppose that an
opinion sharing dynamics in the multi-agent system
is given by nonlinear Protocol A. The multi-agent
system reaches a uniform consensus if and only if
there is N0 ∈ N such that e(N0)

k ∈ intSm−1 for any
k = 1,m.
Proof : It is evident that if the system reaches a
uniform consensus then there is n0(k) ∈ N such
that e(n0(k))

k ∈ intSm−1 for any k = 1,m. Since
V (intSm−1) ⊂ intSm−1, we get that e(N0)

k ∈
intSm−1 for any k = 1,m, whereN0 = maxk n0(k).

Let x(0) ∈ Sm−1 be any point. We have that x =∑m
i=1 x

(0)
i e

(0)
i . Since Pλx+µy = λPx+µPy , it follows

from (4) that

x(1) = Px(0)x(0) =

m∑
i=1

x
(0)
i P

e
(0)
i
x(0)

=

m∑
i,j=1

x
(0)
i x

(0)
j P

e
(0)
i
e
(0)
j

=
∑
i

x
(0)
i x

(0)
i P

e
(0)
i
e
(0)
i +

∑
i 6=j

x
(0)
i x

(0)
j P

e
(0)
i
e
(0)
j

=
∑
i

(x
(0)
i )2e

(1)
i +

∑
i 6=j

x
(0)
i x

(0)
j P

e
(0)
i
e
(0)
j

=
∑
i

(x
(0)
i )2e

(1)
i +

∑
i 6=j

x
(0)
i x

(0)
j e

(00)
ij

where e
(00)
ij = P

e
(0)
i
e
(0)
j . In a similar manner, by

means of Pλx+µy = λPx + µPy and (4), we can get
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that

x(2) = Px(1)x(1)

=
∑
i

(x
(0)
i )2P

e
(1)
i
x(1) +

∑
i 6=j

x
(0)
i x

(0)
j Pe00ij x

(1)

=
∑
i,l

(x
(0)
i )2(x

(0)
l )2P

e
(1)
i
e
(1)
l

+
∑
i,l 6=r

(x
(0)
i )2x

(0)
l x(0)r P

e
(1)
i
e
(00)
lr

+
∑
i 6=j,l

x
(0)
i x

(0)
j (x

(0)
l )2Pe00ij e

(1)
l

+
∑

i 6=j,l 6=r

x
(0)
i x

(0)
j x

(0)
l x(0)r Pe00ij e

00
lr

=
∑
i

(x
(0)
i )4e

(2)
i + · · · .

Analogously, in general, one can show that

x(n) =
∑
i

(x
(0)
i )2

n

e
(n)
i + · · · .

Consequently, if e(N0)
i ∈ intSm−1 for some N0 ∈

N, where i = 1,m, then x(N0) ∈ intSm−1 for any
x(0) ∈ Sm−1. Then due to Theorem 1, the system
reaches to a consensus for any x(0) ∈ Sm−1. �

Corollary 1 Suppose that an opinion sharing dynam-
ics in the multi-agent system is given by nonlinear
Protocol A. If all entries of a cubic triple stochastic
matrix P = (P1 |P2| · · · |Pm) are positive, i.e.,
Pijk > 0 for any i, j, k = 1,m, then the multi-agent
system eventually reaches a (uniform) consensus.

Proof : It is easy to check that if all entries of the
cubic triple stochastic matrix P = (P1 |P2| · · · |Pm)
are positive, i.e., Pijk > 0 for any i, j, k = 1,m,
then x(1) = (P � x(0))x(0) ∈ intSm−1. From
Theorem 1, we reach to a consensus in the multi-agent
system. �

Remark 2 We know from the theory of Markov
chains that if all entries of a doubly stochastic matrix
P are positive then its trajectory {x(n)}∞n=0, where
x(n) = Pnx(0), starting from any initial point x(0) ∈
Sm−1 converges to the centre C = (1/m, . . . , 1/m)T

of the simplex Sm−1 (i.e., it is regular). The similar
result was open for cubic triple stochastic matrices.
From Corollary 1, this result is generalized for cu-
bic triple stochastic matrices. To the best of our
knowledge, Corollary 1 is a new result for higher-
dimensional stochastic matrices.

CONCLUSIONS

In this paper, we have studied a nonlinear protocol
for a structured time-invariant and synchronous multi-
agent system which generalizes both the DeGroot
and Chatterjee-Seneta classical models. In the multi-
agent system, we present an opinion sharing dynamics
as a trajectory of a cubic triple stochastic matrix
(Protocol A). We provide a criterion for a uniform
consensus of the multi-agent system. We showed
that the multi-agent system eventually reaches to a
consensus if either one of the following two conditions
is satisfied: (i) every member of the group people has
a positive subjective opinion on the given task after
some revision steps or (ii) all entries of the given cubic
triple stochastic matrix are positive. The consensus
problem for a nonlinear protocol given by polynomial
stochastic operators will be studied in a forthcoming
paper.
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