
R ESEARCH ARTICLE

doi: 10.2306/scienceasia1513-1874.2014.40.094
ScienceAsia 40 (2014): 94–100

Modelling a neural network using an algebraic method
Prompong Sugunnasila,∗, Samerkae Somhoma, Watcharee Jumpamulea, Natee Tongsirib

a Faculty of Science, Department of Computer Science, Chiang Mai University, Chiang Mai, Thailand 50200
b Faculty of Science, Department of Mathematics, Chiang Mai University, Chiang Mai, Thailand 50200

∗Corresponding author, e-mail: p.sugunnasil@gmail.com
Received 8 Oct 2012
Accepted 3 Feb 2014

ABSTRACT: In this paper, a framework based on algebraic structures to formalize various types of neural networks is
presented. The working strategy is to break down neural networks into building blocks, relationships between each building
block, and their operations. Building blocks are collections of primary components or neurons. In turn, neurons are
collections of properties functioning as single entities, transforming an input into an output. We perceive a neuron as a
function. Thus the flow of information in a neural network is a composition between functions. Moreover, we also define an
abstract data structure called a layer which is a collection of entities which exist in the same time step. This layer concept
allows the parallel computation of our model. There are two types of operation in our model; recalling operators and
training operators. The recalling operators are operators that challenge the neural network with data. The training operators
are operators that change parameters of neurons to fit with the data. This point of view means that all neural networks can
be constructed or modelled using the same structures with different parameters.

KEYWORDS: formal models, specification, system design method

INTRODUCTION

Neural networks have been widely used in various
fields such as biology, economics, chemistry, and
physics. Within each of these fields of study, they
were also employed for different tasks such as classifi-
cation, regression and clustering. Over the years, vari-
ous structures and several methods of neural networks
have been proposed to improve their performances.
However, the ways in which neural networks have
been studied were considered to be more horizontal,
that is, they were designed for the specific case,
than vertical, which would have seen neural networks
being cumulatively studied1.

It has also been raised that the implementation
of neural networks seems to follow a trial and error
principle. The nature of neural network development
was considered as unpredictable and unrepeatable2,
not to mention that methods to design neural networks
using the prior knowledge or hypotheses have yet to
be established. Moreover, neural network simulators
which were required to fine-tune neural networks
themselves were designed to apply only to a specific
type of neural network, despite the fact that each
generic neural network model shares some of the
elements which can be used as building blocks for
constructing new neural networks3.

To improve the situation mentioned above, we
need a formal definition of neural networks capable of

describing them in terms of both their ingredients and
their relations. We introduce our algebraic framework
based on the concept of building blocks which offer
an inherent property of reusability. This framework
will also enable practitioners to train different neural
networks using the same simulator. Moreover, our
proposed approach naturally offers insights into the
constructive point of view of each neural network.

Many researchers have developed a unifying
framework which was able to encapsulate both the
architectures and the operations of the artificial net-
work. The existing research can be categorized as
non-computational or computational models.

The non-computational model is a type of model
which focuses only on the architecture of the neural
network. Specifically, they focus on connections
between neurons in the network. Normally, graph
theory is used as a guiding principle for this type of
formalism. For example, in Ref. 1, the architecture
of the network was depicted in terms of components
and their associations. The components of the neural
network were grouped into two types: the statics, and
the dynamics. The statics are a group of components
that remain unaltered during the operation on the
network such as interconnection scheme, whereas the
dynamics are a group of components which vary dur-
ing the operation. Beside the graph-based approach,
the set-based technique was also used to model neural
networks. An interesting work in this category was the

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40.094
http://www.scienceasia.org/2014.html
mailto:p.sugunnasil@gmail.com
www.scienceasia.org

ScienceAsia 40 (2014) 95

Z notation introduced in Ref. 2.
On the other hand, the computational model in-

cludes both the architecture, and the computation. The
core idea of this approach is to decompose neural
networks into components where each of them cannot
be modelled in separation from each other. For
example, the tripartite model introduced in Ref. 4 in-
cludes the environment in which the network operates,
the input/output which describes both pre- and post-
processing, and the core which is the computational
unit of the network. In Ref. 3, a formal framework
to describe the neural network called a neural abstract
machine was proposed in order to provide a platform
to study the properties of neural networks. The
neural abstract machine is based on the concept of
the algebraic methods which separates the data and
the operation on the data. The formal framework
for the spiking neural network is proposed in Ref.
5. The spiking neural network is decomposed into a
finer entity, such as synapses, activation functions, and
neurons. Moreover, the environment can be regarded
as a node. A set of node connected to each other
to form the network. The execution of the model
is simply done by receiving the input through ports,
evaluating the input, and sending output through ports.

Although existing methods can capture various
aspects of neural networks, there are still many de-
sirable attributes missing. For example, in Ref. 6,
Caelli, Guan, and Wen studied neural network in
terms of collections of subnetwork module. The result
indicated that modular neural network can reduce the
computational complexity. The modularity of neural
networks implies that there are groups of neurons
functioning both under and above other groups of
neurons - a nested structure. In this work, we
study neural networks from a bottom-up fashion using
algebraic methods as a modelling tool. We have
noticed that all of neural networks are unique but they
possess some common characteristics. They may have
different types of activation function or different kind
of learning mechanism but they are still based on the
same structure - the neuron. The module in the neural
network could be formed by the connection between
neurons. The patterns of relationships between the
neurons are what differentiate one model from the
other. Another component of neural networks is
the operation on the neural network. Operations on
neurons are also included in our model in order to
enable the computation of the model. As a result,
we can construct any type of neural networks or even
develop a new model of neural networks for a specific
purpose.

The remainder of this paper is organized as fol-

a

1

a

3

a

7

a

8

a

2

a

4

a

6

a

5

3
l
 1
l
2
l

Fig. 1 A back-propagation network.

a

2

a

4

a

3

a

5

a

7

a

6

1
l
2
l

a

1

Fig. 2 A self-organizing map.

lows. In the next section, the method to model neural
networks is elaborated which begins with the overall
idea on how to model the neural network. Then,
the proposed modelling method is provided in details.
Each definition is elaborated with explicit examples.
The last section concludes the study and discusses the
possible further research directions.

MODELLING NEURAL NETWORKS USING
AN ALGEBRAIC METHOD

In this section, we describe our proposed method. We
first provide our concept of modelling the neural net-
work using algebraic approach. Then, the definitions
of the fundamental elements of our modelling ap-
proach are discussed including neuron, relationships
between neurons, and operations on neurons. For each
definition, we provide examples of the application
of the definition of neural networks using the neural
networks in Fig. 1, Fig. 2, and Fig. 3. Note that we
do not define a specific activation function in our
example. Throughout this work, f : K → K denotes
the activation function.

The general strategy is to model neural networks

a

1

a

3

a

7

a

8

a

2

a

4

a

6

a

5

3
l
 1
l
2
l

Fig. 3 A pruned neural network.

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

96 ScienceAsia 40 (2014)

using algebraic structures and methods. We combine
the formalism of algebraic system with the bottom-up
concept. Modelling using algebraic structure provides
a bridge between the system requirement of the target
system and its formal specification7. Also, modelling
principles based on algebraic methods provide the
means to systemically analyse the modelled system8.

In this work, the operation on a neuron is sepa-
rated into two types. The first one is the structuring
operator. This operator wires the neurons together
to form a module of neurons. The second one is
the operative operator. The operative operator is a
computing operator which either uses the structure to
perform calculation or adjusts the parameters of the
structure. Finally, the component of the proposed
method is combined into a single entity called the
algebraic structure of neurons.

Throughout this paper, three neuron network
models are used as an example for each definition.
The back-propagation, and the self-organization map
are displayed in Fig. 1, and Fig. 2, respectively. The
third model displayed in Fig. 3 is the pruned version
of the back-propagation.

The back-propagation is a well-known neural
network with three staged training process; the feed
forward of input signal, the calculation of error, and
the update of the weights. In our example, there are
eight components: five neurons, a4 to a8, and three
input variables, a1 to a3.

For the neurons in the output layer, each output
signal is compared against the corresponding target
output signal in order to calculate the error informa-
tion. The computation of error information is defined
as

δk = (tk − yk)f ′(yink
) (1)

where δk denotes the error information of the kth
output neuron, tk denotes the target output signal of
the kth output neuron, yk denotes the output signal of
the kth output neuron, and yink

denotes the activation
value of the kth output neuron.

The error information is then used to update the
neuron of the output layer and propagates back to the
hidden layer. The weight correction information is
defined as

∆wjk = µδkzj (2)

where wjk denotes the weight connecting jth hidden
neuron and the kth output neuron, µ denotes the
learning rate, and zj denotes the output signal of jth
neuron. The weight correction information used to
update the neuron is

wjk(new) = wjk(old) + ∆wjk (3)

where wjk(new) and wjk(mathrmold) denote the
updated weight connecting jth hidden neuron and
the kth output neuron, the initial weight connecting
the jth hidden neuron and the kth output neuron,
respectively.

For the neurons in the hidden layer, the error
information is obtained from the connected neurons
in the higher layer. The incoming error information
can be calculated by

δinj =

m∑
k=1

δkwjk (4)

where δinj denotes the incoming error information of
the jth neuron. The error information of the neuron is
calculated by

δj = δinj
f ′(zinj

) (5)

where δj denotes the error information of the jth
hidden neuron. The weight correction information and
the weight updating process are the same as the output
layer.

Fig. 2 is an example of the self-organizing map -
an unsupervised neural network which brings out the
underlying topological structure of the input file. The
architecture of the self-organizing map consists of two
layers; the cluster unit and the input unit. The cluster
unit represents the topological structure of the input
data which is typically one or 2-d. In this example,
there are seven components including three neurons,
a5 to a7, and four input variables, a1 to a4.

Unlike the back-propagation neural network, the
self-organizing map is based on competitions. Each
of the output signals is first compared with every
cluster unit and only the cluster unit with the minimum
distance is considered to be a winner. Moreover, not
only the winning cluster unit is updated but also its
neighbourhood cluster unit. The update function of
the example is

wij(new) = wij(old) + µ

(
xi − wij(old)

)
(6)

where wij(new) and wij(old) denote the updated and
initial weights connecting the ith input neuron and the
jth cluster unit, respectively. µ denotes the learning
rate, and xi denotes the ith data value of the input
pattern.

PRELIMINARIES

Definition 1 The universe of a neural network is a
set that contains all of the possible values in a neural
network. The universe of neural network is a ring K.

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

ScienceAsia 40 (2014) 97

Remark 1 We have not defined what the ring K is.
Basically, the universe of a neural network is a set
that enables the operation between the components
with some properties such as closure. Normally the
universe of a neural network is a set of real numbers.

NEURON AND LAYER

In this study, the neuron is perceived as a collection of
attributes, such as input channels, weights, activation
functions, and learning rates. Moreover, the behaviour
of a neuron is believed to be similar to a function
by mapping between input and output. Essentially,
the neuron is composed of an input channel, output
channel, and activation function. Note that extra
components such as radius of positive reinforcement,
radius of negative reinforcement, and learning rate,
can be included in the definition of the neuron later
if it is necessary.

Definition 2 Given a universe of a neural network K,
a set of outputs Kout ⊂ K, the arity τ ∈ N, and
the activation function f mapping from

∑τ
i=1 wixi to

Kout, a neuron is a function a : Kτ → Kout which
can be more elaborate by formalizing it as a three-
tuple (X,W, δ) where
(i) X = {xj |xj ∈ K ∧ j ∈ N∧0 < j 6 τ} is a finite

set called the input variables,
(ii) W = {wj |wj ∈ K ∧ j ∈ N ∧ 0 < j 6 τ} is a

finite set called the weight, and
(iii) f : K → Kout is the activation function.
For simplicity, we denote the neuron by

a(x1, x2, . . . , xτ).

The set of neurons is denoted by A.

Example 1 The neuron in Fig. 1 and Fig. 2 can be
modelled as a = (X,W, f, µ) where
(i) X denotes a set of input variables. In this case,

X = {x1, x2, x3} for a4, a5, a6, a7, and a8 in
Fig. 1, and X = {x1, x2, x3, x4} for a5, a6, and
a7 in Fig. 2,

(ii) W denotes a set of weights where W =
{w1, w2, w3},

(iii) f denotes an activation function mappings from∑3
i=1 xiwi to Kout, and

(iv) µ ∈ K denotes a learning rate.

Definition 3 Given a universe of neural network, K,
and a set of neurons,A, a layer is formally defined as a
tuple 〈t1, . . . , tn〉 where t1, . . . , tn are neurons, data,
or input variables. The set of all layers is denoted by
W (A,K).

Example 2 In Fig. 1, there are three layers, l1 to
l3. Each of the layers is formalized as follows.
The purpose of this example is to demonstrate the
appearance of the layer. Thus we only focus on the
architecture of each layer. l1 = 〈a1, a2, a3〉, l2 = 〈a4,
a5, a6〉, and l3 = 〈a7, a8〉.

The input data in the neural network are a layer
whose members is all data from the universe of a
neural network. The set of all data is denoted by a
set D = {〈d1, . . . , dp〉|d1, . . . , dp ∈ K ∧ p ∈ N}.

OPERATIONS ON NEURONS

In this section, we introduce the operations on the neu-
ron. There are two types of operation: recalling oper-
ation, and training operation. The training operation
is a process of changing the parameters of the structure
in relation to the training data. The training operation
is modelled as a function mapping from a neuron to
another neuron. The recalling operation is a process of
challenging a neural network with a data, and yielding
the output. In this work, the recalling operation is
modelled as a function mapping from a neural network
and data to data. The training operation is supervised
or unsupervised. The supervised approach includes
the target output signal to guide the training, while
the unsupervised approach does not. Furthermore, the
data are inherently given to the structure at the input
channel which is represented by the input variables.

Structuring operator

The neurons can be assembled to function as a module
in the neural network. In this paper, we call the
module of neurons a structure. The structure in
the neural network represents how information flows
in the neural network. Additionally, structures can
also coordinate with one another to construct a new
structure. The types of behaviour of the structure
are the same as the neurons’ except that the end
product of the structure’s computation is a product
of computation of the members in the structure. In
this study, the essence of the structure is captured by
using the composition of neurons where the outputs
of neurons in the lower level functions as the inputs
for the neurons in the higher level. In other word, the
concept of the composition is used to model the flow
of information in the neural network. The beneficial
point in using the composition is that the layer can be
designed in a separate manner.

As mentioned in Definition 3, there are two types
of components existing at a time period, the input
variable and the neuron. We perceive them as a
term of the neuron. The term of neurons which

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

98 ScienceAsia 40 (2014)

combines the input variable and the neuron is denoted
by V (X,A) = X ∪A.

Definition 4 LetK be a universe of a neural network,
A be a set of neurons, and W (A,K) be a set of layer.
The composition of neuron and layer is given as

S : V (X,A)×W (A,K)→ V (X,A)

by inductively setting the following steps. If s =
xj where xj denotes the jth input variable, then
S(s, 〈t1, t2, . . . , tn〉) = tj . If s = a(a1, . . . , aτ)
and a1, . . . , aτ ∈ A, then S(s, 〈t1, t2, . . . , tn〉) =
a(S(a1, 〈t1, . . . , tn〉), . . . , S(ar, 〈t1, . . . , tn〉)).

Definition 5 Let K be a universe of neural network,
A be a set of neurons, and W (A,K) be a set of layer.
The composition of layers is given as

⊕ : W (A,K)×W (A,K)→W (A,K)

by setting 〈t1, . . . , tn〉 ⊕ 〈t′1, . . . , t′m〉 equal to
〈S(t1, 〈t′1, . . . , t′m〉), . . . , S(tn, 〈t′1, . . . , t′m〉)〉.

Example 3 An illustration of composition between
neurons in l2 and the input variables in l1 of the neural
network in Fig. 1 is given as

S (a4(x1, x2, x3), 〈a1, a2, a3〉) = a4(a1, a2, a3).

An illustration of composition between neurons in l3
and the neurons in l2 is given by

S(a7(x1, x2, x3), 〈a4(a1, a2, a3), a5(a1, a2, a3),

a6(a1, a2, a3)〉)
a7(a4(a1, a2, a3), a5(a1, a2, a3), a6(a1, a2, a3)).

The layer composition between layer l1 and layer l2 is
given by

〈a4(x1, x2, x3), a5(x1, x2, x3), a6(x1, x2, x3)〉⊕
〈a1, a2, a3〉

= 〈a4(a1, a2, a3), a5(a1, a2, a3), a6(a1, a2, a3)〉.

The total structure of the example in composition form
is given by

〈a7(x1, x2, x3), a8(x1, x2, x3)〉⊕
(〈a4(x1, x2, x3), a5(x1, x2, x3), a6(x1, x2, x3)〉⊕

〈a1, a2, a3〉)
= 〈a7 (a4(a1, a2, a3), a5(a1, a2, a3), a6(a1, a2, a3)) ,

a8 (a4(a1, a2, a3), a5(a1, a2, a3), a6(a1, a2, a3))〉.

Example 4 An illustration of composition between
neurons in l2 and the input variables in l1 of the neural
network in Fig. 2 is given by

S (a5(x1, x2, x3, x4), 〈a1, a2, a3, a4〉) .

The total structure of the example in composition form
is given by

〈a5(x1, x2, x3, x4), a6(x1, x2, x3, x4),

a7(x1, x2, x3, x4)〉 ⊕ 〈a1, a2, a3, a4〉 .

Example 5 As an extension of the neural network in
Fig. 1, we provide a more complicated neural network
model by randomly pruning the network. The figure
of the extended example is shown in Fig. 3. The total
structure of example in composition form is given by

〈a7(x1, x2, x3), a8(x3)〉⊕
〈a4(x1, x2, x3), a5(x1, x2), a6(x3)〉 ⊕ 〈a1, a2, a3〉

= 〈a7(a4(a1, a2, a3), a5(a1, a2), a6(a3)),

a8(a6(a3))〉.

We list some of the fundamental properties of
the composite neuron term. First, the composition
of neural network is not commutative. The flow of
information in the neural network is one direction.
The order of the neurons contributes to the overall
function of the network. Hence it is interchangeable.
The composition of the neural network preserves the
associativity. Within the same term of composition,
the order of operations does not have an influence
on either the performance or the result as long as the
sequence is preserved.

The measurement of the structure’s complexity is
also examined in this paper. We identify the structure
with trees. Typically, the tree is a connected graph
without any cycles. The concept of complexity in
terms of the tree is the height of a tree that represents
the structure. Since the member of a certain structure
is a nested structure of the layer, the complexity
of the structure is determined through the maximum
complexity of the member in the structure.

Definition 6 Let aτ (t1, . . . , tτ) be a neuron. The
depth of a is determined by the maximum depth of its
members. We formally define the depth of neuron’s
structure by

depth(a) = max {depth(t1), . . . ,depth(tτ)}+ 1

where if t = x ∈ X then depth(t) = 0,
and if t = a′(t′1, . . . , t

′
τ ′), then depth(t) =

max{depth(t′1), . . . ,depth(t′τ ′)}+ 1.

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

ScienceAsia 40 (2014) 99

Example 6 Consider the back-propagation neural
network in Fig. 1, there are eight components:
a1, a2, a3, a4, a5, a6, a7, and a8 where a1, a2, and a3
are input variables, a4, a5, and a6 are neurons in the
hidden layer, and a7, and a8 are neurons in the output
layer. Each of the neurons has its own input pattern.
The depth of each component can be determined
as depth(a1) = depth(a2) = depth(a3) = 0,
depth(a4) = depth(a5) = depth(a6) = 1, and
depth(a7) = depth(a8) = 2.

Operative operator

The recalling operation is an operation to calculate
the output signal of the input signal based on the
parameter of the structure of neuron. In Definition 2,
each neuron is already incorporates the activation
function which enables the neuron to recall the data.
Thus the definition of the recalling operation can focus
solely on the behaviour. We give the formal definition
of the recalling operation in terms of the composite
form.

Definition 7 We say that a function Or is a recalling
operator, if Or : A ×D → Kt where A denotes a set
of neurons, D denotes a set of data, and Kt ⊆ K
denotes a set of target output signal. Suppose that
a(t1, t2, . . . , tτ) is a neuron with τ input variables.
The recalling operator can be formally defined as

Or (a(t1, t2, . . . , tτ), d)

=

{
f (
∑τ
i=1 diwi) , depth(a) = 0,

f (
∑τ
i Or(ti, d)wi) , depth(a) 6= 0.

Definition 8 We say that a function Ots is a super-
vised training operator if Ots : A × D × Kt → A
where A denotes a set of neurons, D denotes a set of
data, andKt ⊆ K denotes a set of target output signal.

Example 7 In this example, the training operation
of the back-propagation neural network in Fig. 1 and
Fig. 3 is used as a demonstration. Basically, the
weight updating process of our modelling method is
the same as the traditional method except that it is
rewritten in an algebraic representation. If the neuron
is in the output layer, the weight of the neuron is
updated by

wj(new) = wj(old)

+ µ

((
k − f

(
τ∑
i=1

wixi

))
f ′

(
τ∑
i=1

wixi

))
(xj)

where wj denotes the weight connecting the neuron
and the jth input, µ denotes the learning rate, k de-
notes the target output signal, f denotes the activation

a

2

a

4

a

3

a

5

a

7

a

6

a

1

a

8

Fig. 4 A neural network model.

function, f ′ denotes the derivative activation function,
and xk denotes the kth input. If the neuron is in the
hidden layer, the weight of the neuron is updated by

wj(new) = wj(old) + µ

(
δjf
′

(
τ∑
i=1

wixi

))
(xj)

where δj denotes the sum of error information gath-
ered from neurons in higher layers which uses infor-
mation from the jth neuron.

Definition 9 We say that a function Otu is an unsu-
pervised training operator if Otu : A×D → A where
A denotes a set of neurons, and D denotes a set of
data.

Example 8 Like Example 7, the function of the neu-
ral network is preserved. The self-organizing map
begins its weight updating process by determining the
winner node. The winner node is the least different
neuron compared to the input signal. Then, weights of
both the winner node and its neighbour are updated.
When the self-organizing map is updated, the process
involves with not only the winner node but also the
surrounding neurons. One way to solve the problem
is to perceive the self-organizing map as a whole.
Moreover, the process to determine the winner node
is not the individual level process, but it is the whole
level process which requires the information of every
element. Hence the additional neuron has to be
included to represent the entire neural network. In this
case, the neuron a8 is added to fill the requirement.
The illustration of the new neural network is shown in
Fig. 4. The weight training of the self-organizing map
is given separately.
(i) If the neuron is the representation unit, the training

process of this neuron is to call the recalling
function on every neuron in the network and
determines the winner node. Then, the represen-
tation unit performs the training operation on all
of the neuron in the cluster unit.

www.scienceasia.org

http://www.scienceasia.org/2014.html
www.scienceasia.org

100 ScienceAsia 40 (2014)

(ii) If the neuron is in the cluster layer, the weight of
the neuron is updated using

wj(new) = wj(old) + µh(j)(xj − wj)

where wj is the jth weight, xj denotes the jth
data, and h(j) denotes the update information in
relation to the distance from the winner node.

Definition 10 LetW (A,K) denotes a set of layers,A
denotes a set of neurons, D denotes a set of data, and
Kt ⊆ K denotes a set of target output signals. The
extended supervised training operator is defined as

Ôts : W (A,K)×D ×Kt →W (A,K)

by setting

Ôts (〈t1, . . . , tn〉 , 〈d1, . . . , dn〉 , k) =

〈Ots (t1, 〈d1, . . . , dn〉 , k) , . . . ,

Ots (tn, 〈d1, . . . , dn〉 , k)〉 .

Definition 11 W (A,K) denotes a set of layer, A
denotes a set of neurons, and D denotes a set of data.
The extended unsupervised training operator is given
by

Ôtu : W (A,K)×D →W (A,K)

by setting Ôtu(〈t1, . . . , tn〉, 〈d1, . . . , dn〉) =
〈Otu(t1, 〈d1, . . . , dn〉), . . . , Otu(tn, 〈d1, . . . , dn〉)〉.

Remark 2 In this study, we regard the order of the
data given to the neural network as a training schema.
The training schema is varied depending on the de-
signer.

The set of operators is denoted by O.

ALGEBRAIC STRUCTURE OF NEURONS

Definition 12 A denotes a set of neurons, D denotes
a set of data, and O denotes a set of operations.
We define the neuron algebra using A = (A;D,O)
where
(i) A is a set denoted the neurons,
(ii) D is a set denoted the data, and
(iii) O is a set denoted the operation on the neuron.

CONCLUSION AND DISCUSSION

Using the proposed framework, the artificial neural
network can be designed in both directions: the top-
down approach and the bottom-up approach. The
network can be decomposed into several subnetwork
modules due to their functions by focusing on the
layer with the maximum depth, and moving down

the network hierarchy. The neurons in the layer with
the maximum depth represent the output layer of the
network which is the function of the network. On
the other hand, the designer can also focus the detail
on the neurons in the layer with the maximum depth
which represent the first group of the neurons which
come in contact with the input. Consider

〈x11, x12, . . . , x1n1
〉 ⊕ . . .⊕ 〈xm1 , xm2 , . . . , xmnm

〉.

where the xmn represents the nth neurons of the mth
layer. The top-down approach is to design the network
from the first layer to the mth layer, and the bottom-
up approach is to work from the mth layer to the first
layer. Moreover, since the proposed method uses the
fundamental mathematical notation, the framework
can be implemented in any formal language. The
future extension of the proposed framework includes
the incorporation of the temporal components which
lead to a more expressive way to specify the artificial
neural network.

Acknowledgements: The first author was supported by
the Graduate School, Chiang Mai University. The fourth
author was supported by the Department of Mathematics,
Faculty of Science, Chiang Mai University.

REFERENCES
1. Fiesler E (1994) Neural network classification and for-

malization. Comput Stand Interfac 16, 231–9.
2. Senyard A, Kazmierczak E, Sterling L (2003) Software

engineering methods for neural networks. In: Proceed-
ings of the Tenth Asia-Pacific Software Engineering
Conference Software Engineering Conference, IEEE
Computer Society, Washington, DC, pp 468–77.

3. Borger E, Sona D (2001) A neural abstract machine.
J Univers Comput Sci 7, 1006–23.

4. Dorffner G, Wiklicky H, Prem E (1994) Formal neural
network specification and its implications on standard-
ization. Comput Stand Interfac 16, 205–19.

5. Zaharakis ID, Kameas AD (2008) Modeling spiking
neural networks. Theor Comput Sci 395, 57–76.

6. Caelli T, Guan L, Wen W (1999) Modularity in neural
computing. Proc IEEE 87, 1497–518.

7. Goguen JA, Thatcher JW, Wagner EG, Wright JB
(1977) Initial algebra semantics and continuous algebras.
J ACM 24, 68–95.

8. Loegel G, Ravishankar CV (1994) An algebraic ap-
proach to modeling in software engineering. In: Pro-
ceedings of the 3rd International Conference on Method-
ology and Software Technology: Algebraic Methodol-
ogy and Software Technology, Springer-Verlag, London,
pp 385–92.

www.scienceasia.org

http://www.scienceasia.org/2014.html
http://dx.doi.org/10.1016/0920-5489(94)90014-0
http://dx.doi.org/10.1016/0920-5489(94)90014-0
http://dx.doi.org/10.1109/APSEC.2003.1254402
http://dx.doi.org/10.1109/APSEC.2003.1254402
http://dx.doi.org/10.1109/APSEC.2003.1254402
http://dx.doi.org/10.1109/APSEC.2003.1254402
http://dx.doi.org/10.1109/APSEC.2003.1254402
http://dx.doi.org/10.3217/jucs-007-11-1006
http://dx.doi.org/10.3217/jucs-007-11-1006
http://dx.doi.org/10.1016/0920-5489(94)90012-4
http://dx.doi.org/10.1016/0920-5489(94)90012-4
http://dx.doi.org/10.1016/0920-5489(94)90012-4
http://dx.doi.org/10.1016/j.tcs.2007.11.002
http://dx.doi.org/10.1016/j.tcs.2007.11.002
http://dx.doi.org/10.1109/5.784227
http://dx.doi.org/10.1109/5.784227
http://dx.doi.org/10.1145/321992.321997
http://dx.doi.org/10.1145/321992.321997
http://dx.doi.org/10.1145/321992.321997
http://dx.doi.org/10.1007/978-1-4471-3227-1_41
http://dx.doi.org/10.1007/978-1-4471-3227-1_41
http://dx.doi.org/10.1007/978-1-4471-3227-1_41
http://dx.doi.org/10.1007/978-1-4471-3227-1_41
http://dx.doi.org/10.1007/978-1-4471-3227-1_41
http://dx.doi.org/10.1007/978-1-4471-3227-1_41
www.scienceasia.org

