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ABSTRACT: Solving the Black-Scholes PDE of the arithmetic Asian options is one of the most difficult problems in
financial mathematics. A variety of ways ways have been proposed to address the problem. In this study, we use the PDE
approach by presenting an efficient method for pricing a continuous arithmetic Asian option. Using the Laplace transform
we reduce the three-dimension partial differential equation of the arithmetic Asian option into a two-dimension ordinary
differential equation. Its final analytical solution is presented. We conclude that this method is applicable to all types of
arithmetic Asian options.
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INTRODUCTION

Asian options are path dependent options whose pay-
off functions depend on the average stock price over
a specific period of time called the life of the option.
There are two types of Asian options with regards to
the average computation: arithmetic and geometric.
Call options give the holder of the option the right to
buy an underlying security, but are not obligated to do
so, and put options which give the right to sell. For the
case of geometric Asian options there is a closed-form
solution to the value of these options1. However, the
most difficult task is the arithmetic type, because the
arithmetic average of a set of lognormal random vari-
ables is not lognormally distributed. Until now there
has been no closed-form solution to the value of these
types of option. Some methods have been developed
and proposed to address the problem. Geman and
Yor2 used a Laplace transform in time of the Asian
option price. However, this transform is only applica-
ble in some cases. Rogers and Shi3 transformed the
problem to the problem of solving a parabolic PDE
in two variables from the second order, but there is
no analytical solution for this PDE, and its numerical
solution is not accurate. They also derive lower-
bound formulae for Asian options by computing the
expectation based on a zero-mean Gaussian variable.
Zhang4 presented a theory of continuously-sampled
Asian option pricing, and he solved the PDE with a
perturbation approach. Vecer’s approach5 was based
on treating the Asian option as an option on a traded

account; he provides a one-dimensional PDE for
Asian options. Dubois and Lelievre6 derived accurate
and fast numerical methods to solve the Rogers and
Shi PDE. Chen and Lyuu7 developed the lower-bound
pricing formulae of Rogers and Shi PDE3 to include
general maturities instead of for one year. Dewynne
and Shaw8 provided a simplified means of pricing
arithmetic Asian options by the PDE approach, they
derive an analytical formula for the Laplace transform
in time of the Asian option, and they obtain asymptotic
solutions for Black-Scholes PDE for Asian options for
the low-volatility limit which is a big problem with
using the Laplace transform. Yang et al9 derive quasi-
analytical expressions for the price and hedge of an
arithmetic Asian call option.

Hence, in this study, we provide a simpler di-
rect solution for the arithmetic Asian options using
the Laplace transform in time. Using the Laplace
transform and a transformation technique on some
variables suggested by Rogers and Shi3, we transform
the two-dimensional arithmetic Asian option PDE to
an ordinary differential equation in one dimension,
which is simpler than the equations that have been
obtained by previous authors. Our solution requires
only one change of some variables, whereas Dewynne
and Shaw8 and Cruz-Baez and Gonzalez-Rodrigues10

applied a series of changes of variables before using
the Laplace transform. We use Maple program to get
its final analytical solution.
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TECHNIQUES OF TRANSFORMATION

The Black-Scholes PDE for the arithmetic Asian op-
tions is

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2
+ rS

∂V

∂S
+S

∂V

∂A
− rV = 0, (1)

with t > 0, S > 0 and the boundary conditions

V (T, S,A) = ϕ

(
S,
A

T

)
.

S is the stock price, r is the interest rate, and σ is the
asset volatility. Both r and σ are constants. T is the
expiration date and At =

∫ t
0
S(u)du is a running sum

of the stock price.
There are four different types of arithmetic

Asian option with regards to the payoff function
ϕ(S,A/T ):
(i) Fixed strike call ϕ(S,A/T ) = (k −A/T )+

(ii) Fixed strike put ϕ(S,A/T ) = ((A/T )− k)+

(iii) Floating strike call ϕ(S,A/T ) = (S −A/T )+

(iv) Floating strike put ϕ(S,A/T ) = ((A/T )− S)+

where k is the exercise price.
Equation (1) is not easy to solve since the

parabolic operator is degenerate A. However, it is
possible to reduce (1) to a simpler equation using
the Laplace transform and transformation techniques
on some variables. Using the following steps to
transform the variables in (1):

V (t, S,A) = Sf(t, ξ), ξ =
k − A

T

S
.

Eq.(1) is reduced to

∂f

∂t
−
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f(T, ξ) = ϕ(ξ).

For the case of fixed strike call option ϕ(ξ) =
max(−ξ, 0) = ξ−, fixed strike put option ϕ(ξ) =
max(ξ, 0) = ξ+, floating strike call ϕ(ξ) =
max(ξ, 0) = (1 + ξ)−, and floating strike put ϕ(ξ) =
max(ξ, 0) = (1 + ξ)+. Also (2) is difficult to solve,
because the coefficient 1/T does not multiply by the
variable ξ .

Rogers and Shi3 obtain the analytical solution of
(2) for the case of ξ 6 0

f(t, ξ) =
1
rT

(1− e−r(T−t))− ξe−r(T−t). (3)

Perform the inverse transformation

V (t, S,A)

= S

(
1− e−r(T−t)

rT

)
− e−r(T−t)

(
k − A

T

)
.

We shall consider only the case when ξ > 0, and use
(3) to get free boundary condition. Let τ = T − t

∂f

∂τ
= 1
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−
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)
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, (4)

f(0, ξ) = ϕ(ξ),

f(τ, 0) =
1
rT

(1− e−rτ ).

In order to avoid the derivation with respect to time
and obtain an ODE instead PDE we shall apply the
Laplace transform in time τ . We consider the case
of fixed strike call option, the initial condition of the
fixed strike call Asian option under reducing domain
(ξ > 0) becomes f(0, ξ) = 0. Using the Laplace
transform and its properties, (4) becomes
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2σ

2ξ2
∂2f̂

∂ξ2
−
(

1
T

+ rξ

)
∂f̂
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,
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1
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(
r
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)
.

(5)

The solution of (5) can be given as a pair of confluent
hypergeometric functions

f̂(p, ξ) = C1(p)h1(p, ξ) + C2(p)h2(p, ξ),

h1(p, ξ) = ξ((r/σ
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× 1F1
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where α =
√
σ4 + 4σ2(r + 2p) + 4r2. Taking into

account the series expansions of the hypergeometric
function, this excludes the function h1(p, ξ)8, 10. And
if Re(z) < 0, then as |z| → ∞,

1F1(a, b, z) ∼ Γ(b)
Γ(b− a)

(−z)−a.

Using the boundary condition and the above relation
we determined C2(p), and then the solution of (5) is
given by

f̂(p, ξ)

=
ξ((r/σ

2)+(1/2)+α/2σ2)e(−2)/σ2TξΓ
(
− 1
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r
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. (6)
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The final analytical solution for the fixed strike
call arithmetic Asian option PDE then, can be ob-
tained using

V (t, S,A) = Sf(τ, ξ), τ = T − t, ξ =
k − A

T

S
,

where f(τ, ξ) is given by

f(τ, ξ) =
1
rT

(1− e−rτ )− ξe−rτ , ξ 6 0,

f(τ, ξ) =
1

2πi

∫ γ+i∞

γ−i∞
f̂(p, ξ)eτp dp, ξ > 0,

and f̂(p, ξ) is defined in (6), the integration is done
along the vertical line Re(p) = γ in the complex
plane such that γ is greater than the real part of all
singularities of f̂(p) (see Ref. 11). Solution of the
fixed strike put option can be obtained using put-call
parity.

CONCLUSIONS

Since the numerical methods for solving arithmetic
Asian option PDE is not exact, that is because the
low volatility level or short maturity, we tried to
solve it analytically by means of partial differential
equations. We have shown that, the PDE of the
arithmetic Asian options in three-dimensions could
be transformed into a two-dimension ordinary differ-
ential equation, and we have provided its analytical
solution. The analytical solution for all types of the
arithmetic Asian options can be obtained by changing
the payoff function according to the type of the option
that we need to price.
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