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ABSTRACT: In this paper we establish a refinement of Simpson’s inequality for functions of bounded variation. As an

application, we obtain some new estimates of the remainder term in Simpson’s quadrature formula.
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INTRODUCTION

The following inequality is well known in the litera-
ture as Simpson’s inequality:

/abf(t)dt—b;a f(a)—2|—f(b) +2f(a+b)H

2

< a5 1f Do (b= a)®, (1)

where the mapping f : [a,b] — R is supposed to
be four times differentiable on the interval (a, b) and
have the fourth derivative bounded on (a, b), that is,
1F W loe = $UP,e(a )l f P (2)| < co. This inequality
gives an error bound for the classical Simpson quadra-
ture formula, which is one of the most used quadrature
formulae in practical applications.

It is well known that if either the mapping f is not
four times differentiable or the fourth derivative f(*)
is unbounded on (a, b) then we cannot apply the clas-
sical Simpson quadrature formula. This disadvantage
was overcome in the result of Dragomir et al > where
the following result was proved.

Theorem 1 Let f : [a,b] — R be a function of
bounded variation on [a,b). Denote by V2(f) its total
variation on [a,b]. Then one has the inequality

/abf(t>dt_ b;a f(a);rf(b) +2f(a—2~—b)H

<Lo-aVif). @

The constant % is sharp in the sense that it cannot be
replaced by a smaller one. To simplify notation, we
will write V. instead of V.2 (f) from now on.
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Pecari¢ and VaroSanec? generalized the above re-
sult to functions whose nth derivative, n € {0,1,2, 3}
is of bounded variation. The corresponding ver-
sion for Ostrowski’s inequality and the generalized
trapezoid inequality was obtained in Refs. 4-6, from
which one can derive the midpoint inequality’ and
the trapezoid inequality. Recently, by using a critical
lemma, Dragomir® proved refinement of the gener-
alized trapezoid and Ostrowski inequalities for func-
tions of bounded variation, the particular cases of
which provide refinements of the trapezoid and mid-
point inequalities. For other related results, the reader
may refer to Refs. 9-13 and the references therein.

The main aim of this paper is to establish a
refinement of Simpson’s inequality (2) for functions of
bounded variation. As an application, we obtain some
new estimates of the remainder term in Simpson’s
quadrature formula.

A REFINEMENT OF SIMPSON’S
INEQUALITY

We need the following lemma, which is a slight
improvement of Lemma 2.1 of Ref. 8.

Lemma 1 Let u, f : [a,b] — R. Ifu is continuous on
[a,b] and f is of bounded variation on [c,b] 2 [a,b]
then

b b
/uof) af ()| < / fu(t)] (V)

1
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< max |u(t)|V}, 3)
t€la,b]



http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40.084
http://www.scienceasia.org/2014.html
mailto:wjliu@nuist.edu.cn
www.scienceasia.org

ScienceAsia 40 (2014)

ifp>land1l/p+1/q=1

Proof: See Lemma 2.1 of Ref. 8 with a slight im-
provement. U

The following result may be stated as a refinement
of Simpson’s inequality (2).

Theorem 2 Assume that the function f : [a,
is of bounded variation on [a,b]. Then

/abf(t)dt— a[f(a)+f(b)+2f(a+b)H

2 2
where
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wherep > 1, 1/p+1/q=1andr, : [a,b] — Rwith

We also have
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Proof: Define the kernel S(t) by
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S(t) = el g
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Using integration by parts for Riemann-Stieltjes inte-
grals, we obtain (see Ref. 5)

b
/ S(tydf(t) =
b
- / fhydt. ©)

If f is of bounded variation on [a,b], then on

taking the modulus and applying the first inequality
in (3) we obtain

b

S(t)df(t)
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and (4) is proved.
Since V is monotonic nondecreasing on [a, b],
0y (5a+b)/6
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b
b _
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which gives
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and (5) is proved.

Using the second part of the second inequality in
(3) and Holder’s inequality, we deduce that

(b-a)Q
(atb)/2
< [V eth)/2]1/a l/

Vv(a—‘—b /2 t—

[ (a+b)/2

/(a+b)
b

<.
(atb)/2

Now observe that

(a+b)/2
R ::/
b
o,
(a+b)/2
= g 6
(a+b)/2
o,
(5a+b)/6

(@+5b)/6 /g 1 5b
o (
(atb)/2 6

< [Vh)He

6

a+ 5b|”
6

t—

_5a—|—bp

5a+bp

d(

1
P

a(vy)

6

1
P

a+ 5b|°
6

d(vy)

d(vh)

a

1/p
Vi)

(10)

— t)p d(vh
(t — m;b)P d(vh

- t)p aw?)

b D
+/ <t_a—|—5b) AV
(a+5b)/6 6

(5a-+b) /6 50+ b
= [ o (M

www.scienceasia.org

p—1
— t) dt

ScienceAsia 40 (2014)

P
+ <b - a) y(ath)/2
3
(a+b)/2 p\P~1
—p/ (V;)<1t—5aJr ) dt
(5a+b)/6 6
b—a\?
(222 yatn)/2
() v
(a+5b)/6 50 p—1
+p/ (V;)<a+ —t) dt
(a+b)/2 6
b—a\?
Vb
“(50) v
b p—1
5b
—p/ (V;)(t—a+ > dt
(a+5b)/6 6
bh— p b
_ ( “) yh +p/ ro(H)(V1) dt,
6 a
where 7, is given in (7). Using (10), we obtain the first

part of (6).
Since V,, is monotonic nondecreasing on [a, b], we

have
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Vb
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which proves (6). O

NEW ESTIMATES OF THE REMAINDER
TERM IN SIMPSON’S FORMULA

Letl, :a=2p <21 <+ <xp_1 <z, =0bbe
a partition of the interval [a, b], h; := x;41 — x; for
i =0,...,n — 1 and consider Simpson’s quadrature
formula

b
/ f(@)dx = As(f. 1) + Rs(f.T.),

where Ag(f, I,

R

N
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It is well known that if the function f : [a,b] — R
is four times differentiable on the interval (a,b) and
has the fourth derivative bounded on (a,b), then the
remainder term Rg(f, I,,) satisfies the estimate

[Rs(f, 1n)| < g5l £ @]l sohd.

11,2

[=p}

13)

Dragomir et a improved the above estimate for
functions of bounded variation as follows:

|Rs(f,In)] < 57(R)Vy,

where y(h) := max{h;,i =0,...,n—1}.

In the following we give new estimates of the
remainder term Rg(f,I,) for functions of bounded
variation.

(14)

Theorem 3 Let f [a,b] — R be of bounded
variation on |a,b] and I,, be a partition of [a, b]. Then
we have Simpson’s quadrature formula (11) and the
remainder term Rg(f, I,,) satisfies the estimates
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wherep > 1, 1/p+1/q = 1. and rp(t;;, Tit1) -
[I’i7l’i+1] — R with

rp(t) ==
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S5zitz; 5 i
(xtinrl_t) ’ tG[l’l, ar+3:+1i|,
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Proof: Apply Theorem 2 to the interval [x;, 2;41],7 =
0,1,2,...,n — 1 and sum. Then use the triangle
inequality to obtain the desired result. O
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