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ABSTRACT: Random or non-informative censoring is when each subject has a censoring time that is statistically
independent of their failure times. The classical approach is considered for estimating the Weibull distribution parameters
with non-informative censored samples which occur most often in medical and biological study. We have also considered
the Bayesian methods via gamma priors with asymmetric (general entropy) loss function and symmetric (squared error)
loss function. A simulation study is carried out to assess the performances of the methods using mean squared errors and
absolute biases. Two sets of data have been analysed for the purpose of illustration.

KEYWORDS: random censored data, maximum likelihood, Bayesian methods, gamma prior distribution, Weibull distri-
bution

INTRODUCTION

Failure time analysis is used in various fields for
analysing data involving the duration of events. It
is also referred to as survival analysis, event history
analysis, lifetime data analysis, reliability analysis or
time to event analysis in different fields of study. A
key characteristic that distinguishes failure time data
from other areas in statistics is that failure time data
are usually censored1. Censoring is said to have
occurred when information about the survival time of
some individuals is partially unavailable. Different
conditions can bring about different types of cen-
soring, such as, right-censoring, left-censoring and
interval-censoring.

According to Horst2, “A data sample is said to be
censored when, either by accident or design, the value
of the variables under investigation is unobserved for
some of the items in the sample”. Censoring is a
feature that is recurrent in lifetime and reliability data
analysis, it occurs when exact lifetimes or run-outs
can only be collected for a portion of the inspection
units. Random or non-informative censoring is when
each subject has a censoring time that is statistically
independent of the failure time.

The Weibull distribution has the distribution func-
tion

F (t; θ, p) = 1− exp

[
−
( t
θ

)p]
, (1)

the density function

f(t; θ, p) =
p

θ
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θ

)p−1
exp
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)p]
, (2)

and the survival function

S(t; θ, p) = exp

[
−
( t
θ

)p]
, (3)

where p is the shape parameter and θ is the scale pa-
rameter. Research has been conducted and presented
in the literature to compare the maximum likelihood
estimator (MLE) and that of the Bayesian approach in
estimating the parameters of the Weibull distribution.
Guure3 studied Bayesian inference of the Weibull
model based on interval-censored survival data. More
work can be seen in Refs. 4–6. Syuan-Rong and
Shuo-Jye7 also considered Bayesian estimation and
prediction for Weibull model with progressive censor-
ing. Similar work can be seen in Shafay and Balakr-
ishnan8, who studied one- and two-sample Bayesian
prediction intervals based on type-I hybrid censored
data. Gupta and Kundu9 studied generalized exponen-
tial distributions with different methods of estimation,
see also Refs. 10–12, and a work on generalized ex-
ponential distribution: Bayesian estimations13, which
is somehow similar to the Weibull distribution.

The aim of this paper is to consider first, the MLE
of the two parameters of the Weibull distribution when
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the data under consideration are non-informatively
censored. It is observed that the MLE cannot be
obtained in analytical form, we therefore assumed the
Newton-Raphson method to compute the MLEs, and
the method works quite well. The second aim is to
consider the Bayesian approach for the parameters
estimates. We have considered squared error loss
function which is symmetrical in nature and that of
general entropy loss function which is asymmetrical.
Lindley’s numerical approximation procedure is em-
ployed to estimate the parameters under Bayesian.

MAXIMUM LIKELIHOOD

Let (t1, . . ., tn) be the set of n random lifetimes with
respect to the Weibull distribution with p and θ as the
parameters. The likelihood function with respect to
non-informative/random censored data is

L(δi, ti; θ, p) =

n∏
i=1

f(ti, θ, p)
δiS(ti, θ, p)

1−δi , (4)

where δi = 1 if Xi 6 Ci, to represent uncensored
observations, and δi = 0 if Xi > Ci, to represent
censored observations. The observed data from n
individuals is assumed to consist of the pair (ti, δi),
i = 1, 2, . . . , n, so that the final result obtained will
be the same, provided the censoring time Ci and the
failure time Xi are non-informative (independent of
each other) and available for all i.

The score vectors are

u(θ) =
∂ lnL(θ, p; t, δ)

∂θ
, u(p) =

∂ lnL(θ, p; t, δ)

∂p
,

where the score becomes a vector of the first partial
derivatives of (θ, p). The score evaluated at the true
parameter say, α has a mean zero, i.e., E[u(α)] =
0 and the variance-covariance matrix given as the
information matrix;

Var[u(α)] = E[u(α)u′(α)] = I(α). (5)

Calculation of the maximum likelihood estimator of-
ten requires that some iterative (Newton-Raphson)
procedures be implemented. We can consider evalu-
ating MLE of α̂ with a trial value say α0 using a first
order Taylor series, such that

u(α̂) ≈ u(α0) +
∂u(α)

∂α
(α̂− α0). (6)

Assuming H denotes the Hessian matrix, which is
simply the second derivative of the log-likelihood
function, then

H(α) =
∂2 lnL

∂α∂α′
. (7)

When the left-hand side of equation (6) is set to zero
and we solve for α̂, we have

α̂ = α0 −H−1(α0)u(α0) (8)

where u(α0) is the score vector. Using the two
parameters of the Weibull distribution, the Hessian
matrix can be obtained as follows. The score vector
of
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Hence we obtain the following
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The above equations give the basis for an iterative
process for computing the MLEs of the parameters,
which is known as Newton-Raphson approach. When
a trial value is chosen carefully, (8) can be employed
to estimate the parameters from which the standard
errors of the parameters can be obtained.

BAYESIAN INFERENCE

In this section we consider the Bayes estimation of
the two unknown parameters. Prior distribution of
the parameters need to be assumed for the Bayesian
inference. As discussed by Berger14 and subsequently
by Banerjee and Kundu15, we let θ take on a γ(a, b)
prior distribution with a, b > 0. We assume that the
prior of p is independent of the prior of θ and is in the
neighbourhood of (0,∞). Let v(p) represent the prior
of p and v1(θ) for θ, where

γ(a, b) ∝ θa−1 exp (−bθ), θ, a, b > 0. (9)

Let the likelihood equation which is L(θ, p; ti, δi) be
the same as equation (4). The joint posterior density
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function of (θ, p) is given by

π(θ, p, ti, δi) ∝ L(θ, p; ti, δi)v(p)v1(θ). (10)

The posterior probability density function of θ and p
given the data (t1, t2, . . ., tn) is obtained by dividing
the joint posterior density function over the marginal
distribution function as

π∗(θ, p|ti, δi)=
L(θ, p; ti, δi)v(p)v1(θ)∫∞

0

∫∞
0
L(θ, p; ti, δi)v(p)v1(θ) dθ dp

.

Due to the complex nature of the posterior distribu-
tion, Lindley approximation is employed in order to
estimate the unknown parameters. The Bayes esti-
mator is considered under two loss functions which
is also indisputable in Bayesian estimation. They
are asymmetric (general entropy) loss function and
symmetric (squared error) loss function.

Lindley approximation

A prior of p need to be specified here so as to
calculate the approximate Bayes estimates of θ and
p. Having specified a prior for θ as γ(a, b), it is
similarly assumed that v(p) also takes on a γ(c, d)
prior. Lindley16 proposed a ratio of integral of the
form ∫

ω(α) e`(α) dα∫
v(α) e`(α) dα

, (11)

where `(α) is the log-likelihood and ω(α), v(α) are
arbitrary functions of α. Assuming that v(α) is
the prior distribution for α and ω(α) = u(α)v(α)
with u(α) being some function of interest. Taking
the Weibull two parameters into consideration, the
Lindley method can be approximated asymptotically
by the following

û = u(θ̂, p̂) + 1
2 [(u11σ11) + (u22σ22)] + u1ρ1σ11

+ u2ρ2σ22 +
1
2 [(`30u1σ

2
11) + (`03u2σ

2
22)],

where ` is the log of the likelihood function. Hence the
following derivatives are obtained first with squared
error loss function;

u(θ) = θ, u1 = 1, u11 = 0,

u(p) = p, u2 = 1, u22 = 0,

ρ = ln v1(θ) + ln v(p),

ρ1 =
c− 1

α
− d, ρ2 =

a− 1

β
− b,

σ11 = (−`20)−1, σ22 = (−`02)−1,
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θ
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ln3
( ti
θ

)
.

General entropy loss function

The general entropy loss (GEL) function is a gen-
eralization of the entropy loss function. The Bayes
estimator α̂BG of α under the GEL is

α̂BG =
[
Eα(α

−k)
]−1/k

, (12)

provided Eα(α
−k) exists and is finite. The Bayes

estimator for this loss function is

ûBG = E
[
u(θ−k, p−k)

∣∣t]
=

∫∫
u(θ−k, p−k)v1(θ)v(p)L(δi, ti; θ, p) dθ dp∫∫

v1(θ)v(p)L(δi, ti; θ, p) dθ dp
.

Similar Lindley approach is used for the GEL function
as in the squared error loss but here the Lindley
approximation procedure where u1,u11 and u2, u22
are the first and second derivatives for θ and p,
respectively, given below. After using the Lindley
approach the function is then substituted into (12) for
the parameter estimate under GEL.

u(θ) = θ−k, u1(θ) =
∂u

∂θ
= −kθ−k−1,

u11(θ) =
∂2u

∂θ2
= (k2 + k)θ−k−2,

u2(θ) = u22(θ) = 0;

u(p) = p−k, u2(p) =
∂u

∂p
= −kp−k−1,

u22(p) =
∂2u

∂p2
= (k2 + k)p−k−2,

u1(p) = u11(p) = 0.

SIMULATION STUDY

We have considered in this simulation study a sample
size of n = 25, 50 and 100, which is representative
of small, moderate and large data sets. The following
steps were employed to generate the data t1, . . . , tn.
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Table 1 Average mean squared error values for estimated parameters.

size θ p θ̂ML θ̂BS θ̂GE p̂ML p̂BS p̂GE

k = −0.7 k = +0.7 k = −0.7 k = +0.7

25 0.5 0.8 0.28642 0.28654 0.29148 0.29560 0.02317 0.02320 0.02286 0.02158
1.2 0.11331 0.11339 0.11467 0.11687 0.04985 0.04993 0.05236 0.04823

1.5 0.8 2.46671 2.46775 2.50048 2.45476 0.02110 0.02113 0.02303 0.02160
1.2 0.97015 0.97088 1.05558 0.93541 0.05326 0.05333 0.04650 0.04960

50 0.5 0.8 0.19128 0.19129 0.18292 0.19062 0.00910 0.00910 0.00920 0.00844
1.2 0.08377 0.08378 0.08487 0.08309 0.02186 0.02187 0.02043 0.01950

1.5 0.8 1.59400 1.59408 1.69874 1.62575 0.00928 0.00927 0.00946 0.00961
1.2 0.79669 0.79676 0.76321 0.76659 0.02248 0.02249 0.01955 0.02233

100 0.5 0.8 0.15350 0.15350 0.15116 0.14544 0.00423 0.00423 0.00440 0.00409
1.2 0.07239 0.07239 0.07234 0.07275 0.00922 0.00922 0.00951 0.00968

1.5 0.8 1.41109 1.41109 1.38946 1.38663 0.00427 0.00427 0.00443 0.00435
1.2 0.67386 0.67387 0.64008 0.63634 0.00950 0.00950 0.00900 0.01018

ML= Maximum likelihood, BS= Bayes squared error loss, GE= Bayes general entropy loss.
The smallest value in each group is marked in bold face.

A lifetime ti is generated from the sample sizes
indicated above from the Weibull distribution which
represents failure of the product or unit. The values
of the assumed actual parameters of the Weibull dis-
tribution were taken to be θ = 0.5 and 1.5 and that of
p = 0.8 and 1.2. The same sample size is generated
from the Uniform distribution for the censored timeCi
with (0, b), where b depends solely on the proportion
of the observations that are censored. In our study, we
consider the percentage of censoring to be 40. The ti
is taken as the minimum of the failure time and the
censored time, ti := min(Xi, Ci), and where δi = 1
if Xi 6 Ci for uncensored observations, and δi = 0 if
Xi > Ci for censored observations.

To compute the Bayes estimates, an assumption is
made such that α and β take, respectively, γ(a, b) and
γ(c, d) priors. We set the hyper-parameters to 0.0001,
i.e., a = b = c = d = 0.0001 in order to obtain non-
informative priors. Note that at this point the priors
become proper as well as the posterior distribution,
Press17.

The values for the loss parameter for the general
entropy was k = ±0.7, without loss of generality. For
further discussions on the choice of the loss parame-
ters, see Refs. 18, 19. These were iterated 1000 times.
The mean squared error (MSE) and the absolute bias
values are determined and presented below for the
purpose of comparison.

RESULTS AND DISCUSSION

Bayes estimators of the Weibull parameters are ob-
tained using squared error and general entropy loss
functions by employing Lindley approximation proce-
dure. Comparisons are made between the estimators
using MSE and absolute bias based on simulation
study. The performance of MLE and Bayes using the

gamma non-informative priors were examined and the
following observations made.

Table 1 shows the MSE values of the scale and
shape parameters. It is been observed that Bayes esti-
mator under the general entropy loss function has the
smallest MSE values than the others. This occurred
mostly with the positive loss parameter, i.e., +0.7.
This is followed by both the maximum likelihood
estimator and Bayes estimator under general entropy
with −0.7 as the loss parameter. Both obtained equal
estimate for the scale parameter but for the shape
parameter, maximum likelihood was slightly ahead of
Bayes with general entropy of −0.7.

The absolute bias of the estimated values are
presented in Table 2. We observe again that Bayes
using the general entropy loss function with +0.7
outperformed Bayes using squared error and general
entropy of −0.7, and that of the classical maximum
likelihood estimator for both parameters. This was
followed by maximum likelihood, general entropy of
−0.7 and Bayes estimator under squared error loss
function, respectively, for the shape parameter. For
the scale parameter, we observed that after general
entropy loss function with +0.7, general entropy of
−0.7 outperformed the others. All the estimators had
their MSEs decreasing with an analogous increase in
sample space. As the sample size increased, maxi-
mum likelihood and Bayes estimator under squared
error loss function tern to converge to the same values
with respect to the MSE and absolute bias values for
both parameters

For each estimated parameter, the MSE is calcu-
lated for each of the one thousand estimated values
of the parameters, i.e., from 1–1000. For instance,
r = 1 has an estimate for both the scale parameter
and the shape parameter and so the MSE of these
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Table 2 Average absolute bias values for estimated parameters.

size θ p θ̂ML θ̂BS θ̂GE p̂ML p̂BS p̂GE

k = −0.7 k = +0.7 k = −0.7 k = +0.7

25 0.5 0.8 0.41260 0.41259 0.41860 0.41267 0.11246 0.11251 0.11520 0.11225
1.2 0.27453 0.27464 0.27419 0.27636 0.16723 0.16732 0.17256 0.16410

1.5 0.8 1.21538 1.21566 1.18024 1.17876 0.10937 0.10943 0.11355 0.11277
1.2 0.80012 0.80045 0.83827 0.77728 0.17492 0.17501 0.16760 0.16832

50 0.5 0.8 0.36507 0.36508 0.35751 0.37268 0.07444 0.07445 0.07454 0.07338
1.2 0.25442 0.25443 0.25425 0.25370 0.11673 0.11674 0.11021 0.11007

1.5 0.8 1.09198 1.09201 1.09955 1.07679 0.07385 0.07386 0.07581 0.07702
1.2 0.78558 0.78561 0.77135 0.76552 0.11508 0.11511 0.10965 0.11522

100 0.5 0.8 0.35707 0.35707 0.35132 0.34534 0.05155 0.05156 0.05242 0.05091
1.2 0.25020 0.25020 0.25202 0.25101 0.07492 0.07492 0.07648 0.07584

1.5 0.8 1.07443 1.07443 1.07292 1.05949 0.05122 0.05123 0.05219 0.05192
1.2 0.76893 0.76893 0.74494 0.73863 0.07701 0.07701 0.07411 0.07875

ML= Maximum likelihood, BS= Bayes squared error loss, GE= Bayes general entropy loss.
The smallest value in each group is marked in bold face.

two are taken, also r = 2 also has scale parameter
and the shape parameter estimates where the MSE are
calculated, it continues in like manner for all r = 1000
of all the estimates. At the end, we obtain the average
of the MSE values. Our aim is to find out how close
the estimated values of the estimators are to the true
values at each simulated point. The absolute bias
values are obtained in like manner and of course from
the same simulated values as that of the MSE.

REAL DATA ANALYSIS

Example 1 In this section, we analyse one data set
to obtain the parameter estimates and their standard
errors in order to compare the estimators assumed
in this paper. The data below are obtained from
Lawless20 about remission times, in weeks, for a
group of 30 patients with leukaemia who received
similar treatment (asterisks denote censoring times):
1, 1, 2, 4, 4, 6, 6, 6, 7, 8, 9, 9, 10, 12, 13, 14, 18, 19,
24, 26, 29, 31*, 42, 45*, 50*, 57, 60, 71*, 85*, 91.

Using the iterative procedure suggested from the
beginning of this paper, the MLEs of θ̂ and p̂ can be
obtained as 28.27991 and 0.99201, respectively, with
their corresponding standard errors as 1.56748 and
0.02386. Since we do not have any prior information
on the hyper-parameters, we assume a = b = c =
d = 0.0001. This makes the priors proper on θ̂ and p̂,
and the corresponding posteriors also proper.

When we compute the Bayes estimators under
squared error loss of θ̂ and p̂, the following parameters
estimates and standard errors are obtained, respec-
tively, as 28.32146, 0.99201 and 1.56980, 0.02386.
When we compute the Bayes estimates of θ̂ and
p̂ and their corresponding standard errors under the
general entropy loss functions with the loss parameter
being −0.7 we have 28.57414, 1.10030 and 1.57112,

0.02467. With the loss parameter being +0.7, we
have 28.14560, 0.82215 and 1.49185, 0.02286, re-
spectively.

Observably, the Bayes estimator under squared
error loss for the Weibull shape parameter (p) has
the same estimate and standard error as compared to
that of the classical maximum likelihood estimator
but with the scale parameter (θ̂), maximum likelihood
has a smaller standard error in juxtaposition to Bayes
estimator under squared error loss.

Comparing all the estimators, it is clear from the
results that Bayes estimator under general entropy
loss function with the loss parameter of +0.7 has the
smallest standard error and estimate for both the shape
parameter p̂ and the scale parameter θ̂.

Example 2 The data for this example are on survival
of patients with cervical cancer, recruited to a ran-
domised trial aimed at analysing the effect of addition
of a radio sensitiser to radiotherapy (New therapy -
“treatment B”) compared to using only radiotherapy
(Control - “treatment A”). Treatment A was given to
16 and treatment B to 14 patients. The data are in
days since start of the study, the event of interest is
death caused by this cancer. Our main interest is on
the patients under treatment B, which is fairly small
and highly censored to illustrate the proposed methods
in this paper. The data are obtained from Coolen and
Yan21 (starred observations are censored): 272, 362,
373, 383*, 519*, 563*, 650*, 827, 919*, 978*, 1100*,
1307, 1360*, 1476*.

The MLEs of θ̂ and p̂ are 1374.7080 and 2.12549
with their corresponding standard errors as 79.5806
and 0.21954, respectively.

The Bayes estimators under squared error loss of
θ̂ and p̂, has, respectively, the following parameters
estimates and standard errors as 1380.3460, 2.12564
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and 83.2868, 0.21958.
Computing the Bayes estimates of θ̂ and p̂ and

that of their standard errors via the general entropy
loss function with a loss parameter of −0.7 we have,
1379.8070, 2.12556 and 82.9167, 0.21958. With the
loss parameter of +0.7, we have, 1377.2800, 2.12519
and 81.0723, 0.21955, respectively.

What we observed from this fairly small sample
is that maximum likelihood has among the other
estimators the smallest standard error for the scale
parameter but for the shape parameter both maximum
likelihood and Bayes under the positive general en-
tropy loss parameter had the smallest standard error
for the Weibull distribution.

When we take into perspective a 95% confidence
interval of MLE for the fairly small sample, we have
θ̂ = (1530.6860, 1218.7300) and p̂ = (2.5558,
1.6952). Bayes credible intervals under squared error
loss function for θ̂ and p̂ are (1543.5881, 1217.1039)
and (2.5560, 1.6953), respectively. The Bayes credi-
ble intervals with respect to the general entropy loss
function with a loss parameter of −0.7 for θ̂ and p̂ are
(1542.3237, 1217.2903) and (2.5559, 1.6952) and that
of the +0.7 are (1536.1817, 1218.3783) and (2.5551,
1.6949), respectively.

Observing from above, it is clear that general
entropy with a positive loss parameter and maximum
likelihood had narrower credible and confidence in-
tervals, respectively, as compared to squared error
loss function for the shape parameter. For the scale
parameter, maximum likelihood’s confidence interval
is narrower than the Bayesian credible intervals.

CONCLUSIONS

From the above discussions, in relation to both the real
data analysis and the simulation study, we conclude
that the best estimator of the two parameter Weibull
distribution with this type of censoring, when the data
is fairly moderate or large will be Bayes estimator
under general entropy loss function provided the loss
parameter is well chosen. For fairly small sample,
maximum likelihood can be a good alternate to the
Bayes estimators.
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