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ABSTRACT: Consider sequences {X;}i2; and {Y;}52; of independent and identically distributed (i.i.d.) random
variables, random variables K, K> ranging over of all positive integers, where the X;’s, Y;’s, K1, and K> are all
independent. We obtain Berry-Esseen bounds for random-sum Wilcoxon’s statistics in the form (Wx, x, — U)/V and
(Wi, Ky — a)/b where Wi, 1, = S04 fjl I(X; > Y;) and U, V are random variables, and a, b are constants. We
also show that the rate of convergence is O((EK2)~'/?) provided by EK;/EK> — 7 for some constant 7 > 0 when

E K, and E K> tend to infinity.

KEYWORDS: Wilcoxon’s rank-sum statistics,
Esseen bounds, non-random centring

INTRODUCTION

Let X, X4, ..., X;nand Y, Y7, ..., Y, be two
sequences of independent and identically distributed
(i.i.d.) random variables. Note that the distributions
of X and Y are not necessarily identical. Suppose
the X;’s and Y;’s are independent and continuous
random variables. To test the null hypothesis that
the distributions of X and Y are equal, Wilcoxon'
introduced rank-sum statistics by ranking the random
variables between two sequences and then computing
the sum of these rankings. Mann and Whitney?
proposed the Mann-Whitney'’s statistic,

Wm)n :zm:il(Xi > Y})
i=1j=1

Mann and Whitney? showed that their statistics and
Wilcoxon’s rank-sum statistics are equivalent. They
also showed that under the null hypothesis, Mann-
Whitney’s distribution can be approximated by the
standard normal distribution denoted by ®.

Consider a Wilcoxon’s rank-sum statistic defined
by Wi, = >_i-, Rk, where Ry, is the ranking-number
of X} between two samples Xi, ..., X,, and Y7,
..., Y,. Pestman® obtained normal approximation
theorems and Alberink* investigated Berry-Esseen
bound for Wilcoxon’s rank-sum statistics by assuming
the null hypothesis. From the result of Alberink* and
the well-known fact that W,,, = W,,, , +m(m+1)/2,
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Mann-Whitney’s  statistics,

random-indexed summands, Berry-

we obtain the bound for Mann-Whitney’s statistics as
the next statement.

Theorem 1 (Ref. 4) Under the null hypothesis that
the distributions of X and Y are equal, we have the

following result:
x) — ()

3v3(m? 4+ n?)
dy/mn(m+n) [

Wm,n _ mn/2

i (x/mn(m—l—n)/lQ S

sup
z€R

17
< 1
\/m—l—n{ *

It is obvious that Mann-Whitney’s statistics are
example of U-statistics introduced by Hoeffding> and
Lehmann®. So that the bounds for Mann-Whitney’s
statistics were established by applying the results of
Grams and Serfling” or Chen and Shao®. Now, we
need some notation:

f=P(X>Y),

p=0(1-0),

0} = E|E{I(X >Y)| X} - 0],

1 =EE{I(X>Y)|X} -0,

03 = E|E{I(X>Y)|V} -6,
(X >Y)

Yo =E|E{I(X>Y)|Y}—0].
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Consider a two-sample U -statistic given by

1 1 m m
D) WIERD
mn
=1 j=1
where h(X;,Y;) = I(X; >Y;) — 6. Observe that
En(X,Y) =0, Eh*(X,Y) = pand that o7 < p for
all ¢ = 1, 2. Also, we note that
Um,n o Wm,n
Voi/m+a3/n  \/mn2c? +nm203
Hence we can use the bounds for U, , of Chen
and Shao® to derive the bounds for Mann-Whitney’s
statistics as the next statement.

— mnb

Theorem 2 (Ref. 8)

Wm — mnf
P <\/mn (no? +mao3) S m) )
(1+vfh/%1ﬂn+1hw
L 66 (y1/m? +~2/n?)

(02/m + 03 /n)*/*

sup
z€R

and there exists a constant C' (which does not depend
on m and n) such that for all x € R,

P Won,n —mnb <z | —®(2)
Vmn (no? +mo?) h

9u(1/m+1/n)2
T (1+2)* (03 /m+ 03 /n)
. 13.5f(1/m +1/n)
e?/3\/o3 /m + o3 /n
C (ni/m? + y2/n?)
(1+x)* (03 /m + 0% /n

In particular;, if 0 = 1/2 and 0? = 03 = 1/12, then
the constant 17 in Theorem I can be replaced by (1 +

V2)V3.

Mann-Whitney’s and Wilcoxon’s statistics are
usually used to compare two treatments in many com-
parative experiments. However, these statistics cannot
be used when the sample sizes of observation from
two treatments are not measured* '°. For example, the
number of normal and abnormal images in the medical
imaging studies and diagnostic marker studies. In
2011, under the situation that the sample sizes are
random variables, Tang and Balakrishnan ' proposed
a random-sum Wilcoxon’s statistic as the following:

e
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Let {X;};2, and {Y;}72, be two sequences of
ii.d. random variables such that the X;’s and Y;’s
are independent. Assume that the X;’s and Y;’s are
continuous random variables. Let K; and K5 be
independent positive integer-valued random variables
which are independent of the X;’s and Y;’s. A
random-sum Wilcoxon’s statistic is defined by

K1 K

=Y D I(Xi>Y))

i=1 j=1

WK17K2

Tang and Balakrishnan'® also obtained normal
approximation theorems for random-sum Wilcoxon’s
statistics as the next statement.

Theorem 3 (Ref. 10) For each { = 1,2, let K; be a
positive integer-valued random variable depending on
a parameter Ty. Suppose that

(C1) the random variable K, has its asymptotic distri-
bution as the normal distribution with mean E K,
and variance Var(Ky), as 1o — 0o,

(C2) EK3/EK;y — n, for some finite non-zero con-
stant m, as T, — 00;

(C3) Var(Ky)/EK; — 4y, for some finite constant &g
as Tp — 00;

(C4) (EK¢)P/1¢ — X, for some finite non-zero
constant Ay and for some p > 1, as Ty — oc.

Then

P

Wk, k, —0EK1 EK>) <

P <
\/Var —3/2 pWKl Kz)

- ®(x)

tends to zero, where

Var( —3/2 pWKl KQ)

3,2 2

= Ain®ot + Ainos + (612307 + 62A3n) 62,

as 71 — 0o and Ty — 0.

MAIN RESULTS

The main results of this article are Berry-Esseen
bounds for random-sum Wilcoxon’s statistics. In
Theorem 4, we consider a random-sum Wilcoxon’s
statistic with random centring and random norming
as in the form (Wg, x, —U)/V where U and V
are random variables. In Theorem 5, we consider
a random-sum Wilcoxon’s statistic with non-random
centring and non-random norming as in the form
(Wk, k, — a) /b where a and b are constants.
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Theorem 4 Let K and K> be positive integer-valued
random variables such that the X;’s, Y;'s, K1, Ky are
independent. We have the following results:

0K Ko

W,
K1.Kz — <z | —P(x)
VoK K3 + 03K, K3

11.2 Var Kl EK2 Var KQ
VEK, V E

3.1/ (\/EKQ/EKl + VBRI JEK:)
VEK3\/0? + 03EK,/EK,

sup | P
z€R

11.9 {71 ER2JEK; + (EK1/EK2)3/2}
_|_ bl

VER; (02 + 02EK, | EK,)*?

and there exists a constant C' such that for all x € R,
Wk, ky, — 0K1 K>

’ <\/U%K1K22 t 02K, K2 S x) 2@
Cu Var(K;) EKy  Var(K3)
= (1+x)2 EK, { 02EK, EK; + 0?F K> }
Cu (\/EKQ/EKl + \/EKl/EKg)Z
(1+2)* EKy (02 + 02EK, /EK>)
Vi (VERK/EE: + K [EK; )
i (1+2)* VEKs\/0? + 03EK, JEK,
C {’Yl\/m + 72 (EKl/EKz)B/Z}
(1+2)* VER, (07 + <7§E'K1/EK2)3/2 '

Remark 1 If K and K satisfy the conditions (C2),
(C3) and (C4) in Theorem 3, then the rate of conver-
. —1/2p
gence is O(7, )
tend to infinity.

for some p > 1, when 7y and 7

By definition, random-sum Wilcoxon’s statistics
include Mann-Whitney’s statistics in the special case
of fixed-indices K1 = m and Ky = n. In this case,
our results are same as Theorem 2 (the bounds of Chen
and Shao®). But the constants in a uniform bound
of Theorem 2 are smaller. The next corollary is an
immediately consequence of Theorem 4.

Corollary 1

m,n 0
sup | P Winin —mn < | —®(z)
z€R Vmn (no? + mo3)
31\f n/m++/m/n
S Vn o? +o3m/n
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11 9v14/n/m + o n/m
\/ﬁ )3/2 ’

and there exists an absolute constant C' (which does
not depend on m and n) such that for all x € R,

(i

(02 + o3m/n

Win,n —mnb <)o)
V/mn (na? +ma3)

cp  (Varm+ )
(1+:c) (o} —|—o2m/n)
C \f n/m+/m/n
(1+2) f Vo4 o3m/n
L O mafmtna(n/m)*”

(1+2)*vn yrE
It is understood that Wilcoxon’s statistics can
be approximated by the sum of independent random

variables, introduced by Hajek !!. Now, we denote the
projection of Wy, k., onthe X;’s,Y}’s, K1, K>, by

(0% +o3m/n

Wi, K, = —OEK,EF| X;}

K
Z E{WKl,Kz
i=1

K>
+Y  E{Wk, x, — 0EK\EK,| Y}
j=1
+E{WK17K2
K1
= (EK2) Y E{I(X;>Y;) -0 X;}
1=1
Ko
+(EK) Y E{I(X;>Y;)—0|Y;}
j=1
+0 (K Ky — EK|EK>) .

—0EK,EKy| K1, Ko}

By taking the conditional expectation given by K; and
K> (see p. 22 of Ref. 12), we observe that

Var(WKl’Kz)

= E {VaI'(/WKhK2 |K1,K2)

—l—VaY{E(WKh[Q Kl,K2)}
Kp)?

= 0?EK, (EK,)* 4+ 62EK, (E
+ 02 {(BI)? Var(Ky) + (BK:)* Var(Ko) }
+ 0*Var(K, ) Var(K>).
Set

Var™ (W\Kl,Kz) = Var(/VVKl,Kz)—92Var(K1)Var(K2).
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Similarly, we can see that

Var(Wk, k)
= E{Var(Wk, x,| K1, K2)}
+ Var {E (Wg, k| K1, K2)}
= E{uK K>}
+ E{olK K> (Ky— 1)}
+ E{o5K1 (K1 — 1) Ks} + Var(0K, K»)
= uEK,EK,
+ 01 EK; {(EK>)? + Var(K,) — EK>}
+03EKy {(EK,)? + Var(K) — EK; }
+ 6% {(EK>)*Var(K;) + (EK;)*Var(K>) }
+ 0*Var (K, )Var(K>).

This implies that Var(WKl,KZ)/Var*(WKth) —
1, when FK; and EK5 tend to infinity. Hence,
the quantity Var(Wx, k,) for normalization in the
normal\approximation theorem, can be replaced by
Var*(WKhKZ).

In the next statement, we show a uniform
bound for random-sum Wilcoxon’s statistics with non-
random centring 6 E K1 E K5 and non-random norm-

ing Var* (WK1 Ka)-

Theorem 5 Let &1, ..., &, be ii.d. positive integer-
valued random variables with E(&1) = a1, Var(§;) =
b2 and E|&° < oo. Let (i, ..., Cn be iid.
positive integer-valued random variables satisfying
that E((1) = ay, Var(¢;) = b2 and E |¢4]* < .
Suppose the X;’s, Y;’s, £.’s, (¢ ’s are independent. Put
Ky =370 &, Ko =37, (o Then

qup | p [ Wienace = 0BK\BK, _

veR Va’r*(WKlyKZ)
11.2 a2b17' bg
<z b
S vn { o 02}
, 31 VI (Ve + Vaiagr)
Vn 0?2 + o2a17/az

11.9’}/1/\/a17+72(a17)3/2/a§
+\/ﬁ 2 2 3/2
(0f +o3a17/az)
1 |20,  61E|G]
LIV I v
2 JT(EE)

o (14+V2 n 3ba/ar
9\/ﬁ /a1 T a2b1

— &(x)

+

185

a%bl\/ﬁ al\/F
oy | 16E|& ) 2
0v/n | a1b?\Jaom = \/az

203 /ar 2y >

2(11[)2
agbh/agT
L o2 2b, N 2v2

9\/75 al\/aQin bl\/@
44202 N 2v/2
maiy/az  maiy/az

1 [61E|G]*  2b
+— =+ :
vn by a1y/T

Remark 2 The random variables K; = ZT:l &; and
K> = "), ¢ depend on the parameters m and n,
respectively. It is easy to see that Ky, Ko satisfy
the conditions (C1), (C3) and (C4) in Theorem 3.
Moreover, if m/n converges to some constant when
m and n tend to infinity, then K;, K, satisfy the

condition (C2). Hence the rate of convergence is
O (n‘l/ 2).

APPLICATION IN LROC ANALYSIS

A location receiver operating characteristic (LROC)
curve, introduced by Starr, Metz, Lusted and Good-
enoughet '3, provides a useful method in radiology
based on a location of data. And the area under
the LROC curve has been widely used to measure
the diagnostic accuracy of imaging study because it
represents the probability that positive and negative
case are correctly classified. By using an empirical
estimation model, Tang and Balakrishnan'® showed
that the area under the LROC curve is equivalent to
the random-sum Wilcoxon’s statistic as the following:

Let K be a binomial distributed random variables
with parameters m and p. Suppose that the X;’s, Y;’s
and K are all independent. An estimator for the area
under the LROC curve is given by

where T = m/n.

11 K n
ALROC:EEZZI(Xi >Y;).

i=1 j=1

Tang and Balakrishnan '° also obtained the asymptotic
distribution of Ay roc as the following statement.

Theorem 6 (Ref. 10) Let n be any fixed-index and
K be a binomial distributed random variable with
parameters m and p. Suppose that m/n — T for
some constant T > 0 as m — oo and n — oo. Under

www.scienceasia.org


http://www.scienceasia.org/2014.html
www.scienceasia.org

186

the null hypothesis that the distributions of X and Y
are equal, we have

Vv (ALroc — p/2) ~ B(x
’P (m\/p(4n—3np+mp)/12 <m> ()

tends to zero as m — 0o and n — 0.

In the next theorem, we investigate Berry-Esseen
bounds for Arroc.

Theorem 7 Let n be any fixed-index and K be a
binomial distributed random variable with parameters
m and p. Set T = m/n. Suppose that the X;’s, Y;’s
and K are independent. Under the null hypothesis
that the distributions of X and 'Y are equal, we have

the following results:
p ( < ac) — o(x)
mn/nk (n + K) /12
11.2/T—p L 54 V1/pT + /PT
SV oV Ve Ve
n 15.5 \/1/pT + (1/197')3/2
Vi (14 )2

and there exists an absolute constant C' (which does
not depend on m, n and p) such that for all x € R,
Arroc — K/2m

‘P (mm/nK(n—i—K)/lQ ggg) 2@
C 1—p+(V1/pT+\/p7>2
(1+2)°n | pr L+pr
C V1/pT +\/pT
VTTor

1/pr + (1/pr)*”
(1+pr)*/? '

ALROC — K/2m

sup
z€R

Proof: Under the assumption that the distributions of
X and Y are equal, Alberink* showed that § = 1 /2,
0? = 0% = 1/12,and y; = 2 = 1/32. From these
facts, the bounds in Theorem 4 can be simplified to
Theorem 7.

PROOF OF MAIN RESULTS

In the proof of Theorem 4, we apply Theorem 2
(Berry-Esseen theorem for Mann-Whitney’s statistics)
to investigate the bounds for the randomly-indexed
summands. In the proof of Theorem 5, we obtain
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the bounds for random summands with non-random
centring and non-random norming by improving the
arguments of Chen, Goldstein and Shao (see p. 271 of
Ref. 14) for the case of two random indices.

Proof of Theorem 4: (Uniform bound.) By using the
conditional probability given by K, K5 and applying
the uniform bound of Theorem 2, we can see that

— 0K 1Ky

Wi\ ks <z | —P(x)
VK K3 + 03K, K3
< P(|K1 — EK1| > 009EK1)
x) — &(x)

+ > P(Ky=hk)
(K2 = k2)
Wiy ke — k1ko0

{0.91EK,<k1<1.01EK,}
P <z | —P(x)
Vk1k307 + kok3o?

Wi,y Ky — k10K
<112 { \/Var(Kl) N \/Var(Kg) }

X

P (K, — EK,| > 0.09EK1)
+ P (|K2 — EK2| > OOQEKQ)
+ Y P(Ki=k)P

{0.91EK;<k1<1.09EK; }
{0.91EK><k,<1.09EK5}

X

P
Vk107K2 + ko3 K.
EK, EK,

+ > P(Ky=k1)P(Ky=k)
{0.91EK1<k1<1.09EK,}
{0.91EK><k2<1.09EK >}

[ VR (VEaTR + R TR )

Vs NER N
6 (’Yl Vka/k1 + 72 kl/k2)3/2>

3/2

+

(03 + k103 /k2)

11.2 Var Kl /EKg Var Kg
VEK,

3.1,/1i (\/EK2/EK1 + \/EKl/EKQ)
_|_
VEEK3\/0} + 03EK,/EK>
11.9 {71\/EK2/EK1 s (EKl/EKQ)S/z}
+ ;

VER; (02 + 02EK, | EKy)*/?

(D
where we used the facts that for £ = 1, 2,

0.91EK, < k; < 1.09EK,
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and that

(O’l —|—O'2EK1/EK2) < (0'1 + k‘10’2/k2)

in the last inequality.

(Non-uniform bound.) For all k1,k; € N, put
pE = P(Kl = kl)P(KQ = k2) where% = (kl,kg)
and set

Ao {(k ko) €N x N 0.5EK1<k1<1.5EK1}
T 1,2

0.5EK2<k2<1.5EK>

From (1), it suffices to investigate the non-uniform
bound for |z| > 1. Without loss of generality, we
may assume that x > 1.

By using the non-uniform bound of Theorem 2
and taking the conditional probability given by /1 and

K5, we have
x) — o(x)

= | P Wi ks — K1k20 <z | — ()
\/kleCI’l +k2k%0’2

2
( k2/k1+ kl/kz)
O'1+O'§k’1/k2)

p (Wi s, — 0K Ky
VOoIK K2 + 02K, K2

*gA

QZ Pr

Vi ky/ky + /K1 /k2

SZPE T 2
+$) TeA \/E 01 +O’2]€1/l€2

Y1V k2 /K1 + 2 (/f1//f2)3/2
3 ZPE

Vs (02 + o%ka k)

Wiy ko — k1k20 <)o)
VK202

T kok202
Cu (\/EKQ/EKl + \/EKl/EKg)z
(1+2)® EK, (02 + 02EK,/EK>)
Vi (VERK/EE: + EK: [EK; )
(1+2)° VEKy\/0? + 02EK,/EK,
C{nVERJER, + 2 (K1 /FE)*? |

(1+2)° VEK; (02 + 02EK,/EK,)*?
2

?? |

Set

k1 ko
Wri=> (X)) + > ()
i=1 j=1

where

g1(Xy) = E (Wi, k, — k1k20] X;)
=k {E{I (X >Y)|X = X;} -0},

187

and

g2(Yj) == E (Wi, k, — k1k20]Y))
M {E{I(X>Y)|Y =Y,} 6}

Note that E(WE) =0 and

Var( *) = k1k30? + kok?02.
Set e
AE = Wk.l,,@ - k1k29 - WE'
Hence we can check that
kl kg
g1(Xi)  g2(Y))
= —6— _
ae=y > {r oo - eeil,
1=1 j=1
and that

B Ag]" = kuka {1 -

_02}

Wi, ks — k1ka0 <) o)
Vk1k30% + kok3o3

< P WE > xXr — 2
VE1k30? + kok?03 3

Observe that

+P [ S 1o
Vki1k307 + kok?02 3
+[1— ()|
2 9
__c B ’WE‘ + B |Ag]
= (1+x>2 ]{31]432 (k20%+k10'%)
C i }
< 1+ : 3)
(1+x) { kaof + k103
From (3) and the fact that U% < pford =1,2, we can
see that
Zpg I Wkl ko ™ k1k220 <z — (P(J])
i VE1k30? + kok3o3
C
<— Z P(Ky=k) < >
2
(1+2) {lk1—EK1|>0.5EK} k1o
c Iz
P (K5 = ko) <1 + )
2 Z 2 2 2
(1 +x){|k2—EK2|>O.5EK2} kaoy
< P(K - EK\| > 05EK))
(1+2)%02
C
ﬁ (|Ks — EKs| > 0.5EK>)
A
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C/L {V&I‘(Kl) EKQ

n Var(Kg)}
S (1+2)?EK, | 03EK, EK, ‘

U%EKQ
“)

Hence, combining (2) and (4), one can prove the non-
uniform bound of Theorem 4. U
Proof of Theorem 5: Let Z1, Zs and Z3 be inde-
pendent standard normal random variables which are
independent of the X;’s, Y;’s, Ky, K. Set

T Wk, ks, —O0EK1EKy
Var*(WKl,Kz)
o O(KIG — FEGFIG) + 21Q
1-— )
Var*(WK1,K2)
T2 o 9(K2*EK2)EK1+ZQGK21/Var(K1)+Z1q

\/Var* (WK1 Ko )

Ty - Z3OE K14/ Var(K2)+Z20 EK2+/Var(K1)+Z1q
3= )

\/V&F*(WKI,KQ)

where

Q= \/ 2K\ K3 + 02K, K2,

q:= \Jo}EK\EK} + 03 BK, EKY.

It is clear that 73 has the standard normal distri-
bution and easy to see that

p WKl,Ksz\EKlEKzgx ()
Var*(WKl,Kz)
<[P(T'<z)—P(Th <)
+IP(Ti < 0) - P (T <)
FIP(Ty <a) — P(Ty <)
1% — 0K K.
(e )
Q
L|p K, — FK;y
Var(K7)
Z1(Q —q)
+————x—< -
0Ky Var(Ky) (v2)

P Ko—FEKs
+ ) (y/Var(Kg)
n Z2(K2—EKz)4/Var(K1) < y:z) . <I>(y3)

EK1+/Var(K2) =

=: R1 + Ry + R3, 5
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where y1, y» and y3 are given by

a\/Var (Wi, k,) — 0 (K1 Ky — EK|EK>)

Y1 = 0 ,
oy Var' (Wi, i) — 0 (K> — ER2) EK1 — Zig
bv2 = K54/ Var(K7)
xW Z20EKy\/Var(Ky) — Z1q
Y3 = .

OEK;+/Var(Ks)

Firstly, following the arguments of (1) (in the
proof of Theorem 4), we can see that

Ry 11.2 Var K1 /EKQ Var KQ
VEK,

3.1/1 <\/EK2/EK1 + \/EKl/EKg)
VEK3\/0} + 02EK,/EK,

11.9 {71 ER3JEK; + s (EKl/EK2)3/2}
+

VER; (02 + 02EK, | EK,)**

o 11.2 agblT + bfg

- n a1 as
L 31 f(\/7/01+\/a1/% )
\/ﬁ 0%+ o03a17/as
11.971/,/a17'+’yg(a17') /a2

+ 373 (6)

Vn (02 + 03a17/as)

Secondly, using the conditional probability given
by K and 71,
Ry < P(|K2 — EK3| > 0.5EK>)
+ > P (Ky = k)

{0.5EK2<ko<1.5EK>}

X |P(S1+A<y2) —2(y2)|, (D
where
K1 - EKy
' Var(K;)’
and
Zl (\/k‘%O’%Kl + k‘gO’%K% — q)
A =

k29\/ Var(Kl)

Foreachi =1, ..., m,let

A (\/kzaleZ + k2026 — q)
ko6+/Var(K,) ’

A =

)
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where ¢; = K1 — &; + ay. Note that _ E{ o1& — a1)? }
E 514 6,/€i\/Var(K)
< E|Sl {k%U%Kl—FkQO’%K%—qQH LB 209 ‘fi—a1| + 0'2(&—0,)2
h qk20+/Var (K, ) 0v/kar/Var(K1)  0vks |ei| /Var(Ky)
< o1 B|S1{k3(K1—EK1)+kz(ka—EK2)EK1 }| _ o1by 2, N V2
qsz\/Var(Kl) X 0\/’/’71 0;1\/7’% \/alim
n 03 B|S1{(k2— EK2)EK1EK>+(E*Ko—EK} ) EK1 }| )
qk20/Var(K1) + 209 n o2b1 ( 4b? 2 > ©)
03 B|S1{ka(K1—EK1)?+2ks (K1 —EK1)EK, }| O0vVkom — Oykym \aim — aim
qk26+/Var (K1) where we use the fact that
o3 B|S1{(ka— EK>)E*K1+(E*K1—EK})EK> }| .
+ qk20+/Var(K1) Ee;
< P — .
g1 {k%\/V&I‘(Kl)+k‘2|k2—EK2|EK1} = P<|€l EK1| >05EK1)
< I(|€l—EK1| <05EK1)
ko0 EKy/EK1\/Var(K,) + B .
O’l{|k}27EK2|EK1EK2+EK1V3I(K2)} 4Var(K1) 2
<
koOE Ko/ Ele/VaI‘(Kl) = (EK1)2 EK;
o {k2E|K1 _EBK,P + 2k EK, Var(Kl)} a2
- =L +—
ko0 EK1\/EKy+/Var(K;) aim  aim
3 {|ks — EKs| E?K, + EKyVar(K;)} in the last inequality.
By applying the result of p. 258 of Ref. 14 (the
k20 EK1V EKy/ Var(Ky) uniform bound for nonlinear statistics), we have that
conf ke - BE|ar
=0 | aanyarm asnb; sup |P (S1+ A < z) — ®(2)|
z€R
0 kobq koasby < 73/2 + F |51A|
3 Vm (BE?)
+02{ v+ o " B|(6 — ar) (A= A
0 | a1b?\/azmn aan + Z i a — =Vl (10)
P biv/m

Hence combining (7)—(10), we obtain
Ry < P(|K2 — EK5| > 0.5EK))
+ > P (Ky = k»)

L2 |/€2—EK2|G1\/E+51\/&72 ®)
0 kabiy/azn kaay )’

where we used the fact that (Rosenthal’s inequality)

E|K, — EK;|*
. s - 52 {0.5EK2<ko<1.5EK>2}
<8{Z1‘,=1E\fi| + (25, BEY) } X [P (51 +A<y2) — P(y2)]
in the last inequality. o WVar(Kz) - 61E l¢?
Also, we can see that = EK, M(Eg2)3/2
E[(& —a1) (A= Ay + > P (Ky = k)
& — a1| k3073 (& — a1) + kao3 { K3 — €2} {0-5BKaShaS1oB K
s ko0y/Var(K1)\/k30}e; + koo3e? x {2 k2 + [k = BE| Vay
2 ! 20 272% 0 \ agn./aym asnby
2
<FB o1(& —a1) Lo |k2—EK2|\/a+ b3\/ar
Qﬁ«/Var(Kl) 0 kgbl k2a2b1

L gl o2l —all2a+ (& - o) Lo (1Bl 2
9\/E|6i‘ \/V&I‘(Kl) 0 alb%/agmn \/(127n
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+@ |k2—EK2|a1\/ﬁ+b1\/@
0 ]{,‘le\/@ kaay

pa( 2y V2
0 \arv/m Jam

N 209 N 09 <4bf N 2 )}
0bivEky  O0VEky \aim  aim
Var(K2) 6.1E|&)°

Vi (B€})**
L VVar(K)ya \F}

agnbl

EK,
asn+/aim

2 Var K2 1
biEK,

+ o
T

/—’H/—’H

203 /a1
agblEKQ

16E |§1 P }

biy/aanEK, alEK2

{
01{ 2 V2 }

2a1f\/Var Ks) 2b1 }

al\ﬁ Vaim

+ 2\@0’2
0b1vV/ E Ko 0/ E K,
6.1E || }

_ 1 %ui
W VT (B
{1+vﬁ 3@¢}

asby

V209 {4172+ 2 }

atm  aim

alf

Tl

{ 2b2\ﬁ 2, }

16E |§1 2
b am |

2(11[)2 2b1
{agbh/agT ./agn}
o2 N 41/2b? N 2v/2
f blf ma?/a; = mai/as |
(11)

Finally, we denote

K, — EK,
Var(Ks)'

and set

A _ (KQ — EKQ) \/V&I‘(Kl)Z2
K1/ Var(K;) '
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Foreachj=1,...,n,let

{(Ky — ¢ +az) — EKs} /Var(Ky) Zs
Var(KQ)

A =

j =

Note that

VESZ\/E |Ky — EK,|*\/Var(K))
E|S2A] < E|Z,|
EK,

Var(Kg)

and that

E|(¢ —a2) (A —Ay)|
_EG — a3)* \/Var(K))

b E'Kl\/Var(Kg)

< b1b2
= ap/mn’

By using the conditional probability given by Z5, Z;
and applying the result of p. 258 of Ref. 14, we have

D(y3)|

6.1E|¢1 |3 E|(¢ —az)(/\ Al
S vi(B¢2)*" + E15A] +Z v

E|Z,|

R3:|P(SQ+A< )—

j=1
6.1E |¢,|° 20,
VBT e

1 [6ABE[GP . 2b
S e |

We combine (5), (6), (11) and (12) to obtain the main
result. O

12)
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