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ABSTRACT: Interval-censored data consist of adjacent inspection times that surround an unknown failure time. We seek
to determine the best estimator for the Weibull scale parameter using interval-censored survival data. Consideration is given
to the classical maximum likelihood and Bayesian estimation under squared error loss with interval censoring using non-
informative prior and a proposed generalization of non-informative prior. The study is based on simulation and comparisons
are made using mean squared error and absolute bias. We find that the proposed generalized non-informative prior is the
preferred estimator of the scale parameter.
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INTRODUCTION

One distinctive part of failure-time data is censoring,
and there is a lot of literature on right censoring1–7.
Here our focus is on interval censoring, which is
more challenging than right censoring, and as a result
the approaches developed for right censoring do not
generally apply.

Interval censoring has to do with a study subject
or failure time processes of interest that is not under
regular observation. With interval censoring one
only knows a range, i.e, an interval, inside of which
one can say the survival event has occurred. Left
or right-censored failure times are special cases of
interval-censored failure-time data. As stated in Ref.
8, one could define an interval-censored observation
as a union of several non-overlapping windows or
intervals.

According to Ref. 9, interval-censored failure
time data occur in many areas including demograph-
ical, epidemiological, financial, medical, sociologi-
cal, and engineering studies. A typical example of
interval-censored data occurs in medical or health
studies that entail periodic follow-ups, and many
clinical trials and longitudinal studies fall into this
category. In such situations, interval-censored data
may arise in several ways. For instance, an individual
may miss one or more observation times that have
been scheduled to clinically observe possible changes
in disease status and then return with a changed

status9.
When we consider individuals who visit clinical

centres at times convenient to them rather than at
predetermined observation time or in a situation where
a mechanical system is under observation at some time
schedule for which there is no control over the time. In
these situations, the data that is obtained are interval
censored. If all study subjects or units follow the
predetermined observation schedule time exactly, it
is still not possible to observe the exact time of the
occurrence of the change even if we assume that it is
a continuous variable. In the last situation, one has
grouped failure time data, that is, interval-censored
data for which the observation for each subject is a
member of a collection of non-overlapping intervals.

Further discussions on interval censoring using
the classical statistical approach can be obtained in
Refs. 10–14. No one has examined interval-censored
data using the Bayesian estimation approach with
regards to Weibull distribution, which is the essence
of this study.

Next in this paper we give the derivatives of the
parameters under the maximum likelihood estimator
followed by the Bayesian estimator. We also present
the derivatives of the Bayesian technique using the
Lindley approximation procedure after which is the
simulation study followed by the results.
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MAXIMUM LIKELIHOOD

Interval-censored data arise in a natural way when
n items on test are not monitored but are inspected
for the number of surviving items where two data
values surround an unknown variable. Let t1, . . ., tn
be a random sample of size n where the probability
density function is represented by f(t, α, β) and the
cumulative distribution function is F (t, α, β). Then

f(t;α, β) =
β

α

(
t

α

)β−1

exp

[
−
(
t

α

)β]
(1)

and

F (t;α, β) = 1− exp

[
−
(
t

α

)β]
(2)

where β is the shape parameter and α the scale
parameter. Let [Li, Ri] denote the interval-censored
data and T represent the unknown time, i.e., Li 6
Ti 6 Ri, where Li is the last inspection time, Ri the
state end time. If censoring occurs non-informatively
and if the law governing L and R does not involve
any of the parameters of interest, we can base our
inferences on the likelihood function L(Li, Ri|α, β)
as stated in Ref. 15 which is given by

L(Li, Ri|α, β) =
n∏
i=1

[F (Ri, α, β)− F (Li, α, β)].

(3)

This implies that

n∏
i=1

[S(Li)− S(Ri)] =
n∏
i=1

P (Li 6 Ti 6 Ri),

where P is the probability. From this we have
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(4)

Taking the log of (4) we have
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n∑
i=1

ln

{
exp

[
−
(
Li
α

)β]
− exp

[
−
(
Ri
α

)β]}
.

(5)

To find α and β that maximizes (5), differentiate
(5) with respect to α and β and set the resulting
equations to zero. The score vectors are

∂`
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= 0 and
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= 0. (6)
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The shape parameter β is assumed known. As a result,
the scale parameter α can easily be obtained with
simple substitutions.

BAYESIAN ESTIMATION

Bayesian estimation approach has received a lot of
attention for analysing failure time data. It makes
use of ones prior knowledge about the parameters and
takes into consideration the data available. In a situa-
tion where the researcher has a previous knowledge or
can obtain an information from experts that is closely
related to the current study, then a suitable prior to
use is the informative prior if not a non-informative
prior will be an alternative to use by assuming lack
of previous knowledge. The Bayesian estimation is
considered under squared error loss function which
is simply the posterior mean. We have in this study
considered Jeffreys vague non-informative prior and
have also proposed generalized non-informative prior
since we are assuming a lack of information about the
parameters. Given a sample [Li, Ri], the likelihood
function L follows (4).

Non-informative prior

If we consider a likelihood function of L(θ), with
its Fisher information I(θ) = −E(∂2 logL(θ)/∂θ2).
Jeffreys suggested that π(θ) ∝ det(I(θ))1/2 be con-
sidered as a prior for the likelihood functionL(θ). The
Jeffreys prior is justified on the grounds of its invari-
ance under parametrization16. With one parameter,
the Jeffreys vague prior is16

u(α) ∝ 1
α
. (7)

Let the likelihood equation which is
L(Li, Ri|α, β) be the same as (4). The posterior
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distribution with respect to the Jeffreys prior is
found by using the conditional distribution which
depends on the joint probability density function
and the marginal probability density function. The
conditional distribution is given as

π(Li, Ri;α, β) =
H(Li, Ri;α, β)
P [Li, Ri]

(8)

where the joint probability density function is

H(Li, Ri;α, β) = L(Li, Ri|α, β)u(α) (9)

and the marginal distribution function is

P [Li, Ri] =
∫ ∞

0

L(Li, Ri|α, β)u(α) dα. (10)

Hence the posterior probability density function of
α given the data [Li, Ri] is obtained by dividing
the joint posterior density function over the marginal
distribution function as

π∗(α, β|Li, Ri) =
L(Li, Ri|α, β)u(α)∫∞

0
L(Li, Ri|α, β)u(α) dα

.

(11)

When we therefore consider the squared error loss
function with the scale parameter, we have

π∗(.) =

∫∞
0
u(α)α

n∏
i=1

e−(Li/α)β − e−(Ri/α)β dα∫∞
0
u(α)

n∏
i=1

e−(Li/α)β − e(Ri/α)β dα
.

(12)

Generalized non-informative prior

We propose a generalized non-informative prior for
the parameter α which is given as

v(α) ∝ 1
αk
, k > 0. (13)

This is a generalization of Jeffreys vague prior. When
k = 1, we have Jeffreys’ vague non-informative
prior. The posterior probability density function of
α given the data Li, Ri under squared error loss
function is obtained by making use of (12) and simply
substituting u(α) for v(α) as given below.

π∗(.) =

∫∞
0
v(α)α

n∏
i=1

e−(Li/α)β − e−(Ri/α)β dα∫∞
0
v(α)

n∏
i=1

e−(Li/α)β − e(Ri/α)β dα
.

(14)

It may be noted that (12) and (14) do not simplify to
nice closed forms. This is due to the complex form
of the likelihood function given in (4). We therefore
propose to use the Lindley approximation method to
evaluate the integrals involved.

LINDLEY APPROXIMATION

According to Ref. 17, the posterior SELF-Bayes esti-
mator of an arbitrary function u(θ) given by Lindley
is

E {(θ)|x} =
∫
u(θ)v(θ) exp[L(θ)] dθ∫
v(θ) exp[L(θ)] dθ

. (15)

This can be approximated asymptotically by

E {u(θ)|x} = u+
1
2

∑
i

∑
j

(uij + 2ui.ρj).σij

+
1
2

∑
i

∑
j

∑
k

∑
l

Lijk.σij .σkl.ul (16)

where i, j, k, l = 1, 2, . . ., n and θ = (θ1, θ2, . . ., θm)
and m is the number of parameters. Taking only
the scale parameter of the Weibull distribution into
consideration, (16) reduces to Ref. 18

û = u(θ) + 1
2 [(u11σ11)] + u1ρ1σ11 + 1

2 [(L30u1σ
2
11)]

(17)

where L is the log-likelihood function in (5). When
we consider first the non-informative prior with the
squared error loss function, we have

ρ1 = − 1
α
, σ11 = (−L20)−1,

u = α, u1 =
∂u

∂α
= 1, u11 =

∂2u

∂α2
= 0.

Let the following definitions hold:
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.

Let L20 and L30 represent the second and third deriva-
tives of the log-likelihood function such that
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Table 1 Average mean squared errors for the scale parame-
ter.
Size α β ML BN BGN

k = 2 k = 3 k = 4

25 0.5 0.8 0.09839 0.09733 0.09645 0.09497 0.10673
1.2 0.06645 0.06576 0.06464 0.06283 0.06196

1.5 0.8 0.89040 0.88025 0.87713 0.85366 0.86518
1.2 0.58682 0.58018 0.58212 0.58275 0.58034

50 0.5 0.8 0.09686 0.09666 0.09608 0.09283 0.09071
1.2 0.06335 0.06321 0.06363 0.06276 0.05867

1.5 0.8 0.87340 0.87144 0.87276 0.85265 0.85782
1.2 0.57503 0.57352 0.58065 0.58054 0.57389

100 0.5 0.8 0.09655 0.09650 0.09520 0.08125 0.07740
1.2 0.06302 0.06300 0.06319 0.06074 0.05462

1.5 0.8 0.85686 0.85647 0.86170 0.85258 0.84474
1.2 0.57348 0.57319 0.57343 0.56889 0.57294

ML = maximum likelihood, BN = Bayes non-
informative prior, BGN = Bayes generalized non-
informative prior

σ11 = (−L20)−1, σ22 = (−L02)−1, and
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SIMULATION STUDY

A simulation study was carried out to determine the
best estimator for the scale parameter of the Weibull
distribution with interval censoring and sample sizes
of n = 25, 50, and 100. The coding and the analysis
were performed using the R programming language.
The scale parameter was estimated with maximum
likelihood and Bayesian using non-informative prior
and a generalized non-informative prior approach.
The values for the generalized non-informative prior

Table 2 Average absolute bias for the scale parameter.

Size α β ML BN BGN

k = 2 k = 3 k = 4

25 0.5 0.8 0.30904 0.30896 0.30818 0.30650 0.29946
1.2 0.25188 0.25051 0.25117 0.24932 0.24760

1.5 0.8 0.92221 0.91634 0.92597 0.91869 0.93131
1.2 0.74837 0.74328 0.75283 0.75284 0.75335

50 0.5 0.8 0.30772 0.30736 0.30695 0.30123 0.26214
1.2 0.24853 0.24824 0.24994 0.24770 0.23898

1.5 0.8 0.92348 0.92239 0.92231 0.91184 0.91974
1.2 0.74926 0.74824 0.75257 0.74999 0.74842

100 0.5 0.8 0.30623 0.30448 0.30135 0.27205 0.21823
1.2 0.24957 0.24952 0.24657 0.24040 0.18939

1.5 0.8 0.92048 0.92026 0.91219 0.90179 0.88705
1.2 0.75290 0.75271 0.74512 0.74603 0.74564

are k = 2, 3, and 4. These were iterated R =
1000 times. The mean squared errors and that of the
absolute bias are determined and presented in Table 1
and Table 2 for the purpose of comparison. The mean
squared error and absolute bias are given, respectively,
by

MSE(θ̂) =
1
R

1000∑
r=1

(θ̂r − θ)2,

Abs Bias(θ̂) =
1
R

1000∑
r=1

|θ̂r − θ|.

CONCLUSIONS

Bayesian non-informative prior and the proposed
generalized non-informative prior estimators of the
Weibull scale parameter are obtained using a squared
error loss function via the Lindley approximation.
Comparisons are made between the estimators based
on a simulation study. The performance of MLE and
Bayes using the non-informative priors are examined
and the following conclusions made.

Table 1 shows the mean squared error values of
the scale parameter. It is observed that the proposed
generalized Bayes non-informative prior estimator has
smaller mean squared errors than the others except at
α = 1.5 and β = 1.2 with n = 25 where Bayes
using the Jeffreys vague non-informative prior gave
the smallest mean squared error. As the sample size
increased there was a corresponding decrease in mean
square error values for all the estimators.

The absolute bias of the estimated values are
presented in Table 2. We observe that all the es-
timators are not very reliable since they all exhibit
some level of bias but the generalized Bayes non-
informative prior has a lower absolute bias than the
other estimators. The lowest absolute biases occur
mostly at k = 4.
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