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ABSTRACT: Confidence intervals for the γ-quantile of a linear combination of N non-normal variates with a linear
dependence structure would be useful to the financial institutions as the intervals enable the accuracy of the value at risk
(VaR) of a portfolio of investments to be quantified. Here we construct 100(1−α)% confidence intervals for the γ-quantile
using procedures based on bootstrap, normal approximation and hypothesis testing. We show that the method based on
hypothesis testing produces a confidence interval which is more satisfactory than those found by using bootstrap or normal
approximation.
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INTRODUCTION

Consider a portfolio consisting of N stocks. The
absolute value of the γ-quantile of the return of the
portfolio is called the value at risk (VaR) of the
portfolio.

VaR has been frequently used by commercial
and investment banks to capture the potential loss in
value of their traded portfolios from adverse market
movements over a specified period.

To evaluate VaR in the multivariate situation
where N stocks are involved, we usually begin with
the evaluation of a multivariate distribution for the
N stocks. A common approach is to fit the data
on returns by the multivariate version of the normal,
Student t or skewed Student t distribution. Other ap-
proaches may take into account the tail-dependence1,
and asymmetry2–5. A more sophisticated approach is
one which is based on copulas2, 6–13.

Presently we use an approach based on a type of
non-normal distribution called the quadratic-normal
distribution14, 15. To describe the approach, we first
let S = (S1, S2, . . . , SN )T be a vector of uncorrelated
variates of which Si can be expressed as

Si =

{
λi1ei + λi2(e2i − 1

2 [1 + λi3]), ei > 0,
λi1ei + λi2(λi3e2i − 1

2 [1 + λi3]), ei < 0

where ei ∼ N(0, 1). The variate Si is said to have
a quadratic-normal distribution with parameters 0 and
λi, and we may write Si ∼ QN(0,λi). The mean of

Si is 0 while the kth moment of Si is given by mk =
E(Ski ), k = 2, 3, 4. The standardized moments

m̄3 = m3/m
3/2
2 , m̄4 = m4/m

2
2

will then be, respectively, the measures of skewness
and kurtosis of Si. Next, let A be an N × N
orthogonal matrix, µ an N × 1 vector of constants
and R = (R1, R2, . . . , RN )T an N × 1 vector given
by

R = µ + AS, (1)

w = (w1, w2, . . . , wN )T a vector of constants with∑N
i=1 wi = 1 and

R =
N∑
i=1

wiRi. (2)

When λi3 = −1 and λi2 is large, the distribution
of the random variable Si will have fat tails and nar-
row waist. As the matrix A represents an orthogonal
transformation, and the vector µ, on the other hand
represents a translation, the distribution ofRi will also
have fat tails and narrow waist. As the distribution
of stock return often also has fat tails and narrow
waist, and the returns of different stocks are usually
correlated, the distribution of R given by (1) can be
used to model the joint distribution of the returns of
N stocks. For a portfolio of N stocks, the portfolio
return can be represented by R given by (2).

Let FR be the cumulative distribution function of
R and assume that the γ-quantile, Qγ = F−1

R (γ), is
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uniquely defined. When γ is small, the absolute value
of Qγ will represent the VaR which has a confidence
level of 100(1− γ)%.

After finding an estimate for the VaR, it is usually
desirable to access the accuracy of the VaR estimate
by constructing a confidence interval for the VaR.

The layout of the paper is as follows. In the
next three sections, we describe, respectively, the
procedures based on bootstrap, normal approximation
and hypothesis testing for finding a confidence
interval for the VaR. We then compare the
performance of the three methods for constructing
confidence intervals for the VaR. In the last section,
we give an example which shows that multivariate
quadratic-normal distribution is able to fit a real data
set obtained from the Kuala Lumpur stock exchange.

BOOTSTRAP CONFIDENCE INTERVAL FOR
γ-QUANTILE

First, let (r1j , r2j , . . . , rNj) be the jth observed value
of R, j = 1, 2, . . . , n. From the n observed values
(r1j , r2j , . . . , rNj), j = 1, 2, . . . , n, we first com-
pute the (k, l) entry of the matrix V̂ of the es-
timated variance-covariance of R as shown below:
v̂kl = (1/n)

∑n
j=1 rkjrlj − µ̂kµ̂l where µ̂k =

(1/n)
∑n
j=1 rkj .

We next compute Â = [â1â2 · · · âN ] where âi is
the ith eigenvector of V̂, and ‖âi‖ = 1. By using Â,
we compute


s1j
s2j

...
sNj

 = Â
T


r1j − µ̂1

r2j − µ̂2

...
rNj − µ̂N

 , j = 1, 2, . . . , n.

By using the constrained maximum likeli-
hood procedure16, we find the quadratic-normal
distributions QN(0, λ̂i) and QN(µ̂, λ̂) which fit
si1, si2, . . . , sin and the n observed values of R. Let
zγ be the (1 − γ)-quantile of the standard normal
distribution. An estimate of the γ-quantile ofR is then
given by

Q̂ = µ̂+ λ̂1(−zγ) + λ̂2

[
λ̂3(−zγ)2 − 1 + λ̂3

2

]
.

Next we generate B values of (r̃1j , r̃2j , . . . , r̃Nj),

(j = 1, 2, . . . , n), using
r̃1j
r̃2j

...
r̃Nj

 =


µ̂1

µ̂2

...
µ̂N

+ Â


s̃1j
s̃2j

...
s̃Nj


where s̃ij ∼ QN(0, λ̂i), j = 1, 2, . . . , n; i =
1, 2, . . . , N .

By using the constrained maximum likelihood
procedure, we find the quadratic-normal distribution
QN(µ̃, λ̃) which fits the values r̃j =

∑N
i=1 wir̃ij , j =

1, 2, . . . , n. Next let

Q̃ = µ̃+ λ̃1(−zγ) + λ̃2

[
λ̃3(−zγ)2 − 1 + λ̃3

2

]

be the estimated quantile, and QN(µ̃∗, λ̃
∗
) the

quadratic-normal distribution which fits the B values
of Q̃.

The approximately-100(1 − α)% bootstrap con-
fidence interval for the γ-quantile is then given by
[QL, QU] where

QL = µ̃∗+λ̃∗1(−zα/2)+λ̃∗2

[
λ̃∗3(−zα/2)2 − 1 + λ̃∗3

2

]

and

QU = µ̃∗ + λ̃∗1(zα/2) + λ̃∗2

[
(zα/2)2 − 1 + λ̃∗3

2

]
.

CONFIDENCE INTERVALS BASED ON
NORMAL APPROXIMATION

From the B values Q̃(1), Q̃(2), . . . , Q̃(B) of Q̃ we can
find the estimated variance

σ̃2 =
1

B − 1

B∑
b=1

(Q̃(b) − ¯̃Q)2

where ¯̃Q = (1/B)
∑B
b=1 Q̃

(b). Then the
approximately-100(1−α)% confidence interval based
on normal approximation for the γ-quantile is

[Q̂− zα/2σ̃, Q̂+ zα/2σ̃].

PROCEDURE BASED ON HYPOTHESIS
TESTING

Consider the problem of testing H0 : Qγ = Q0
γ

against H1 : Qγ 6= Q0
γ . Suppose we test the above

H0 by using the decision rule of accepting H0 at the
α level if Q(0)

L 6 Q̂ 6 Q
(0)
U where Q(0)

L and Q(0)
U
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are, respectively, the 100(α/2)% and 100(1− α/2)%
points of the quadratic-normal distribution which is
used to fit the B values of Q̃ obtained when the B
values of ((r̃1j , r̃2j , . . . , r̃Nj), j = 1, 2, . . . , n) are
generated using

r̃1j
r̃2j

...
r̃Nj

 =


µ

(m)
1

µ
(m)
2
...

µ
(m)
N

+ A(m)


s̃1j
s̃2j

...
s̃Nj


where s̃ij ∼ QN(0,λ(m)

i ), j = 1, 2, . . . , n and
(((µ(m)

i ,λ
(m)
i ), i = 1, 2, . . . , N),A(m)) is found as

follows.
Firstly, for a given value of (((µi,λi), i =

1, 2, . . . , N),A), we find the moment mk =
E(R − E(R))k, k = 2, 3, 4. Let (µ,λ)
be such that µ = E(R) and the kth cen-
tral moment of the quadratic-normal distribution
QN(µ,λ) is equal to mk, k = 2, 3, 4. Then
R is approximately distributed as QN(µ,λ). Fi-
nally, (((µ(m)

i ,λ
(m)
i ), i = 1, 2, . . . , N),A(m)) is

(((µi,λi), i = 1, 2, . . . , N),A) which minimizes

D2 =(µ−µ̂)2+(λ1−λ̂1)2+(λ2−λ̂2)2+(λ2λ3−λ̂2λ̂3)2

subject to

µ+ λ1(−zγ) + λ2

[
λ3(−zγ)2 − 1 + λ3

2

]
= Q0

γ .

An approximately-100(1−α)% confidence inter-
val for the γ-quantile of R is now given by {Q0

γ : The
null hypothesis that Qγ = Q0

γ is accepted at the α
level}.

NUMERICAL EXAMPLES

Fig. 1 shows 100 simulated bootstrap confidence in-
tervals for the γ-quantile of R when n = 50, µ1 =
0, λT

1 = (0.32, 0.68, 0.065), µ2 = 0, λT
2 =

(0.378, 0.639, 0.073),

A =
(

0.3090 0.9511
−0.9511 0.3090

)
.

The upper limits of the 100 confidence intervals have
been arranged in ascending order.

Figs. 2 and 3 show 100 possible confidence inter-
vals based on normal approximation and hypothesis
testing. As in Fig. 1, the upper limits of the 100
confidence intervals have been arranged in ascending
order.

Figs. 1–3 show that the estimated coverage prob-
ability of the confidence interval based on hypothesis

Fig. 1 100 simulated bootstrap confidence intervals for γ-
quantile when γ = 0.01, α = 0.05, n = 50, B =

100. Estimated coverage probability: 0.82; average length:
2.395, Q̂: estimate of γ-quantile; Qγ : true value of γ-
quantile.

Fig. 2 100 simulated confidence intervals based on normal
approximation for γ-quantile. Estimated coverage probabil-
ity: 0.89, average length: 2.4296.

testing is closer to the target value 0.95 than those of
the bootstrap confidence interval and the confidence
interval based on normal approximation.

Further comparison of the 3 types of confidence

Fig. 3 100 simulated confidence intervals based on hypoth-
esis testing procedure for γ-quantile. Estimated coverage
probability: 0.91, average length: 2.9261.
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Table 1 Estimated coverage probabilities and average
lengths of confidence intervals for γ-quantile (γ = 0.01,
α = 0.05, µ1 = µ2 = 0, n = 50). N = B = 100,
standard error of the estimated coverage probability ≈
0.0218.

No BTP NAP HTP BTL NAL HTL

1 0.82 0.89 0.91 2.39207 2.42961 2.918
2 0.8 0.8 0.88 2.45177 2.49157 3.019
3 0.79 0.82 0.93 2.31436 2.35217 2.9195
4 0.72 0.72 0.83 2.17881 2.21492 2.634
5 0.91 0.89 0.94 0.76893 0.76353 1.214
6 0.85 0.86 0.91 1.26915 1.29416 1.8135
7 0.79 0.85 0.87 1.81021 1.83762 2.248
8 0.9 0.9 0.93 0.81293 0.8142 1.3455
9 0.71 0.69 0.82 2.16665 2.20639 2.5805
10 0.77 0.75 0.85 1.22067 1.24205 1.7185

BTP=Estimated coverage probability of confidence
interval based on bootstrap.
NAP=Estimated coverage probability of confidence
interval based on normal approximation.
HTP=Estimated coverage probability of confidence
interval based on hypothesis testing.
BTL=Average length of confidence interval based on
bootstrap.
NAL=Average length of confidence interval based on
normal approximation.
HTL=Average length of confidence interval based on
hypothesis testing.

intervals can be found in Table 1 which displays the
estimated coverage probabilities and average lengths
for 10 values of (µ1,λ1, µ2,λ2,A). The 10 values of
λ1 and λ2 are displayed in Table 2. The measures of
skewness and kurtosis (m̄3 and m̄4) of the quadratic-
normal distribution with the given λi are also included
in Table 2. Table 1 shows that the coverage proba-
bility of the confidence interval based on hypothesis
testing is closer to the target value 0.95 than those
of the bootstrap confidence interval and confidence
interval based on normal approximation.

Table 1 also shows that the average length of the
confidence interval based on the hypothesis testing is
longer than those of the bootstrap confidence interval
and confidence interval based on normal approxi-
mation. This is not surprising because in order to
have a larger coverage probability, the length of the
confidence interval should be made longer.

APPLICATIONS IN FINANCE

The random variables R1, R2, . . . , RN in the first
section may be considered to be the returns of N
stocks, and the γ-quantile Qγ of R becomes the value

Table 2 The parameters and measures of skewness and
kurtosis of the quadratic-normal distribution.

No m̄3 m̄4 λT
1

λT
2

1 3 16.6 0.322184 0.680924 0.065316
2.8 15 0.377794 0.638861 0.072964

2 3.4 20.2 0.190061 0.770776 0.02769
2.6 13.4 0.450006 0.589852 0.115554

3 3 16.7 0.300017 0.688155 0.020679
2.4 12 0.502252 0.547528 0.125795

4 3.2 18.4 0.247697 0.72906 0.029551
1 4.4 0.955589 0.177217 0.88736

5 −0.2 2.4 1.20867 −0.17517 −0.52415
2 9.4 0.62038 0.454663 0.189261

6 0.6 3.1913 1.0745 0.055572 2.958
1.6 7.2 0.732179 0.359491 0.270896

7 2 9.3 0.603592 0.45809 0.151303
0.4 2.8 1.11827 −0.00217 −71.0956

8 −0.4 2.8 1.11826 −0.15408 −0.01403
0.8 3.8 0.99794 0.126695 1.16716

9 3.6 22.6 0.054687 0.838405 −0.08815
0.4 2.7 1.15398 −0.02222 −8.11265

10 −1 10.6 0.171503 0.387604 −1.47341
1.4 6.2 0.797129 0.305546 0.361719

at risk (VaR) of the portfolio consisting of these N
stocks. Thus if we can show that R can be written as
R = µ+AS of which S1, S2, . . . , SN are uncorrelated
and Si ∼ QN(0,λi), then the methods in the second
and fourth sections can be applied to find confidence
intervals for the VaR of the portfolio.

In the following analysis, the data obtained from
the Kuala Lumpur Stock Exchange (KLSE) are used.
The data are the daily stock prices of three companies,
namely Genting Bhd., Gamuda Bhd. and Tanjong PLC
Bhd. in the KLSE from Thomson Financial Datas-
tream (01/01/1993 to 31/8/2002). The data for the
period from 01/07/1997 to 30/06/1999 are excluded
in the present investigation because these data were
collected during the financial crisis in SE Asia. The
following results in the forms of table and figure are
extracted from Ref. 15.

The variance-covariance matrix associated with
the portfolio is4.6316 0.7453 1.2520

0.7453 4.0142 1.2299
1.2520 1.2299 5.7027

 .

Fig. 4 shows that the distribution of the portfo-
lio returns RP can be approximated well using the
quadratic-normal distribution. Thus the methods in
the second and fourth sections may be used to find
confidence intervals for the VaR of the portfolio.
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Fig. 4 Cumulative distribution of return for the portfolio.
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