(L9ESEARCH ARTICLE
doi- 10.2306/scienceasial 513-1874.2014.40.301

ScienceAsia 40 (2014): 301-305

Convergence of three-step iterations for total
asymptotically nonexpansive mappings in uniformly

convex Banach spaces
Zhanfei Zuo

Department of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou 404100 China

e-mail: zuozhanfei @139.com

Received 27 May 2013
Accepted 20 Dec 2013

ABSTRACT: In this paper, we study a three-step iterative scheme for total asymptotically nonexpansive mappings in
uniformly convex Banach spaces. As an application, several convergence theorems of this scheme are established for total

asymptotically nonexpansive mappings. The results obtained in this paper are an extension and refinement of some previous

results.
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INTRODUCTION

Noor introduced a three-step iterative scheme and
studied the approximate solutions of variational inclu-
sion in Hilbert spaces'. Glowinski and Le Tallec used
three-step iterative schemes to find the approximate
solutions of the elastoviscoplasticity problem, liquid
crystal theory, and eigenvalue computation?. It has
been shown that the three-step iterative scheme gives
better numerical results than the two-step and one-
step approximate iterations®. Haubruge et al studied
the convergence analysis of three-step schemes of
Glowinski and Le Tallec and applied these schemes to
obtain new splitting-type algorithms for solving vari-
ational inequalities, separable convex programming
and minimization of a sum of convex functions>. They
also proved that three-step iterations lead to highly
parallelized algorithms under certain conditions. Thus
three-step scheme plays an important and significant
part in solving various problems, which arise in pure
and applied sciences. Xu and Noor introduced and
studied a three-step scheme to approximate fixed point
of asymptotically nonexpansive mappings in a Banach
space*. Suantai defined a new three-step iteration
which is an extension of Xu and Noor iterations and
gave some weak and strong convergence theorems of
the iterations for asymptotically nonexpansive map-
pings in a uniformly convex Banach space’. Very
recently, Nilsrakoo and Saejung defined a new three-
step iterations which is an extension of Noor iterations
and gave some weak and strong convergence theo-

rems of the modified Noor iterations for asymptoti-
cally nonexpansive mappings in Banach space®. The
scheme is defined as follows.

Algorithm 1 Let C' be a nonempty closed subset of
a real Banach space X and T' : C' — C be a given
mapping. For a given 21 € C, compute sequences
{zn}.{yn},{zn} by the iterative scheme

Tn+l = anTnyn + BnT”Zn + 7nT7an
+ (1 —an—=Bn—m)rn (1)

where z,, = a,T"xy, + (1 — an)Tn; Y = b T2, +
enT"Tn + (1 — by — ¢p)xy; and {an}, {bn}, {cn},
{bn + cn}, {an}, {Bn}, {m}, and {ay, + Bn + 7}
are appropriate sequences in [0, 1].

The iterative scheme (1) is called the three-step
mean value iterative scheme. It is clear that the
three-step mean value iterative scheme includes the
modified Noor iterations, furthermore, the modified
Noor iterations include Mann iterations, Ishikawa it-
erations, and original Noor iterations as special cases.
It is our purpose to establish a few weak and strong
convergence theorems of the three-step mean value
iterative for ({gt,, }, {vn }, ¢)-total asymptotically non-
expansive mapping in a uniformly convex Banach
space. Our results extend and improve the correspond-
ing results announced by Xu and Noor*, Suantai’,
Nilsrakoo and Saejung®’.
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PRELIMINARIES

The asymptotically nonexpansive mapping is defined
by Gobel and Kirk®.

Definition 1 Let C' be bounded subset of X, a map-
ping T' : X — X is called asymptotically nonexpan-
sive if there exists a sequence {k,} of positive real
numbers with k,, — 1 for which

|T"x — T"y|| < ky ||z —y| forallz,y € X.

Definition 2 7T is said to be uniformly L-Lipschitz-
ian, if there exists a constant L > 0 such that

|IT"x — T y|| < L]l —y|| foralln>1, z,y € X.

Chang et al recently introduced the concept of to-
tal asymptotically nonexpansive mappings in metric
spaces and proved the demiclosed principle for this
kind of mapping®. Similarly, we can get the to-
tal asymptotically nonexpansive mappings in Banach
space X.

Definition 3 A mapping 7' : X — X is said to be
({unt, {vn}, ¢)-total asymptotically nonexpansive, if
there exist nonnegative sequences {u,}, {v,} with
wn — 0, v, — 0 and a strictly increasing continuous
function ¢ : [0, 00) — [0, 00) with {(0) = 0 such that

[T — Tyl < lz — yll + vCllz — yll) + pin
forallm > 1,2,y € X.

Remark 1 From the above definitions, it is to know
that each nonexpansive mapping is an asymptotically
nonexpansive mapping with sequence {k, = 1}
and each asymptotically nonexpansive mapping is
a ({pn}, {vn}, ¢)-total asymptotically nonexpansive
mapping with y,, = 0,v,, = k, — 1 foralln > 1
and ¢(t) =t forall t > 0.

MAIN RESULTS

Lemma 1 (Ref. 10) Let {a,}, {A\.} and {c,} be
sequences of nonnegative numbers such that

1 < 14+ Ny)ap + ¢, foralln > 1.

Ifzzozl A, < 00 and 220:1 ¢, < 0o, then lim,, a,,
exists. If there exists a subsequence of {a,} which
converges to 0, then lim,, a,, = 0.

Lemma 2 Let X be a real Banach space, C be a
nonempty closed convex subset of X, andT : C' — C
be a ({pn}, {vn}, ¢)-total asymptotically nonexpan-
sive mapping. Let {a,}, {bn}, {an} be sequences of
real numbers in [0,1], and {x,} be a sequence in C
defined by Algorithm 1. If
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1) Yoo v <00 Do iy < 00, and

(ii) there exists a constant M* > 0 such that
C(r) < M*r forallr >0,

then lim,, ||z, — p|| exists for each fixed point p of T.

Proof: Let p be a fixed point of T'. From the definition
of {y,} and {z,} in Algorithm 1, and that T"p = p,
we have

12 = pll < an |T"zn — T"pl| + (1 — an) 2 — p||
< ap[llzn = pll + val([|zn — pll) + 1n]
+ (1 —an)[Jzn —pll
Qv an D+ @

lyn — pll

Sbn I Tz = T"pl|l + e [ T"2n — T"p||
+ (L= by —cn) |lzn — 1

< bn[llzn — Pl + vnC(llzn — I + 4]
+ culllzn = pll + val(lzn — pII) + pnl
+ (1 =bn —cn) lzn — pll

< Op[(L 4+ v M™) l2n — pll + pin
+ v M (1 + vn M) (|20 — pll + pn) + in]
+ calllzn — pll + vaM* |20 — Pl + p1]
+ (1 =bn —cn) lzn — pll

< (1430, M* + (1, M*)?) || = p
+ (WM™ + 3) pin. 3)

From (1), (2), (3), we get

[£ns1 = pll
S o [ T"yn = T"pll + B [T" 20 — T"pl|
+ Y [T 0 = T"p||
+ (1= an = Bu =) |20 =l
S an[(1+ v M) [lyn — pl| + pin]
+ Bnl(1 4+ v M7) |20 — pl| + pin]
+ [+ 0 M) |20 — pl| + pn]
+ (1 = an = Bu =) |20 — Dl
< (14 T, M* + 5(v, M*)? + (v, M*)?) ||, — |
+ (7T + 5vn M* + (U M*)?) .
In Lemma 1, take a,, = ||z, — p||, A\ = Tv, M* +
5(vnM*)? + (v, M*)3 and ¢, = (7 + 5, M* +
(U M*)?)j1, then all conditions in Lemma 1 are

satisfied. The conclusion is obtained from Lemma 1
immediately. ]

Lemma 3 (Ref. 7) Let {x,}, {yn} and {z,} be se-
quences in a uniformly convex Banach space X.
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Suppose that {ay,}, {Bn} and {v,} are sequences +Bn 1T 20, — || + Vo (| T" 20 — 2]
in [0,1] with cv, + B + v = 1, limsup,, ||z,|| < + pin + | T2 — 20| — 0.

d, limsup,, |y,|| < d, limsup, |z.|| < d and
lim,, ||an®n + Buyn + Ynznl| = d. Ifliminf, o, >
0 and lim inf,, B8, > 0, then lim,, ||z, — y,|| = 0.

Then

|Zny1 — Topial|
In fact, we can also obtain the following Lemma. < H$n+1 . T"+1xn+1 H + HTnHﬂCnH T H

Lemma4 Let {x,},{yn}.{2n} and {u,} be se-
quences in a uniformly convex Banach space

X.  Suppose that {an}, {Bn}, {7} and {6,}

< ||$n+1 - Tn+1$n+1”
+ (1 + VnM*) ||£Zin+1 — Tn$n+1|| + Un — 0.

are sequences in [0,1] with an + Bn + Vn + 0
o, = 1, limsup, ||z,|| < d,limsup, ||yl <

d,limsup,, ||z.|| < d,limsup, ||u,|| < d and Lemmaé Let X be a real Banach space, C be a
limy, |an®n + BnYn + YnZn + Opun|| = d. If nonempty closed convex subset of X, andT : C' — C
liminf, @, > 0 and liminf, 8, > 0, then be a ({un}, {vn},()-total asymptotically nonexpan-
lim,, ||z, — ya|| = 0. sive mapping. Let {x,} be a sequence in C defined

by Algorithm 1 and the parameters satisfy one of the
following control conditions:

(1) liminf, o, > 0 and one of the following holds:
Lemma 5 Let X be a real Banach space, C be a (a) 0 < liminf, £, <limsup, (an+Fn+7ys) <1

Proof: The proof is similar to that of Lemma 3;
therefore, the detail is omitted. |

nonempty closed convex subset of X, andT : C' — C and lim sup,, ¢, < 1;

be an ({pn}, {vn}, ¢)-total asymprotically nonexpan- (b) 0 < liminf, b, < limsup, (b, + ¢,) < 1 and

sive mapping, {x,} be a sequence in C defined by limsup,, a, < 1;

Algorithm 1. If (¢) 0 < liminf, ¢, < limsup,, (b, +cp) < 1;

1) Yoo vn <007 Yot iy < 00, (ii) 0 < liminf, B, and

(ii) there exists a constant M* > 0 such that {(r) < 0 < liminf, a, < limsup, a, < 1.

M*r forallr > 0, and Then lim,, ||z, — T'z,|| = 0.

(i) lm, |T"z, — x,] =0, )

then lim,, || Tz, — x| = 0. Proof: Let p be a fixed point of 7. From Lemma 2,
lim,, ||z, — p|| = d for some d > 0. It follows from

Proof: From the conditions in the Lemma, we get (1) that

|T"2n — || < | T" 20 — T 20| + | T" 20 — 20|

* d = lim s — o
< (1+VnM )Hzn_xnn"',un "

+ ||Tn.’17n - an = 1171;11 Ha”(Tny" _p) + /Bn(Tnzn - p)
+||Tnxn7xn” %07 +(1_an_6n_7n)(xn_p)”' 4)

Iy = @l S IT"g = Tl 4+ [T — o] From (2) and 3), we get
<

(L4 2 M) {lyn = 2all + o] lzn =PIl < (L4 va M) l&n = pll + ;)
I ol I3 = Pl < (14 300" + () = ]
< Ut D) |72 — e ©

ten 1T @n = nl| + pan]

+ || T"xn — x| = 0, From (5) and (6), we have

limsup,, | T" 2, — p|| = limsup,, ||T"2, — T"p||

Zn+1 = T"Tna || < limsup, [(1 + v M*) |20 — pl| 4 pn] = d,
< ||xn+1 - xn” + HTn'T7L+1 - Tnxn” thllpn HTnyn - pH = hmsupn ||Tnyn - Tan
N — < limsup,, [(1 4+ vn M [lyn — pll) + pa] < d,
<24 M) ||Znt1 — znl| + pfin and
[Tz — 2| limsup,, || 7"z, — p|| = limsup,, ||T"z, — T™p||

www.scienceasia.org


http://www.scienceasia.org/2014.html
www.scienceasia.org

304

From (4), the condition (i-a), and Lemma 4, we have
lHm | T"y, — zp|| = Um || T" 2, — 2,| = 0.
n n
Notice that
[T"2n — zn |

<|NT"xp — T yu|l + 1 T"Yn — 2]
S (L4 vn M) |zn = ynll + pin + [[T"Yn — zn|
<

b | T" 2n — || + o | T" 20 — 20|

+ v M |20 — ynll + pn + 1T yn — n] -
From the condition (i-a), lim sup,, ¢, < 1,
lim | T"x,, — z,| = 0.
n
From the condition (i-b), (1), (4) and (5), we get

[Znt1 —pll

< an[(1+ v M™) [lyn — pll + 1]
+ Bul(L+ v M*) [|2n — pl| + pin]
+ (X + v M*) |20 — pll + pn)
+ (1= an = B =) llzn —pll

< an[(l + l/nM*) Hyn _pll + Mn]
+ Bul(L + vn M) (1 + vo M™) |20 — pl| + ptn)
Fhin] + (1 + va M) |20 — pl| + pn)
+ (1= an = B = vn) [l2n — pl| -

That is

1
Uzt =2l = llzn = pl) + llzn — 2|

< (1 + VnM*) ”yn _pH + tn

500 4w M Ml + 1)

M [l + .
From lim inf,, a,, > 0, we get
d = lim [z, — p|| < liminf [y, — p|
This implies from (6) that
d = lim [y, — p||
= lim {5, (T" 2 = p) + cn(T"xn — p)
+ (1= b = cn)(@n —p)|- ©)
By Lemma 3, we get

lim || T" 2, — 2, = 0.
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Thus

1172y — zp|| < |T"2n — T 20| + | T" 2 — 24|

(I + v M*) |lzn — 2zull + pn

+ || T" 20 — 0|

L ap [T @y — Zp|| + vn M ||z, — 24|

+ i+ ([T 20 — 20| -

<
<

Since lim,, sup a, < 1,
lirrln IT"z,, — x| = 0.

By the condition (i-c), Lemma 3 and (7), we have
lign IT"z,, — x| = 0.

Finally, we will prove (ii)

[#n41 — P

< an (L4 v M) lyn — pll + pn]
+ B [(1 4+ v M) [[2, — pl| + pn]
+ 9 [+ v M™) lzn, — p| + 1]
+ (1= = B — ) llzn — 2

< an[(1+ 3vn M* + (U M*)?) ||z, — pl|
+ WM™+ 3) pin + v M ||y, — pl + pin]
+ Bnl(1 + v M™) |20, — pI| + 1]
+ ¥ [(1+ vn M) |20 — pl| + pn]
+ (1= an =By =) lzn —pll.

That is

1

Z(lZn+1 = pll = lzn — pll) + 2 — pll
Bn

< (1 + v M¥) Hzn =l + pn

Qp * *
+ 67[(3+VnM V(WM™ ||y, — pl| + pin)
+ v M* ”yn - p” =+ ,Un]

Tn *
+ = WM™ ||z — pl| + pn].
Bn

From lim inf,, 8,, > 0, we get
d =lim ||z, — p|| < liminf [|2, —p| .
This implies from (5) that
d = tim ||z, — p]
= lim [an(T"2n — p) + (1 = an) (@ ~ D). (®)
By the condition (ii), Lemma 3 and (8), we have

lim | T" %, — || = 0.
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The conclusion lim,, ||z, — Tz,|| = 0 can be ob-
tained from Lemma 5 immediately. This completes
the proof. ]

Recall that a Banach space X is said to satisfy
Opial’s condition if z,, — = weakly and x # y imply
that

limsup ||z, — z|| < limsup ||z, — || -
n n

Lemma 7 (Ref. 5) Let X be a Banach space which
satisfies Opial’s condition and {x,} be a sequence
in X. Let u, v € X be such that lim, ||z, — ul|
and lim,, ||z, — v|| exist. If {xn,} and {xn,, } are
subsequences of {x,, } which converge weakly to u and
v, respectively, then u = v.

The next theorem follows closely from Chang’s

theorem®.

Theorem 1 Let X be a uniformly convex Banach
space and C be a nonempty closed convex subset
of X, T : C — C be a uniformly L-Lipschitzian
and ({pn}, {vn}, ¢)-total asymptotically nonexpan-
sive mapping. Then I — T is demiclosed at 0, i.e.,
T, — x weakly and x,, — Tx, — O strongly, then x
is a fixed point of T..

Theorem 2 Let X be a uniformly convex Banach
space which satisfies Opial’s condition, C' be a
nonempty closed convex subset of X, andT : C — C
be a uniformly L-Lipschitzian and ({pn},{vn}, ()-
total asymptotically nonexpansive mapping. Let {x,,}
be a sequence in C defined by Algorithm 1. Then {x,, }
converges weakly to a fixed point of T

Proof: It follows from Lemma 6 that
lim,, ||z, — Tz, || = 0. Since X is uniformly convex
and {z,} is bounded, without loss of generality, we
may assume that z,, — u weakly. By Theorem 1,
u is a fixed point of 7. Suppose that subsequences
{Zn,} and {x,} of {z,} converge weakly to u
and v, respectively. From Theorem 1, u and v are
fixed points of T. By Lemma 2, lim,, ||z,, — u|| and
lim,, ||, — v]|| exist. It follows from Lemma 7 that
u = v. Therefore {x,} converges weakly to a fixed
point of 7. ]

Theorem 3 Let X be a uniformly convex Banach
space, C' be a nonempty closed convex subset of X,
and T : C — C be a uniformly L-Lipschitzian
and ({pn}, {vn}, C)-total asymptotically nonexpan-
sive mapping. Let {x,} be a sequence in C defined
by Algorithm 1. Then {x,} converges strongly to a
fixed point of T.
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Proof: Let p be a fixed point of 7. From Lemma 2,
we know that lim, ||z, — p|| exists, then {z,} is
bounded. By Lemma 6, we have

lim ||z, — Tzy| = 0.

Since T is completely continuous and {z,} is
bounded, there exists a subsequence {z, } of {z,}
such that {T'z,,, } converges. Hence {x,, } converges
from (4). Let limy, x,,, = g, by continuity of 7" and (4)
we have T'q = ¢, so q is a fixed point of T'. It follows
from Lemma 2 that lim,, ||z, — ¢|| = 0. O
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